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Abstract: The present study assumes that the material properties of the fin vary by a force rule in the axial direction,
with the exception of the thermal relaxation coefficient, which is assumed to be constant. The temperature distribution in
the longitudinal fin with homogeneous cross-section exposed to the laser heat source is numerically investigated. This is
because these constraints lead to a linear differential equation with partial solutions that cannot be analytically resolved
using conventional methods, except for a few elementary order functions. Consequently, a linear or nonlinear system of
equations as a function of time is obtained by transforming a differential equation attained with one or more independent
factors using the highly efficient, potent, and practical semianalytical method known as the Chebyshev pseudospectral
method. Temperature distributions in the fin are then examined in terms of different homogeneity factors and time-
varying heat source capacity. Furthermore, the numerical solutions’ convergence is emphasised, and the results are
confirmed using homogeneous solutions from the literature.

Key words: Transient heat transfer, functionally graded materials, laser heat source, Chebyshev pseudospectral method

1. Introduction
Fins with circular, concave, convex, and rectangular profiles are developed and engineered to achieve higher
thermal performance when utilized as heat transfer components within many engineering applications. These
fins require proper heat treatment tailored to their intended environments. Lasers are preferred as heat sources
for this process due to their ability to generate intense radiation pulses suitable for surface thermal treatment
[6, 24, 30]. Laser techniques are also chosen for their overall cost-effectiveness compared to traditional methods.
Additionally, lasers apply minimal heat to the workpiece, which improves surface properties, such as hardness.
To successfully achieve the desired hardened layer depth, the laser’s energy efficiency and processing time must
be carefully selected. Therefore, understanding the distribution of environmental temperatures is essential to
reaching the targeted hardened depth and maximum surface temperature.

So as to study the heat transfer in fins and the patterns of heat flow via expanded surfaces for steady
state, many assumptions have been made for an accurate and numerical analysis. There is a clear closed-form
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solution for temperature distributions and efficiency in various fins with an expanded surface discovered in
the literature [10, 13] using these reasonable assumptions. Furthermore, there are numerous studies in the
literature about the productivity and efficiency of longitudinal fins, along with the optimisation of their size
and profile [2–4, 11, 15–17, 20–23, 28, 29]. Basically, the longitudinal fin’s temperature distribution leads to
the development of mechanical flaws like fatigue and cracks, which shorten the fin’s lifespan because of various
expansions. Therefore, understanding this temperature distribution is crucial for selecting the appropriate
material and fin type during the design process [14]. By applying numerical or perturbation approaches in
addition to analytical methods, it is possible to determine the temperature distributions on the fins for both
steady state and transient state [1, 7–9, 14, 17, 19, 20, 25].Rapid technological advancements have made it
possible to design with materials that are not only long-lasting and highly durable but also capable of gradually
altering their properties. These substances are called functionally graded materials (FGM) since they exhibit
gradual change and may be chosen over composite substances. Due to their superior resistance compared to
other materials, FGMs have gained widespread use in various climates and conditions. Numerous studies in the
literature have documented the effects of these materials across different engineering fields where they are applied
[9, 13, 17, 26, 28]. These investigations are relevant to thermal performance and reverse engineering applications,
which analyse the transient behaviour of temperature distribution in gradually graded longitudinal fins. While
the authors investigated the temperature distribution and transient response for the FGM longitudinal-shaped
fin, they assumed the density and specific heat to remain constant. In contrast, previous studies have reported
that thermal conductivity varies gradually across different forms of fin materials. As a result, this research is
significant for studying the behaviour of longitudinal FGM fins under the influence of a laser heat source in a
transient state. It assumes that thermal conductivity, density, and specific heat vary exponentially in the axial
direction, while excluding the thermal relaxation parameter. Despite their advantageous properties, FGMs may
become deformed in long-term operating environments.

