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Abstract: In this paper, we apply the criterion of Mikhalev and Umirbaev for the invertibility of an endomorphism
of a finitely generated free Leibniz algebra via its Jacobian matrix to determine whether a given endomorphism is an
automorphism. Moreover, it is shown that the invertibility of the determinant of the Jacobian matrix of an automorphism
implies its wildness.
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1. Introduction
Leibniz algebras are algebraic structures that generalize the concept of Lie algebras by allowing nonantisym-
metric products. The study of Leibniz algebras encompasses a wide range of topics, including their structure
theory, automorphisms, representations, and subalgebras. In recent years, there has been significant progress
in understanding the properties of Leibniz algebras and exploring various aspects of their theory. This progress
has been driven by the efforts of many researchers who have made important contributions to the field.

Bloh [3] was the first to define the notions of a left and right Leibniz algebra (but called them left and
right D-algebra, respectively). Much later, and independently, Loday reinvented the concept of a left and
right Leibniz algebra. In particular, Loday and Pirashvili [6] made significant contributions to the theory of
Leibniz algebras by studying the universal enveloping algebras of these structures and their (co)homology.
Their work shed light on the algebraic properties and cohomological aspects of Leibniz algebras. In [1]
Abdykhalikov et al. characterized tame automorphisms of free Leibniz algebras with two generators. This
characterization offers an algorithm for identifying tame automorphisms. Building upon these findings, they
have also devised a construction method for generating wild automorphisms. Drensky and Papistas established
that the automorphism group of a free nilpotent Leibniz algebra with more than two generators can be generated
by all tame automorphisms and one additional wild automorphism (see [5, Theorem 4.5]). In [7, Theorem2]
Mikhalev and Umirbaev proved the analog of the Jacobian conjecture for Leibniz algebras, i.e. they proved that
an endomorphism of a finitely generated free Leibniz algebra is an automorphism if, and only if, its Jacobian
matrix is invertible.

Let F be a finitely generated free Leibniz algebra over a field of characteristic zero. In this paper we start
out by exploring some properties of partial derivatives of free Leibniz algebras. Then we apply the criterion
of Mikhalev and Umirbaev for the invertibility of an endomorphism of a finitely generated free Leibniz algebra
∗Correspondence: zyapti@cu.edu.tr
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via its Jacobian matrix (see [7, Theorem 2]) to determine whether a given endomorphism is an automorphism.
Moreover, we provide a sufficient condition for an automorphism of F to be wild in terms of the determinant of its
Jacobian matrix. In [1] Abdykhalikov et al. constructed a wild automorphism for free Leibniz algebras with two
generators. Note that it is still unknown whether a free Leibniz algebra with more than two generators has wild
automorphisms. We address this problem affirmatively by establishing the existence of a wild automorphism for
any finitely generated free Leibniz algebra, and thus complementing Theorem 3 in [1]. Moreover, we construct
another wild automorphism for finitely generated free Leibniz algebras. For three generators this automorphism
is an analogue of the Anick automorphism. Umirbaev proved that the Anick automorphism for free associative
algebras with three generators is wild (see [12]).

2. Preliminaries
A right Leibniz algebra L over a field K is a nonassociative algebra with a K -bilinear product that satisfies
the Leibniz identity

x(yz) = (xy)z − (xz)y

for all x, y, z ∈ L . In case L is anticommutative, i.e. x2 = 0 for all x ∈ L, the Leibniz identity is equivalent
to the Jacobi identity. The Leibniz identity provides us with a powerful tool to simplify Leibniz products, as it
enables us to represent any product as a linear combination of right-normed products. A right-normed product
with 3 factors is written as xyz = (xy)z . To reference the ideal generated by elements x2, x ∈ L in L , we use
the notation Ann(L) . It is well known by [6] that ra = 0 if a ∈Ann(L) . We denote the resulting Lie algebra
as LLie = L/Ann(L) and the image of an element x ∈ L under the canonical homomorphism π : L → LLie as
x. Additionally, we refer to the automorphism group of L as AutL.

