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Abstract: In this paper, transmission eigenvalues of a Schrödinger equation have been studied by constructing a new
inner product and using Weyl theory. Necessary conditions for these eigenvalues to be negative, real, and finite have been
examined. This method has provided a new framework related to transmission eigenvalue problems and the investigation
of their properties. The conclusions have been verified for the special case of the problem.
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1. Introduction
It is known that the differential equations with transmission conditions have an important place in the literature.
They are used to quantitatively represent many physical systems, especially in quantum mechanics and atomic
physics. For example, they are considered in studies of wave propagation in electrodynamics and, more generally,
in some models of theoretical physics to obtain fully solvable models with a wide variety of applications.
Therefore, there are many studies about this topic, recently [1–5, 9, 10, 15, 16, 19, 20, 26].

Especially, four-parameter point interactions are used to represent as self-adjoint extensions for nonrel-
ativistic kinetic energy operator in one-dimensional quantum mechanics [10]. Depending on the choice of the
parameter in this interaction, the physical, spectral, and scattering properties of this operator are affected. For
example, this interaction may lead to P, T, or PT-symmetry. The effect of general point interaction on these
symmetries has been investigated by Mostafazadeh [18].

If the determinant of the transfer matrix is not 1, the interaction is called anomalous point interaction
[19]. There are three different types of symmetry breaking in physical systems with invariance, one of which
is called an anomaly [6]. This concept, which emerges when the classical invariance principle in the system
is broken during quantization, has been frequently used in such studies as it provides many contributions
to the investigation of fundamental particles in the standart model and its derivatives. In addition to its
phenomenological meaning, the investigation of anomalies has also been the subject of theoretical research
[12, 21–24]. The problem in this study has been constructed under that assumption to give a perspective to
new studies that is related to symmetries.

One of the most used theories to perform spectral analysis of a singular differential equation is the Weyl
theory. This theory has been established in 1910 by Weyl [27]. He has obtained the singular second-order
differential operators have two cases: limit-circle case and limit-point case. Then, he has shown that the
∗Correspondence: emel.yildirimkavgaci@atilim.edu.tr
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solutions of the operators have different characteristics in these cases. This topic has been improved by many
authors [7, 8, 13, 14, 23, 25]. Note that, in this paper, an important conclusion of Weyl theory has been used
to examine characterizations of the transmission eigenvalues of the problem.

2. Main problem

Let us consider the one-dimensional Schrödinger equation

−y′′(x) + υ(x)y(x) = ρ2y(x), x ∈ R/{0} (2.1)

with the transmission condition

y(0+) = ν1y(0
−), (2.2)

y′(0+) = ν2y
′(0−),

where ν1ν2 ̸= 1 , υ -is a real valued function and ρ is a spectral parameter. The equation (2.1) has bounded
solutions ξ±(x, ρ) satisfying following limit conditions

lim
x→±∞

y(x)e±iρx = 1, ρ ∈ C+ = {ρ : ρ ∈ C, ρ ≥ 0}. (2.3)

These solutions ξ±(x, ρ) are called Jost solutions. Under the condition

∞∫
−∞

(1 + |x|)|υ(x)|dx < ∞, (2.4)

the solutions ξ±(x, ρ) have the representations

ξ−(x, ρ) = e−iρx +

x∫
−∞

κ−(x, t)e−iρtdt, (2.5)

and

ξ+(x, ρ) = eiρx +

∞∫
x

κ+(x, t)eiρtdt
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for every ρ ∈ C+ . Here the kernel functions κ+(x, t) and κ−(x, t) satisfy

κ+(x, t) =
1

2

∞∫
x+t
2

υ(s)ds+
1

2

x+t
2∫

x

t−x+s∫
x+t−s

υ(s)κ+(s, r)dsdr

+
1

2

∞∫
x+t
2

t−x+s∫
s

υ(s)κ+(s, r)dsdr,

κ−(x, t) =
1

2

x+t
2∫

−∞

υ(s)ds+
1

2

x+t
2∫

x

t−x+s∫
x+t−s

υ(s)κ−(s, r)dsdr

+
1

2

x+t
2∫

−∞

t−x+s∫
s

υ(s)κ−(s, r)dsdr.