To address these deformations, lasers with inexpensive, accurate, and rapid processing capabilities are
employed. Consequently, the impact of the laser source on FGMs is inevitable. This article aims to demonstrate
the transient thermal behaviour of a longitudinal-shaped fin made of FGMs under the influence of a time-
varying laser heat source, while maintaining a constant cross-sectional area. The transient thermal efficiency
of a longitudinal fin composed of FGMs was studied, considering that the fin had an adiabatic tip. The axial
route assumes exponential changes in the body’s material characteristics, with the exception of the thermal
relaxation value, which is considered to remain constant. An internal heat source is implemented via laser
heating. These conditions lead to a nonhomogeneous linear differential equation. Since this problem cannot be
solved analytically, it is resolved mathematically using the Chebyshev pseudospectral method (CPM), which is
a method that can resolve variable coefficient boundary value problems with high performance. The CPM, a
semianalytical method, can be used to convert a differential equation derived from one or more unrelated factors
into a system of linear or nonlinear equations [5, 12, 27]. Because of its high accuracy, simplicity of usage, and
capacity to employ both a tough mesh in the path of the centre points and a tight mesh near the border, the
CPM was selected as the ideal method for this investigation.

2. Governing equations

Consider a longitudinally functionally graded straight airfoil with profile area (A). The cross-sectional perimeter
is denoted by (P ) and the distance by (b) (see e.g. [9]). Convectional heat transfer coefficient (h) at the fin
outside is steady and the fin is primarily in thermal balance with the receiver at the warmth (Ts ). Except for

942



DEMİR et al./Turk J Math

the thermal relaxation coefficient, the fin’s material properties are assumed to fluctuate exponentially in the
axial direction, while the interior heat source is a transitory laser heating. The blade base temperature changes
gradually from (Ts ) to (Tb ) at (t ≥ 0) even though the tip is still adiabatic.

The partial differential formula that calculates the FGM thermal conductivity of the convective fin’s
temperature response is as follows [17]:

∂

∂X

[
k(X)

∂T

∂X

]
− hP

A
[T − Ts] + g(X, t) = ρ(X)c(X)

∂T

∂t
, 0 < X < b (1)

where (g ) is the energy source term, (c) is the definite heat capacity, and (ρ) is density. This is represented as
[18]:

g(X, t) = I(t)(1−R)µ exp(−µX) (2)

where (µ) is the absorption coefficient, (R) is the body’s outside reflectivity, and (I(t)) is the laser incidence
concentration.

At the outset and in the boundary conditions,

T (X, 0) = Ts (3)

T (b, t) = Tb (4)

∂T

∂X
(0, t) = 0 (5)

The material properties of the FGM fin are assumed to change exponentially in the axial direction, while
the thermal relaxation coefficient is considered constant.

k(X) = k0exp(aX), c(X) = c0exp(aX), ρ(X) = ρ0exp(aX) (6)

where a is the inhomogeneity parameters and k0 , ρ0 , and c0 represent the medium’s material characteristics
at X = 0 , and k represents the thermal conductiveness. The following explains how dimensionless variables
are defined:

x = X
b , τ = k0

(ρ0c0b2)
t, θ = T−Ts

Tb−Ts
, Nc =

hPb2

Ak0
(7)

After nondimensionalization, the main problem is reduced to the partial differential formula found below.

∂θ

∂τ
= aexp(−ax)

∂θ

∂x
+ exp(−ax)

∂2θ

∂x2
− exp(−2ax)Ncθ + exp(−2ax)G(x, τ) (8)

G(x, τ) = g0η(τ)exp(−µx) (9)

g0 = b2(1−R)µIr
k0(Tb−Ts)

, η(τ) =
I(

ρ0c0b2

k0
τ)

Ir

Considering the fundamental and border conditions,

θ(x, 0) = 0, θ(0, τ) = 1, ∂θ
∂x (0, τ) = 0 (10)

Internal source term G(x, τ) get three different cases [18]
g0 = 0 -no internal source
1. µ = 1 , g0 = 1 , η(τ) = 1 -constant internal source
2. µ = 1 , g0 = 1 , η(τ) = 1− cos(ωτ) -trigonometric internal source
3. µ = 1 , g0 = 1 , η(τ) = 200(exp(−0.8τ)− exp(−0.82τ))− 0.3134( τ4 )

2 -exponential internal source.
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3. The Chebyshev pseudospectral method’s solution process

A detailed, step-by-step guide for applying the CPM method to address a time-dependent heat transfer problem
in a longitudinal functionally graded flat fin with a sectional dimension that is unchanged:
Problem statement: Determine the definition of the time-dependent heat transport problem for the longi-
tudinal functional grade flat fin with unchanging cross-sectional area. Specify the governing partial differential
equation (PDE), initial conditions, boundary conditions, and any relevant physical characteristics like heat
conductivity, fin length, and boundary temperatures.
Mathematical model: Develop the mathematical model describing the time-dependent heat transfer through
the fin. The following is a representation of the controlling PDE for the temporary heat transmission:

∂θ

∂τ
= aexp(−ax)

∂θ

∂x
+ exp(−ax)

∂2θ

∂x2
− exp(−2ax)Ncθ + exp(−2ax)G(x, τ)

where θ is the temperature, τ is time, G(x, τ) = g0η(τ)exp(−µx) is the source function. Here, g0 = b2(1−R)µIr
k0(Tb−Ts)

and η(τ) =
I(

ρ0c0b2

k0
τ)

Ir
.