In [6], the universal enveloping algebra of a Leibniz algebra was introduced. To elaborate, consider two
distinct copies of the Leibniz algebra L , which we denote as Ll and Lr . In these copies, we identify elements
labeled as lx and rx , corresponding to the universal operators governing left and right multiplication by x .
Let IL be the two-sided ideal of the associative tensor K -algebra T (Ll ⊕Lr) over K with an identity element
satisfying the following relations

rxy = rxry − ryrx (2.1)

lxy = lxry − rylx (2.2)

(rx + lx)ly = 0 (2.3)

for any x, y ∈ L . Then the factor algebra UL(L) = T (Ll ⊕ Lr)/IL is the universal enveloping algebra of the
Leibniz algebra L . Using the homomorphism π , we obtain homomorphisms d0 and d1 such that

d0, d1 : UL(L) → U(LLie),

where U(LLie) is the universal enveloping algebra of the Lie algebra LLie, and we have

d1(rx) = x, d1(lx) = −x

d0(rx) = x, d0(lx) = 0.

The kernel Kerd1 ( respectively Kerd0 ) is generated by the elements rx + lx (respectively lx ) for x ∈ UL(L)

and Kerd1Kerd0 = 0 (see [6, Proposition 2.5]).
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Loday and Pirashvili [6] provided a comprehensive description of free Leibniz algebras. Consider a set
X, and let L(X) represent the free nonassociative algebra over K generated by X. Additionally, define IX as
the two-sided ideal in L(X) generated by elements of the form:

a(bc)− (ab)c+ (ac)b

for all a, b, c ∈ L(X). Then the algebra F(X) = L(X)/IX is a free Leibniz algebra generated by X. For more
details, we refer the reader to [6].

3. A sufficient condition for the wildness of an automorphism
Let F be the free Leibniz algebra with the free generators x1, . . . , xn over a field K of characteristic 0. By
definition, UL(F) is generated by the elements lxi , rxi (i = 1, . . . , n) that satisfy the relations (2.1), (2.2), (2.3).
In addition, F is a right UL(F) -module with a right action given by

zlx = xz,

zrx = zx,

where x, z ∈ F. Define the length of a monomial u = u1u2...uk ∈ UL(F) as the number of elements uj ∈
{rxi , lxi |i = 1, ..., n} (j = 1, ..., k for k ≥ 1) that u contains. Let I be the right ideal of the algebra UL(F)

generated by the elements lx , x ∈ F which is the free UL(F) -module with the basis {lx1 , lx2 , . . . , lxn} . Partial
derivatives in free Leibniz algebras are defined by Mikhalev and Umirbaev in [7] as follows. Consider mapping

d : F → I

given by
d(x) = lx, x ∈ F.

By the relations (2.2) and (2.3), it is obtained

d(xy) = lxy = lxry − rylx = lxry + lylx = d(x)ry + d(y)lx

for all x, y ∈ F (see [7, p. 437]). Therefore the mapping d is a universal derivation of the algebra F with

coefficients in the UL(F) -module UL(F) ( see [10, Definition 4]). The partial derivatives ∂f

∂xi
of an element f

of the algebra F can be expressed using the following formula;

d(f) =

n∑
i=1

d(xi)
∂f

∂xi
, (3.1)

where ∂f

∂xi
∈ UL(F)(see [7], p. 440).

Lemma 3.1 Let fn be a monomial in F of the form

xi1xi2 . . . xin ,

916
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where ij ∈ {1, . . . , n} and j = 1, . . . , n . Then

d(fn) =

n∑
j=1

d(xij )lxi1
xi2

...xij−1
rxij+1

. . . rxin

and
∂fn
∂xij

= lxi1
xi2

...xij−1
rxij+1

. . . rxin

Proof We use induction on n . Given a monomial f2 = xi1xi2 ∈ F , we obtain that

d(f2) = d(xi1xi2) = lxi1
xi2

= lxi1
rxi2

− rxi2
lxi1

= lxi1
rxi2

+ lxi2
lxi1

= d(xi1)rxi2
+ d(xi2)lxi1

By the definition of partial derivatives, we get

∂f2
∂xi1

= rxi2
,
∂f

∂xi2
= lxi1

.

Now let us take fn−1 = xi1xi2 . . . xin−1
∈ F. By induction hypothesis, we write

d(fn−1) =

n−1∑
j=1

d(xij )lxi1
xi2

...xij−1
rxij+1

. . . rxin−1

and
∂fn−1

∂xij
= lxi1

xi2
...xij−1

rxij+1
. . . rxin−1

.