Furthermore, κ±(x, t) are continuously differentiable with respect to its arguments and the following inequalities

|κ±(x, t)| ≤ cσ±(
x+ t

2
)

|κ±
x (x, t)±

1

4
|υ(x+ t

2
)|| ≤ cσ±(

x+ t

2
)

|κ±
t (x, t)±

1

4
|υ(x+ t

2
)|| ≤ cσ±(

x+ t

2
)

hold, where

σ+(t) =

∞∫
x

|υ(t)|dt, σ−(t) =

x∫
−∞

|υ(t)|dt

and c > 0 is a constant [17].

Lemma 2.1 To investigate the structure of the transmission eigenvalues of the problem (2.1)−(2.2) , we present
a new inner product in the Hilbert space

H :=

{
f : R → R, ⟨f, f⟩ := ν1ν2

0∫
−∞

|f |2dx+

∞∫
0

|f |2dx < ∞
}

(2.6)

which is defined by

⟨y, z⟩H = ν1ν2

0∫
−∞

y1(x)z1(x)dx+

∞∫
0

y2(x)z2(x)dx, (2.7)

932



YILDIRIM and BAIRAMOV/Turk J Math

where

y =

(
y1
y2

)
, z =

(
z1
z2

)
∈ H (2.8)

and we construct the operator L : H → H whose domain is

D(L) =

{
y =

(
y1
y2

)
:

y′1 ∈ AC(−∞, 0), y′2 ∈ AC(0,∞),

Ly ∈ L2(−∞, 0)⊕ L2(0,∞),

y2(0
+) = ν1y1(0

−), y
′

2(0
+) = ν2y

′

1(0
−)

}
. (2.9)

The problem (2.1)− (2.2) can be considered as an eigenvalues problem in the operator form as

Ly(x) = −y′(x) + υ(x)y(x) = ρ2y(x) (2.10)

where y := (
y1
y2

) ∈ D(L). From (2.6) and (2.7) , it can be obtained that the eigenvalues of the operator L and

the eigenvalues of transmission problem (2.1)− (2.2) are same.

3. Transmission eigenvalues
Assume that E(x, ρ) and F (x, ρ) be two linearly independent solutions of the equation (2.1) satisfying

E(x, ρ) =
{

ξ+(x, ρ), x > 0
α(ρ)ξ−(x, ρ) + β(ρ)ξ−(x,−ρ), x < 0

,

F (x, ρ) =
{

γ(ρ)ξ+(x, ρ) + δ(ρ)ξ+(x,−ρ), x > 0
ξ−(x, ρ), x < 0

. (3.1)

for ρ ∈ R\{0}, where ξ+(x, ρ) and ξ−(x, ρ) are defined by (2.5). Note that the Wronskian of these solutions
can be calculated by

W [E(x, ρ), F (x, ρ)] =

{ −2iρν1ν2β(ρ), x > 0

−2iρβ(ρ), x < 0.
(3.2)

Lemma 3.1 The following equations hold.

α(ρ) =
ν2ξ+(0, ρ)ξ

′
−(0,−ρ)− ν1ξ−(0,−ρ)ξ′+(0, ρ)

2iρν1ν2

β(ρ) =
ν1ξ−(0, ρ)ξ

′
+(0, ρ)− ν2ξ+(0, ρ)ξ

′
−(0, ρ)

2iρν1ν2
(3.3)

γ(ρ) =
ν2ξ+(0,−ρ)ξ′−(0, ρ)− ν1ξ−(0, ρ)ξ

′
+(0,−ρ)

2iρ
,

933



YILDIRIM and BAIRAMOV/Turk J Math

δ(ρ) =
ν1ξ−(0, ρ)ξ

′
+(0, ρ)− ν2ξ+(0, ρ)ξ

′
−(0, ρ)

2iρ
,

γ(ρ) = ν1ν2α(ρ) = −ν1ν2α(−ρ), δ(ρ) = ν1ν2β(ρ).

Proof Since the Jost solutions of the equation (2.1) satisfy the transmission condition (2.2), the following can
be written.

ξ+(0, ρ) = ν1α(ρ)ξ−(0, ρ) + ν1β(ρ)ξ−(0,−ρ)

ξ′+(0, ρ) = ν2α(ρ)ξ
′
−(0, ρ) + ν2β(ρ)ξ

′
−(0,−ρ)

γ(ρ)ξ+(0, ρ) + δ(ρ)ξ+(0,−ρ) = ν1ξ−(0, ρ)

γ(ρ)ξ′+(0, ρ) + δ(ρ)ξ′+(0,−ρ) = ν2ξ
′
−(0, ρ).