Boundary conditions: Specify the first circumstances pertaining to the temperature dispersion at τ = 0 and
the boundary conditions for the problem. These typically include the temperatures at the base and tip of the
fin in terms of nondimensional form:
θ(x, 0) = 0 , θ(0, τ) = 1 , ∂θ

∂x (0, τ) = 0

Discretization: Discretize the spatial domain (fin length) using Chebyshev nodes. The Chebyshev nodes are
given by:
xj =

1
2 [1− cos( jπN ]

where j = 0 · · ·N bounds of the domain, and N is the total amount of nodes. D refers to the Chebyshev
differentiation matrices that are built using these points. A grid function ϑ defined at Chebyshev yields a
discrete derivative Ω in two steps.

• P must be the sole polynomial of degree ≤ N that satisfies P (xj) = ϑj for0 < j < N .

• Assign P ′(xj) to Ωj .

This process can be described by multiplying a (N + 1) × (N + 1) matrix because it is linear. Now let us
introduce equations 8, 9, and 10 in their semidiscrete form, which were produced by using matrix D for discrete
differencing. Remember that if ϑ = [ϑ0, ϑ1, · · · , ϑN ]T represents a vector of values at positions xj , with
0 < j < N , and D , a matrix indicating first order differentiation, then considering ϑ′(xj), ϑ

′′(xj), . . . , yields
remarkably accurate approximations to ϑ′(xj) = (Dϑ)j , ϑ′′(xj) = (D2ϑ)j , and so on.

Now, we will discretize problems 8, 9, and 10, using the CPM. Regarding the first derivative


∂θ(x0,τ)

∂x
∂θ(x1,τ)

∂x
...

∂θ(xN ,τ)
∂x

 ≈ D


θ(x0, τ)
θ(x1, τ)

...
θ(xN , τ)

 (11)
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A similar procedure leads to 
∂2θ(x0,τ)

∂x2

∂2θ(x1,τ)
∂x2

...
∂2θ(xN ,τ)

∂x2

 ≈ D2


θ(x0, τ)
θ(x1, τ)

...
θ(xN , τ)

 (12)

Pseudospectral approximation: Approximate the temperature distribution θ(x, τ) using Chebyshev poly-
nomials:

θ(x, τ) ≈
N∑

k=0

Ckθ(xk, τ)

where Ck are the coefficients to be determined.
Collocation method: Apply the collocation method to enforce the time-dependent PDE at the Chebyshev
nodes and at each time step. This involves evaluating the time derivative and the spatial derivative terms at
each collocation point and setting them equal to the corresponding terms in the PDE.
System of equations: After applying the collocation method, you obtain a system of equations according to
the Chebyshev polynomial expansion’s coefficient at every time step.

Except for the approximation error in the semidiscrete Chebyshev approximation for 8, 9, and 10, the
approximation θ(xi, τ) reduces to a system of N − 1 ODEs represented by θi .

dθ

dτ
= Aθ +B (13)

θ(0) = [θ1(τ), θ2(τ), . . . , θN−1(τ)]
T (14)

Here A = exp(−ax)D2 + a exp(−ax)D − exp(−2ax)Nc is derived from equation 8 and B is evaluated from
boundary conditions and source function G(x, τ) 9 and 10 [5, 27].
Time integration: Use a time integration scheme to evolve the system of equations forward in time. This
can be done by solving the system of equations at each time step using a fourth-order Runge-Kutta iterative
solver or numerical methods such as matrix inversion, LU decomposition. In the present work, a fourth-order
Runge-Kutta iterative solver is used.
Postprocessing: Once you have the coefficients, use them to reconstruct the temperature distribution θ(x, τ)

throughout the fin. You can then analyze the temperature profile and extract relevant information such as
transient temperature profiles, heat fluxes, and thermal behavior of the fin over time.
Validation and interpretation: Validate your results by comparing them to analytical solutions, experi-
mental data, or results from other numerical methods. Interpret within the problem’s context, a temporary
distribution of temperatures and draw conclusions about the time-dependent heat transport behavior of the fin.