Then for the element fn = xi1xi2 . . . xin = fn−1xin , we obtain that

d(fn) = d(fn−1)rxin
+ d(xin)lfn−1

= (

n−1∑
j=1

d(xij )lxi1
xi2

...xij−1
rxij+1

. . . rxin−1
)rxin

+ d(xin)lxi1
xi2

...xin−1

=

n∑
j=1

d(xij )lxi1xi2 ...xij−1
rxij+1

. . . rxin
.

Hence,
∂f

∂xij
= lxi1

xi2
...xij−1

rxij+1
. . . rxin

.

2

The following lemma provides a chain rule for partial derivatives. Its proof is inspired by the proof of a similar
chain rule for Lie algebras by Umirbaev (see [11, p. 1162]).

Lemma 3.2 Given v = v(x1, . . . , xn) ∈ F . Then for y1, . . . , yn ∈ F , ∂v(y1,...,yn)
∂xk

=
∑n
i=1

∂yi
∂xk

∂v(y1,...,yn)
∂yi

holds.
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Proof Applying the identity (3.1) to the element v(x1, ..., xn), we obtain

d(v(x1, . . . , xn)) =

n∑
i=1

d(xi)
∂v(x1, . . . , xn)

∂xi
. (3.2)

If we substitute arbitrary yi ’s for xi ’s in (3.2), it follows

d(v(y1, . . . , yn)) =

n∑
i=1

d(yi)
∂v(y1, . . . , yn)

∂yi
.

Then it implies

d(v(y1, ..., yn)) =

n∑
i=1

(

n∑
k=1

d(xk)
∂yi
∂xk

)
∂v(y1, . . . , yn)

∂yi
.

Therefore
∂v(y1, . . . , yn)

∂xk
=

n∑
i=1

∂yi
∂xk

∂v(y1, . . . , yn)

∂yi
.

2

The following lemma characterizes the invertibility of certain elements in UL(F). In fact, the elements
we consider are exactly the elements that do not belong to the augmentation ideal of UL(F). Note that UL(F)
is an augmented algebra, i.e. there exists an algebra epimorphism ε : UL(F) → K, which is defined by
ε(1) := 1, ε(lx) := 0, and ε(rx) := 0 for any x ∈ X. The kernel Ker(ε) is called the augmentation ideal of
UL(F) , and one has UL(F) = K · 1⊕ Ker(ε) as vector spaces. The latter shows that the elements α and u in
the following lemma are well-defined and independent of the set of generators.

Lemma 3.3 Let α+ u ∈ UL(F) for some α ∈ K\{0} and some u ∈ Ker(ε). Then α+ u is invertible if, and

only if, u2 = 0. In this case 1

α
− 1

α2
u is the inverse of α+ u in UL(F).

Proof Firstly, suppose that α+ u ∈ UL(F) is invertible. Then

(α+ u)(β + v) = (β + v)(α+ u) = 1 (3.3)

for some element β + v ∈ UL(F), where β ∈ K and v belongs to the augmentation ideal of UL(F). We obtain
that

αβ + βu+ αv + uv = αβ + βu+ αv + vu = 1.

Then it implies that uv = vu , and using the augmentation, we obtain αβ = 1 (which implies that β ̸= 0) and

βu+ αv + uv = 0. (3.4)

The image of the left-hand side of identity (3.4) is

dt(βu) + dt(αv) + dt(u)dt(v) = 0. (3.5)

918
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for t = 0, 1. It is well known that U(FLie) is a graded algebra. If dt(u) and dt(v) are nonzero then the length
of the element dt(u)dt(v) is greater than the length of the both dt(u) and dt(v) for t = 0, 1 . Therefore we
obtain

dt(βu) + dt(αv) = 0 (3.6)

and
dt(u)dt(v) = 0 (3.7)

by (3.5) for t=0.1. Since the algebra U(FLie) has no zero divisors, the identity (3.7) leads to a contradiction.
At the same time we find that if dt(u) = 0 then dt(v) = 0 by (3.5). Similarly if dt(v) = 0 then dt(u) = 0 .
This implies that dt(u) = 0 and dt(v) = 0 for t = 0.1 . Therefore u and v belong to the kernels Kerd0 and
Kerd1. So u and v are elements of the intersection of these kernels, Kerd0 ∩ Kerd1. It follows that u and v

are elements of the ideals Kerd0Kerd1 or Kerd1Kerd0. If u and v are elements of Kerd1Kerd0 then u = v = 0

by the equation Kerd1Kerd0 = 0 (see [6, Proposition 2.5]). If u and v are elements of Kerd0Kerd1 then we
obtain

u2 = uu ∈ Kerd0Kerd1Kerd0Kerd1 = 0

which yields that u2 = 0 . Similarly we get v2 = 0 and uv = 0 . Subsequently, we obtain v = −β
α
u by identity

(3.4) which implies the inverse of α+ u is determined as 1

α
− 1

α2
u.