Solving these equation systems by Cramer’s rule, the expressions of α(ρ) β(ρ), γ(ρ) , and δ(ρ) can be obtained.
Moreover, ξ+(0, ρ) = ξ+(0,−ρ) , ξ−(0, ρ) = ξ−(0,−ρ) are provided for ρ ∈ R . Thus, the relations between
these coefficients are written by

γ(ρ) = ν1ν2α(ρ) = −ν1ν2α(−ρ), (3.4)

and

δ(ρ) = ν1ν2β(ρ) = ν1ν2β(ρ). (3.5)
2

The set of the transmission eigenvalues of the problem (2.1)− (2.2) can be given as

σd : = {µ : µ = ρ2, ρ ∈ C+, β(ρ) = 0} (3.6)

Then, it is clearly seen that the structure of the zeros β(ρ) must be examined in order to obtain the properties
of the eigenvalues of the problem (2.1)-(2.2) .

Theorem 3.2 For all ρ ∈ R, β(ρ) ̸= 0.

Proof Let us assume that β(ρ0) = 0 for any ρ0 ∈ R. In this case, |α(ρ0)|2(1 + ν1ν2) = 0 can be written by
using (3.1) and transmission condition (2.2).
Since ν1ν2 > 0 , we can write α(ρ) = 0 . From the last two equations of (3.3),

γ(ρ) = ν1ν2α(ρ) = 0,

δ(ρ) = ν1ν2β(ρ) = 0.

are obtained. Then the solution F (x, ρ) is equal to zero identically, that is F (x, ρ) is a trivial solution of (2.1)
-(2.2) . It gives a contradiction, thus β(ρ) ̸= 0 for each ρ ∈ R. 2

Theorem 3.3 Under the following conditions

υ ∈ AC(−∞,∞), lim
x→±∞

υ(x) = 0,

∞∫
−∞

x|υ′(x)|dx < ∞, (3.7)
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β(ρ) has the representation

β(ρ) =
1

2iρν1ν2
(aρ+ b+

∞∫
0

p(t)eiρtdt), ρ ∈ C+, (3.8)

where

a = iν1 + iν2

b = −ν1κ
+(0, 0)− ν2κ

−(0, 0)− ν2κ
+(0, 0)− ν1κ

−(0, 0)

p(t) = κ−
x (0, t)− ν1κ

+(0, 0)κ−(0,−t) + ν2κ
+(0, t) − ν2κ

−
x (0,−t)

−ν1κ
+
x (0, t) + ν2κ

−(0, 0)κ+(0, t)− ν2(κ
+(0, t) ∗ κ+

x (0,−t))

−ν1(κ
+
x (0, t) ∗ κ+(0,−t))

m ∈ C , n ∈ R and p ∈ L1(0,∞).

Proof β(ρ) satisfies the following integral equation by virtue of (2.5) and (3.1)

β(ρ) = (iν1 + iν2)ρ− ν1κ
+(0, 0)− ν2κ

−(0, 0)− ν2κ
+(0, 0)− ν1κ

−(0, 0)

+ iρν1

0∫
−∞

κ−(0, t)e−iρtdt− ν1κ
+(0, 0)

0∫
−∞

κ−(0, t)e−iρtdt

− ν2

0∫
−∞

κ−
x (0, t)e

−iρtdt+ iρν2

∞∫
0

κ+(0, t)eiρtdt+ ν1

∞∫
0

κ+
x (0, t)e

iρtdt (3.9)

+ ν1

∞∫
0

κ+
x (0, t)e

iρtdt

0∫
−∞

κ−(0,−t)e−iρtdt− ν2κ
−(0, 0)

∞∫
0

κ+(0, t)eiρtdt

+ ν2

∞∫
0

κ+(0, t)eiρtdt

0∫
−∞

κ−
x (0,−t)e−iρtdt,

and the followings are explicit from (3.7) as well

κ+(0, t), κ+
x (0, t), κ

+
t (0, t) ∈ L1(0,∞) (3.10)

κ−(0, t), κ−
x (0, t), κ

−
t (0, t) ∈ L1(−∞, 0).

Then we can write
p ∈ L1(0,∞). (3.11)

2

Consequently, β(ρ) has analytic continuation to C+ and continuous up to the real axis.

Theorem 3.4 The set of eigenvalues of the (2.1) − (2.2) problem is bounded and has at most a countable
number of elements under condition (2.5) . In addition, the boundary points of this cluster can only be located
within a bounded subinterval on the real axis.
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Proof By using (3.11), we get that

∞∫
0

p(t)eiρtdt = o(1), ρ ∈ C+.