The relative error for a numerical solution can be expressed as follows.∣∣∣∣Analytical − Numerical
Analytical

∣∣∣∣ (15)
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However, equation 8 with conditions 10 in this study cannot be solved analytically. As a result, the
steady-state solution is employed as an analytical method for relative inaccuracy to compare and validate the
present results.

When homogeneous material (a = 0) is used, the steady-state solution is found as follows

θ(x) = 0.324027ex + 0.324027e−x (16)

under the conditions of no internal source (g0 = 0) and Nc = 1 .
By following these steps, you should be able to effectively use the Chebyshev pseudospectral method

to solve the time-dependent heat transport problem for a longitudinal functional grade flat fin with constant
cross-sectional area. Notable references, such as Trefethen [27], provide information on how to calculate the
Chebyshev differentiation matrix and codes as m-files.

4. Numerical results
This study investigates the behaviour of heat conduction for various homogeneity parameters (a) in the FG
longitudinal fin using a time-dependent laser heat source. If the homogeneity indices are assumed to be the
same for all properties varying along the axial coordinate, it becomes possible to focus on the homogeneity
effect. Thus, the fact that a = 0 indicates a homogeneous solution can be easily understood. It is observed
that positive values of the inhomogeneity parameter indicate the opposite, i.e. larger values of density, specific
heat and thermal conductivity near the outer surface of the medium.
A numerical experiment was performed to investigate the dispersion of temperatures over time as a function
of the specific heat source capacity, using a = 1 . In certain solutions, various µ values were also used to
determine specific model properties. The results were analytically verified for the steady state using Nc = 1 for
the homogeneous case and the relationships are shown in Table 1. The results were obtained at the collocation
points determined by dividing the region into 5 parts. As can be seen from Table 1, there is a significant degree
of precision and good agreement between the results.

Table 1. Comparison of present results with steady state solution for homogeneous material (a = 0) with g0 = 0 and
Nc = 1 .

x Present results (τ = 5) Steady state solution Relative error
0 0.6480545232 0.6480542738 3.848× 10−7

0.2 0.6610588577 0.6610586205 3.589× 10−7

0.4 0.7005937726 0.7005935709 2.878× 10−7

0.6 0.7682459476 0.7682458010 1.908× 10−7

0.8 0.8667305098 0.8667304328 8.883× 10−8

1 1 1 0

Figure 1 illustrates the temperature distribution on the longitudinal fin without a heat source for five
different dimensionless times τ = 0.1, 0.3, 0.7, 1.0 for a = 1 for the variation of k only and for the variation
of all three of k, c, ρ . Analysis of Figure 1 reveals that the temperature values at the tip of the airfoil become
much more extreme over time when only k is varied, compared to when k, c, ρ are all varied. This is clearly a
situation that must be considered in the design parameters of the fin.
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Figure 1. Comparison of k, c, ρ with only k changing state.

The range of temperatures in a functionally graded longitudinal fin under a constant heat source force
(η(τ) = 1) is presented in Figures 2–4. Figure 2 shows the change of the dimensionless temperature of a
functionally graded fin at some axial points x = 0.0, 0.3, 0.6 with time. It has been noted that as time passes,
the fin is more affected by the heat source.

Figure 2. Temperature distribution in a functionally graded longitudinal fin under a constant heat source force
(η(τ) = 1) for x = 0, 0.3, 0.6 .

Furthermore, a correlation has been noted between the homogeneity parameter and the dimensionless
temperature. The temperature distributions on the fin are shown in Figures 3 and 4 for three different time
values τ = 0.1, 0.3, 0.6 and three different parameters µ = 0.3, 1, 3 at τ = 0.3 , respectively. Observations
show that for all three time periods, the temperature falls along the fin with an increase in the homogeneity
parameter. As the time increases, the temperature at the tip of the blade increases. The temperature decreases
as the µ parameter increases and also decreases as the homogeneity parameter increases.
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Figure 3. Temperature distribution in a functionally graded longitudinal fin under a constant heat source force
(η(τ) = 1) for τ = 0.1, 0.3, 0.6 .

Figure 4. Temperature distribution in a functionally graded longitudinal fin under a constant heat source force
(η(τ) = 1) for µ = 0.3, 1, 3 at τ = 0.3 .