Conversely, let α+ u ∈ UL(F) for α ∈ K\{0} and u2 = 0 . Then

(α+ u)(
1

α
− 1

α2
u) = 1− 1

α2
u2 = 1.

2

As an example, take 1 + lx2(lx1 + rx1) ∈ UL(F) . From the relation (2.3) in UL(F), we get

(1 + lx2(lx1 + rx1))(1− lx2(lx1 + rx1)) = 1− lx2(lx1 + rx1)lx2(lx1 + rx1) = 1,

which shows that 1 + lx2
(lx1

+ rx1
) is an invertible element in UL(F) .

Lemma 3.4 If y ∈Ann(F) , then α+ ly (α ∈ K\{0}) is invertible in UL(F) .

Proof It follows from identity (2.1) that rx2 = rxrx − rxrx = 0 for any x ∈ F which immediately yields that
ry = 0 for any y ∈Ann(F) . The equality 0 = d(xy) = lxy = lxry + lylx = lylx is then deduced for all x ∈ F .
Thus, we get l2y = 0 and by Lemma 3.3, α+ ly is invertible. 2

Let f be an element of F. By ∂(f), we denote the column (
∂f

∂x1
, . . . ,

∂f

∂xn
)T , where T indicates

transposition. Given an endomorphism φ of F such that φ(xj) = fj for j = 1, . . . , n . The Jacobian matrix
J(φ) of the endomorphism φ is the matrix with rows (∂(f1), . . . , ∂(fn)) of the elements f1, f2, . . . , fn, i.e.

J(φ) =



∂f1
∂x1

∂f2
∂x2

· · · ∂fn
∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fn
∂x2...

... . . . ...
∂f1
∂xn

∂f2
∂xn

· · · ∂fn
∂xn
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An endomorphism ψ of F induces an endomorphism ψ of UL(F) and the endomorphism ψ induces
an endomorphism on the matrix algebra with components from UL(F) that this endomorphism is denoted
by the same symbol ψ. Given endomorphisms ψ and φ of F such that φ(xj) = vj = vj(x1, ..., xn) and
ψ(xj) = yj = yj(x1, ..., xn) for j = 1, . . . , n . The image ψ(vj(x1, ..., xn)) is obtained substituting arbitrary yj ’s
for xj ’s in vj(x1, ..., xn) that is vj(y1, ..., yn). The Jacobian matrix of the composition ψ ◦ φ of ψ and φ is

J(ψ ◦ φ) =



∂ψ◦φ(x1)
∂x1

∂ψ◦φ(x2)
∂x1

· · · ∂ψ◦φ(xn)
∂x1

∂ψ◦φ(x1)
∂x2

∂ψ◦φ(x2)
∂x2

· · · ∂ψ◦φ(xn)
∂x2...

... . . . ...
∂ψ◦φ(x1)
∂xn

∂ψ◦φ(x2)
∂xn

· · · ∂ψ◦φ(xn)
∂xn


Lemma 3.2 implies that

∂ψ ◦ φ(xj)
∂xk

=
∂ψ(vj(x1, ..., xn))

∂xk
=
∂vj(y1, ..., yn)

∂xk
=

n∑
i=1

∂yi
∂xk

∂vj(y1, . . . , yn)

∂yi
(3.8)

for j = 1, . . . , n . Rewriting the components of J(ψ ◦ φ) using (3.8) yields

J(ψ ◦ φ) =



∑n
i=1

∂yi
∂x1

∂v1(y1,...,yn)
∂yi

∑n
i=1

∂yi
∂x1

∂v2(y1,...,yn)
∂yi

· · ·
∑n
i=1

∂yi
∂x1

∂vn(y1,...,yn)
∂yi∑n

i=1
∂yi
∂x2

∂v1(y1,...,yn)
∂yi

∑n
i=1

∂yi
∂x2

∂v2(y1,...,yn)
∂yi

· · ·
∑n
i=1

∂yi
∂x2

∂vn(y1,...,yn)
∂yi

...
... . . . ...∑n

i=1
∂yi
∂xn

∂v1(y1,...,yn)
∂yi

∑n
i=1

∂yi
∂xn

∂v2(y1,...,yn)
∂yi

· · ·
∑n
i=1

∂yi
∂xn

∂vn(y1,...,yn)
∂yi



=



∂y1
∂x1

∂y2
∂x1

· · · ∂yn
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂yn
∂x2...