Hence the asymptotic behaviour of β(ρ) as |ρ| → ∞ is

β(ρ) =
1

2iρν1ν2
(aρ+ b+ o(1)), ρ ∈ C+. (3.12)

This asymptotic equation indicates the boundedness of the set of eigenvalues, and its limit points can lie only
in a bounded subinterval of the real axis. 2

Lemma 3.5 The condition (2.4) implies that the function υ(x) in equation (2.1) has the representation

υ(x) ∼
( 1

|x|2+ϵ

)
, x → ±∞ (3.13)

for ϵ > 0 . Thus, υ(x) ∈ L2(−∞,∞) is satisfied and so the equation (2.1) is in the limit point case at
±∞ [8].

Theorem 3.6 All eigenvalues of the problem (2.1)− (2.2) are real.

Proof Let L be defined by
L(y) = −y′′(x) + υ(x)y(x) (3.14)

in the Hilbert space L2(−∞,∞) := L2(−∞, 0)⊕L2(0,∞) , where υ(x) is a real valued function. The eigenvalues
problem of (2.1)− (2.2) which is defined on the Hilbert space L2(−∞,∞) can be considered as the eigenvalue
problem of L. Now, we define the special inner product in the L2(−∞,∞) as follow

⟨y, z⟩L2(−∞,∞) = ν1ν2⟨y1, z1⟩L2(−∞,0) + ⟨y2, z2⟩L2(0,∞), (3.15)

where y = (y1, y2) , z = (z1, z2) ∈ L2(−∞,∞), and ν1ν2 > 0 . Our first aim is to show that the operator L is
symmetric. From (3.15), we get

⟨Ly, z⟩L2(−∞,∞) = ν1ν2⟨Ly1, z1⟩L2(−∞,0) + ⟨Ly2, z2⟩L2(0,∞)

Furthermore,
⟨Ly1, z1⟩L2(−∞,0) = W [y1, z1; 0

−]−W [y1, z1;−∞] + ⟨y1, Lz1⟩L2(−∞,0) (3.16)

and
⟨Ly2, z2⟩L2(0,∞) = W [y2, z2;∞]−W [y2, z2; 0

+] + ⟨y2, Lz2⟩L2(0,∞), (3.17)

can be written where W [y, z;x] denote the Wronskian of the functions y and z:

W [y, z;x] = y(x)z
′
(x)− y

′
(x)z(x).

Using (3.15), (3.16), and (3.17), we obtain
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⟨Ly, z⟩L2(−∞,∞) = ⟨y2, Lz2⟩L2(0,∞) + ν1ν2⟨y1, Lz1⟩L2(−∞,0) (3.18)

+ν1ν2W [y1, z1; 0]−W [y2, z2; 0]W [y2, z2;∞]− ν1ν2W [y1, z1;−∞]

Let us consider that y = (y1, y2) , z = (z1, z2) satisfy the transmission condition (2.2), so

W [y2, z2; 0] = y2(0)z2
′(0)− y′2(0)z2(0) = ν1ν2W [y1, z1; 0] (3.19)

is provided. According to Lemma 3.5, equation (2.1) is in the limit point case and so, the Wronskian at
±∞ is equal to zero by Hartman Theorem [11], i.e.

W [y2, z2;∞] = 0,W [y1, z1;−∞] = 0. (3.20)

From (3.15), (3.16) and (3.17), it can easily be seen that the operator L is symmetric. Consequently, L is
self-adjoint operator and all transmission eigenvalues of problem (2.1)− (2.2) are real. 2

The results of Theorem 3.2 and Theorem 3.6 give the following theorem.

Theorem 3.7 All eigenvalues of problem (2.1)− (2.2) are negative.

Theorem 3.8 The set of transmission eigenvalues of problem (2.1)− (2.2) is finite.

Proof Let us consider that µn and ∼
µn are eigenvalues of problem (2.1) -(2.2) and δ = inf

n∈N
|ρn − ∼

ρn| , where
∼
ρn ≥ ρn >0 and max

n
ρn ≤M. If δ is positive, the proof has been completed. Assume that δ = 0 . Since µn = ρ2n

and ∼
µn =

∼
ρn

2
are negative and real, the following equalities hold.