Figures 5–7 demonstrate the impact of the homogeneity parameters on the dimensionless temperature
distribution for the periodic source η(τ) = 1 − cosωτ . Figure 5 demonstrates that the amplitude of the time-
varying oscillations in temperature decreases as it moves through the medium.
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Figure 5. Temperature distribution in a functionally graded longitudinal fin under the effect of a periodic heat source
(η(τ) = 1− cosωτ ) for x = 0, 0.3, 0.6 .

The change in temperature along an axis for three different time levels τ = 0.1, 0.3, 0.6 is shown in
Figures 6 and 7 for three different parameters µ = 0.3, 1, 3 at τ = 0.3 , respectively. The temperature decreases
along the blade for all three time values as the homogeneity parameter increases. As the time increases, the
temperature at the tip of the blade increases. The temperature declines as the µ parameter increases and also
declines as the homogeneity parameter rises.

Figure 6. Temperature distribution in a functionally graded longitudinal fin under the effect of a periodic heat source
(η(τ) = 1− cosωτ ) for τ = 0.1, 0.3, 0.6 .
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Figure 7. Temperature distribution in a functionally graded longitudinal fin under the effect of a periodic heat source
(η(τ) = 1− cosωτ ) for µ = 0.3, 1, 3 at τ = 0.3 .

The time variant in temperature at four dissimilar frequencies of the periodic source ω = 0.0, 0.1, 0.5, 1.0

is shown in Figure 8. From this figure, it is evident that the frequency (ω ) of the features of the heat source
time determines the amplitude and frequency of the temperature oscillations.

Figure 8. Temperature distribution in a functionally graded longitudinal fin under the effect of four different frequencies
of the periodic heat source (η(τ) = 1− cosωτ ) for ω = 0.0, 0.1, 0.5, 1.0 and x = 0 .

For the exponential source η(τ) = 200(exp(−0.8τ)− exp(−0.82τ))− 0.3134( τ4 )
2 , Figures 9–11 show how

the homogeneity parameters affect the dimensionless temperature distribution. Figure 9 illustrates how the
temperature oscillations exhibit a decreasing amplitude as they pass through the medium.
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Figure 9. Temperature distribution in a functionally graded longitudinal fin under exponential internal heat source
force (η(τ) = 200(exp(−0.8τ)− exp(−0.82τ))− 0.3134( τ

4
)2 ) for x = 0, 0.3, 0.6 .

Figures 10 and 11, for three distinct time levels τ = 0.1, 0.3, 0.6 and three different parameters µ =

0.3, 1, 3 at τ = 0.3 , respectively, display the temperature fluctuation in the axial direction. For all three time
values, the temperature drops along the blade as the homogeneity constraint arises. The temperature at the
blade’s tip rises with increasing time. As the µ constraint increases, the temperature decreases. Similarly, as
the homogeneity parameter increases, the temperature also decreases.

Figure 10. Temperature distribution in a functionally graded longitudinal fin under exponential internal heat source
force (η(τ) = 200(exp(−0.8τ)− exp(−0.82τ))− 0.3134( τ

4
)2 ) for τ = 0.1, 0.3, 0.6
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Figure 11. Temperature distribution in a functionally graded longitudinal fin under exponential internal heat source
force (η(τ) = 200(exp(−0.8τ)− exp(−0.82τ))− 0.3134( τ

4
)2 ) for µ = 0.3, 1, 3 at τ = 0.3 .

5. Conclusion
This study uses CPM to solve the semianalytic model of the temperature dispersion in a longitudinal FGM
fin under the effect of a laser heat source that changes with time. Presumably, the internal heat source is
a transitory laser heating and that the fin’s material properties vary axially in an exponential manner, with
the exception of the thermal relaxation constraint. The temperature dispersion of the FGM longitudinal fin
is investigated for three different laser sources (constant, trigonometric, and exponential). Comparisons of the
temperature distributions for the homogeneous material are analytically tabulated for the steady state using
Nc = 1 . Finally, the following conclusions can be drawn.

1. A general resolution for generating transient temperature dispersions in longitudinal fins constructed of
FGM is obtained by working CPM for solving the differential equation.

2. High precision, cheap computing cost, and ease of implementation characterize the solution technique.

3. By understanding the temperature distribution, utilizing FGM on the longitudinal fin will be a successful
method of reducing thermal stress.
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