... . . . ...
∂y1
∂xn

∂y2
∂xn

· · · ∂yn
∂xn





∂v1(y1,...,yn)
∂y1

∂v2(y1,...,yn)
∂y1

· · · ∂vn(y1,...,yn)
∂y1

∂v1(y1,...,yn)
∂y2

∂v2(y1,...,yn)
∂y2

· · · ∂vn(y1,...,yn)
∂y2

...
... . . . ...

∂v1(y1,...,yn)
∂yn

∂v2(y1,...,yn)
∂yn

· · · ∂vn(y1,...,yn)
∂yn

 .

It implies the following composition rule for the Jacobian matrices

J(ψ ◦ φ) = J(ψ)ψ(J(φ)). (3.9)

We denote by (uij) a n × n matrix with components uij for i, j = 1, . . . , n . An elementary matrix
Ekl(w) is defined as a matrix that differs from the identity matrix only by having an element w in the k -th
row and l -th column. The inverse of Ekl(w) is Ekl(−w) .

Lemma 3.5 Let Ekl(w) be an elementary matrix and D be a diagonal matrix with invertible elements over
UL(F) . Then there exists an elementary matrix E′ such that DEkl(w) = E′D .

Proof Let D be a diagonal matrix, where the diagonal elements di = αii + uii, αii ∈ K\{0}, uii ∈ Ker(ε)
for i = 1, . . . , n are invertible over UL(F) . Without lost of generality we consider elementary matrix E1n(w)
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over UL(F) . Then we get

DE1n(w) =


d1 0 · · · 0
0 d2 · · · 0
...

... . . . ...
0 0 · · · dn




1 0 · · · w
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 =


d1 0 · · · d1w
0 d2 · · · 0
...

... . . . ...
0 0 · · · dn



=


1 0 · · · d1w(

1

αnn
− 1

α2
nn

unn)

0 1 · · · 0
...

... . . . ...
0 0 · · · 1




d1 0 · · · 0
0 d2 · · · 0
...

... . . . ...
0 0 · · · dn

 = E1n(d1w(
1

αnn
− 1

α2
nn

unn))D,

where 1

αnn
− 1

α2
nn

unn is the inverse of dn by Lemma 3.3. 2

The homomorphısm dt (t=0,1) induces a homomorphism of the n× n matrix algebras

Mn×n(UL(L)) →Mn×n(U(LLie)),

denote by the same symbol dt (t = 0, 1) , such that dt((wij)) = (dt(wij)) for every (wij) ∈Mn×n(UL(L))

Lemma 3.6 Given an elementary matrix Ekl(u) over U(FLie) . Then

Ekl(u) = dt

(
Ekl(w

t
kl) + (vtij)

)
holds, where vtij ∈ Kerdt , wtkl ∈ UL(F) does not involve elements of Kerdt for t = 0, 1 and i, j = 1, . . . , n.

Proof Without lost of generality we consider elementary matrix E1n(u) over U(FLie) . Let U = (uij) be
a matrix over U(FLie) , where uij = αij + vij (αij ∈ K) for i, j = 1, . . . , n . Then by the surjectivity of the
homomorphisms dt (t = 0, 1) for every element uij ∈ U(FLie) there exist elements βij+vtij ∈ UL(F) (βij ∈ K )
such that

uij = αij + vij = dt(βij + vtij) = βij + dt(v
t
ij)

for i, j = 1, . . . , n . Then αij = βij and vij = dt(v
t
ij) are obtained for i, j = 1, . . . , n . Thus we obtain

E1n(u) =


1 0 · · · u
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 =


1 + dt(v

t
11) dt(v

t
12) · · · β1n + dt(v

t
1n)

dt(v
t
21) 1 + dt(v

t
22) · · · dt(v

t
2n)

...
... . . . ...

dt(v
t
n1) dt(v

t
n2) · · · 1 + dt(v

t
nn)

 ,

where β1n + dt(v
t
1n) = u , dt(vtij) = 0 for vtij ̸= vt1n for i, j = 1, . . . , n , t = 0, 1 . It follows vtij ∈ Kerdt for

vtij ̸= vt1n . We can write β1n + vt1n = wt1 + wt2, where wt2 ∈ Kerdt and wt1 ∈ UL(F) does not involve elements
of Kerdt . Therefore we obtain

E1n(u) = dt

(
1 0 · · · wt1
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

+


vt11 vt12 · · · wt2
vt21 vt22 · · · vt2n
...