ρn = iγn and ∼
ρn =

∼
iγn

where γn,
∼
γn > 0. From (2.5) and (2.6), there exists for A > 0 such that |ξ+(x, iγn)| > 1

2e
−γnx for

x ∈ (A,∞) and |ξ−(x, iγn)| > 1
2e

γnx for x ∈ (−∞,−A) are satisfied. By using these inequalities, the following
inequalities also can be obtained

∞∫
A

ξ+(x, ρn)ξ+(
∼

x, ρn)dx
e−A(γn+

∼
γn)

4(γn +
∼
γn)

>
e−2AM

8M
> 0 (3.21)

−A∫
−∞

ξ−(x, ρn)ξ−(
∼

x, ρn)dx
e−A(γn+

∼
γn)

4(γn +
∼
γn)

>
e−2AM

8M
> 0. (3.22)

As µn is an eigenvalues, β(ρn) = W [E(ρn, x), F (ρn, x)] = 0. So E(x, ρn) and F (x, ρn) should be dependent.
Hence,

E(x, ρn) = cnF (x, ρn), cn ̸= 0 (3.23)
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is written for each ρn are real. Since L is a self-adjoint operator, we find
∞∫

−∞

L[E(x,
∼
ρn)]E(x, ρn)dx =

∞∫
−∞

E(x,
∼
ρn)L[E(x, ρn)]dx

(
∼
ρn

2
− ρ2n)

∞∫
−∞

E(x,
∼
ρn)E(x, ρn)dx = 0.

It is known that all eigenvalues of L are real and µn,
∼
µn are different eigenvalues, so ρ2n ̸= ∼

ρn
2

is satisfied.

Hence, E(x,
∼
ρn) and E(x, ρn) are orthogonal in L2(−∞,∞). By using (2.1) and (3.23), the following integral

equation is obtained

0 =

∞∫
0

E(x,
∼
ρn)E(x, ρn)dx +cn

∼
cn

0∫
−∞

F (
∼

x, ρn)F (x, ρn)dx

=

∞∫
A

ξ+(x,
∼
ρn)ξ+(x, ρn)dx+ cn

∼
cn

−A∫
−∞

ξ−(x,
∼
ρn)ξ−(x, ρn)dx

+

A∫
0

|ξ+(x,
∼
ρn)|2dx+

A∫
0

ξ+(x,
∼
ρn)[ξ+(x, ρn)− ξ+(x,

∼
ρn)]dx

+ cn
∼
cn

0∫
−A

|ξ−(x,
∼
ρn)|2dx+ cn

∼
cn

0∫
−A

ξ−(x,
∼
ρn)[ξ−(x, ρn)− ξ−(x,

∼
ρn)]dx.

Since δ is equal to zero, i.e. lim
n→∞

ρn − ∼
ρn = 0, we can write

lim
n→∞

A∫
0

ξ+(x,
∼
ρn)[ξ+(x, ρn)− ξ+(x,

∼
ρn)]dx = 0, (3.24)

and similarly,

lim
n→∞

0∫
−A

ξ−(x,
∼
ρn)[ξ−(x, ρn)− ξ−(x,

∼
ρn)]dx = 0. (3.25)

As E(x, ρn) and F (x, ρn) are continuous for ρn ∈ R ,

lim
n→∞

(cn
∼
cn) = [

E(x, ρ0)

F (x, ρ0)
]2 > 0 (3.26)

can be obtained. Using (3.21), (3.22), and (3.23), the following inequalities must be satisfied

∞∫
A

ξ+(x,
∼
ρn)ξ+(x, ρn)dx < 0, (3.27)
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−A∫
−∞

ξ−(x,
∼
ρn)ξ−(x, ρn)dx < 0. (3.28)

But the relations between (3.21), (3.22) and (3.27), (3.28) give us a contradiction. Then, it can be seen that
δ > 0 . As δ > 0 and σd are bounded, the set of transmission eigenvalues is finite. 2

3.1. Special case
Example 3.9 Let us consider the transmission boundary value problem

−y′′(x) = ρ2y(x), x ∈ R/{0} (3.29)

y(0+) = y(0−), (3.30)

y′(0+) = 2y′(0−).

In this case, it can be seen that the Jost solutions of the problem (3.29)− (3.30) are

ξ−(x, ρ) = e−iρx and ξ+(x, ρ) = eiρx. (3.31)

So, using the expression of β(ρ) in the equation (3.3) , we get β(ρ) =
3

4
. Consequently, the set of the eigenvalues

of this problem is
σd = {µ : µ = ρ2, ρ ∈ C+, β(ρ) = 0} = ∅. (3.32)
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