... . . . ...
vtn1 vtn2 · · · vtnn

)
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where vtij ∈ Kerdt for vtij ̸= vt1n , i, j = 1, . . . , n, dt(w
t
1 + wt2) = u, wt1 + wt2 ∈ UL(F) such that wt2 is belongs

to Kerdt and wt1 does not involve elements of Kerdt . 2

Let A be a matrix over U(FLie) . The preimage of the matrix A under the homomorphism dt , denoted
by d−1

t (A) , is the set of all matrices M over UL(F) such that the images are the matrix A . There exists an
augmentation map ε̄ : U(FLie) → K which is defined by ε̄(1) := 1, ε̄(x̄) := 0 for any x ∈ X . We denote ε̄(A)

and ε(M) by the matrices of the augmentations of the components of A and M, respectively.

Proposition 3.7 Every invertible Jacobian matrix on UL(F) can be written of the form D.E where E is a
product of elementary matrices and D is a diagonal matrix.

Proof Given an invertible Jacobian matrix M on UL(F). The image ε(M) is invertible on the ground field
K that it is of the form D.E , where D = diag(d1, . . . , dn) is the diagonal matrix with elements on the diagonal
di ∈ K\{0} for i = 1, . . . , n and E is a product of elementary matrices over the field K . The images d0(M)

and d1(M) are invertible matrices on U(FLie) and

ε(M) = ε̄(d0(M)) = ε̄(d1(M))) = D.E.

Then dt(M) is of the form D.Et , where D = diag(d1, . . . , dn) for di ∈ K\{0} , i = 1, . . . , n and Et is a product
of elementary matrices over U(FLie) for t = 0, 1 (see the proof of Corollary 3.4, [8]). Then we can write

dt(M) = D.ΠEkl(dt(vkl)), (3.10)

where D = diag(d1, . . . , dn) for di ∈ K\{0} , i = 1, . . . , n and ΠEkl(dt(vkl)) is products of elementary matrices
for dt(vkl) ∈ U(FLie) , t = 0, 1 . Every element of UL(F) is in the form α + u for α ∈ K, u ∈ Kerε . Then we
get

M = ε(M) + (uij) = D.E + (uij), (3.11)

where uij ∈ Kerε. It follows that

dt(M) = DE + dt((uij)) (3.12)

for t = 0, 1. By (3.10) and (3.12) we have

dt(M) = DE + dt((uij)) = D.ΠEkl(dt(vkl)), (3.13)

Multiplying the both sides of the equations (3.13) and (3.11) by the inverse matrix D−1 of D on the left-hand
side yields

E +D−1dt((uij)) = ΠEkl(dt(vkl)). (3.14)

and
D−1M = E +D−1(uij). (3.15)

Applying dt to the both sides of (3.15) and by (3.14) we get

dt(D
−1M) = E +D−1dt((uij)) = ΠEkl(dt(vkl))
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for t = 0, 1. Then D−1M is an element of the intersection of the preimages d−1
0

(
ΠEkl(d0(vkl))

)
and

d−1
1

(
ΠEkl(d1(vkl))

)
. Using this fact let us determine D−1M . By Lemma 3.6 we have

Ekl(dt(vkl)) = dt

(
Ekl(w

t
kl) + (utij)

)
for wtkl ∈ UL(F) does not involve elements of Kerdt , utij ∈ Kerdt for i, j, k, l = 1, . . . , n , t = 0, 1 . Then we
obtain

ΠEkl(dt(vkl)) = Πdt

(
Ekl(w

t
kl) + (utij)

)
= dt

(
Π
(
Ekl(w

t
kl) + (utij)

))
= dt

(
ΠEkl(w

t
kl) + (qtij)

)
(3.16)

where wtkl ∈ UL(F) does not involve elements of Kerdt, qtij , utij ∈ Kerdt for i, j = 1, . . . , n, t = 0, 1 . Thus we
obtain the preimages

d−1
t

(
ΠEkl(dt(vkl))

)
=

{
ΠEkl(w

t
kl) + (qtij) : q

t
ij ∈ Kerdt, wtkl ∈ UL(F) does not involve elements of Kerdt

}
for t = 0, 1. The matrices in the intersection d−1

0

(
ΠEkl(d0(vkl))

)
∩ d−1

1

(
ΠEkl(d1(vkl))

)
holds the following

equality
ΠEkl(w

0
kl) + (q0ij) = ΠEkl(w

1
kl) + (q1ij) (3.17)

for qtij ∈ Kerdt, wtkl ∈ UL(F) does not involve elements of Kerdt for t = 0, 1 . Multiplying the both side of
(3.17) by the inverse matrix ΠEkl(−w0

kl) of ΠEkl(w
0
kl) on the left-hand side gives

I + (p0ij) = ΠEkl(−w0
kl)ΠEkl(w

1
kl) + (p1ij) (3.18)

where I is the identity matrix, p0ij ∈ Kerd0, p1ij ∈ Kerd1 . Since ε(p0ij) = ε(p1ij) = 0 , we have

I = ΠEkl(−w0
kl)ΠEkl(w

1
kl) (3.19)

that follows
ΠEkl(w

0
kl) = ΠEkl(w

1
kl). (3.20)

This holds q0ij = q1ij by (3.17) which implies q0ij , q1ij ∈ Kerd0Kerd1. Subsequently utij are elements of
Kerd0Kerd1 by (3.16) for i, j = 1, . . . , n , t = 0, 1 . Hence D−1M is in the following form

Π
(
Ekl(w

t
kl) + (utij)

)
for utij ∈ Kerd0Kerd1, wtkl ∈ UL(F). Since (utij)

2 = 0 , every matrix Ekl(w
t
kl) + (utij) in this product has the

diagonal elements 1 + utii that are invertible by Lemma 3.3 for i = 1, . . . , n. This allows us to reduce these
matrices to a diagonal form by applying elementary transformations to its rows. Subsequently we can write
Ekl(w

t
kl)+ (utij) of the form Dkl.Ekl where Dkl is a diagonal matrix with invertible diagonal elements and Ekl

is a product of elementary matrices over UL(F) by Lemma 3.5. Consequently, we have

M = DΠ
(
Ekl(w

t
kl) + (utij)

)
= DΠDkl.Ekl
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where D = diag(d1, . . . , dn) is the diagonal matrix with elements on the diagonal di ∈ K\{0} , Dkl is a diagonal
matrix with invertible diagonal elements and Ekl is a product of elementary matrices over UL(F) . The proof
is completed by Lemma 3.5. 2

Let φ be an automorphism of F. According to the result by Mikhalev and Umirbaev (see [7, Theorem 2])
the Jacobian matrix J(φ) is an invertible matrix over UL(F). If J(φ) has at least one invertible element in
every row and column, this allows us to reduce the matrix J(φ) to a diagonal form by applying elementary
transformations to its rows. Although we cannot say that this property holds for every invertible Jacobian
matrix over UL(F), we can write each invertible Jacobian matrix as the product of a diagonal matrix and a
product of elementary matrices by Proposition 3.7. Let J(φ) be expressed in the form J(φ) = D(µ).E , where
E is a product of elementary matrices and D(µ) is the diagonal matrix that µ is the product of the elements
on the diagonal. Take the group UL(F)∗ of all invertible elements of UL(F) , and the quotient group UL(F) of
UL(F)∗ by its commutator subgroup that the commutator subgroup is generated by the elements of the form

(1− v)(1− w)(1 + v)(1 + w)

for v, w ∈ Ker(ε) and v2 = w2 = 0 . Then the image µ of µ in UL(F) is defined uniquely and is called the
determinant of the matrix J(φ) in the sense of Dieudonn´e (see [2], [9]), denoted as det(J(φ)) . It has some
usual properties of the determinant; in particular, the determinant of the product of two invertible matrices
is equal to the product of their determinants. By the uniqueness and multiplicativity of the determinant for
invertible matrices, the invertibility of the determinant of J(φ) implies the invertibility of the matrix J(φ) .

The automorphisms φi (i = 1, . . . , n) defined by

φi(xj) =

{
αxi + g if j = i
xj if j ̸= i,

where α ∈ K\{0} and g belongs to the subalgebra of F generated by {xj |j ̸= i} , are called elementary
automorphism of F . Moreover, the subgroup of the automorphism group AutF generated by all the elementary
automorphisms is said to be the tame subgroup of AutF, and its elements are called tame automorphisms.
Finally, an automorphism of F that is not tame is said to be wild.

Proposition 3.8 If φ is an elementary automorphism of F , then det J(φ) is a nonzero element in the ground
field K .

Proof Without loss of generality, we consider the elementary automorphism φ1 . Since the Jacobian matrix
of φ1 is

J(φ1) =


α 0 0 · · · 0
∂g
∂x2

1 0 · · · 0
∂g
∂x3

0 1 · · · 0
...

...
... . . . ...

∂g
∂xn

0 0 · · · 1

 =


α 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

E,

where E is a product of elementary automorphisms such that
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1 0 0 · · · 0
∂g
∂x2

1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




1 0 0 · · · 0
0 1 0 · · · 0
∂g
∂x3

0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 ...


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

∂g
∂xn

0 0 · · · 1

 ,

we obtain that det J(φ1) = α, α ∈ K\{0} . 2

Proposition 3.9 If φ is an elementary automorphism and ψ is an arbitrary automorphism of F , then
detψ(J(φ)) is a nonzero element in the ground field K .

Proof Without loss of generality, we consider the elementary automorphism φ1 . Since the image of Jacobian
matrix of φ1 under ψ is

ψ(J(φ1)) =


ψ(α) 0 0 · · · 0

ψ( ∂g∂x2
) 1 0 · · · 0

ψ( ∂g∂x3
) 0 1 · · · 0

...
...

... . . . ...
ψ( ∂g∂xn

) 0 0 · · · 1

 =


ψ(α) 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

E,

where E is a product of elementary automorphisms such that


1 0 0 · · · 0

ψ( ∂g∂x2
) 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




1 0 0 · · · 0
0 1 0 · · · 0

ψ( ∂g∂x3
) 0 1 · · · 0

...
...

... . . . ...
0 0 0 · · · 1

 ...


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

ψ( ∂g∂xn
) 0 0 · · · 1

 ,

we obtain that detψ(J(φ1)) = ψ(α), α ∈ K\{0} . 2

Corollary 3.10 If φ is a tame automorphism, then det J(φ) is a nonzero element in the ground field K.

Proof Let φ be a tame automorphism. By definition, φ is a composition of elementary automorphisms. Then
the proof can be completed by applying identity (3.9) and Proposition 3.8. 2

By combining Theorem 2 in [7] and Corollary 3.10, we obtain the following corollary.

Corollary 3.11 Let φ be an endomorphism of F . If det J(φ) = α+ u is invertible for some α ∈ K\{0} and
some u ̸= 0 , then φ is a wild automorphism of F .

For two generators the existence of wild automorphisms was obtained by Abdykhalikov et al. (see [1, Theorem
3]). The following theorem establishes the existence of a wild automorphism of a free Leibniz algebra with any
finite number of generators. Our construction generalizes the wild automorphism a free Leibniz algebra with
two generators found by Abdykhalikov et al.
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Theorem 3.12 Let φ be the endomorphism of F with generators x1, . . . , xn defined by

φ(xj) =

{
x1 + vx1 if j = 1,
xj if j ̸= 1,

where v ∈Ann(F) depends only on x2, . . . , xn. Then φ is a wild automorphism of F .

Proof According to Theorem 2 in [7], it is enough to verify that the Jacobian matrix of φ is invertible. We
calculate d(φ(xi)) for i = 1, ..., n : d(φ(x1)) = lx1+vx1 = lx1(1 + lv) + lvrx1 and d(φ(xj)) = lxj for j ̸= 1 .
Consequently, the Jacobian matrix of φ is



1 + lv 0 0 0 ... 0
∂φ(x1)
∂x2

1 0 0 ... 0
∂φ(x1)
∂x3

0 1 0 ... 0
∂φ(x1)
∂x4

0 0 1 ... 0
...

...
...

... . . . ...

∂φ(x1)
∂xn

0 0 0 ... 1


=



1 + lv 0 0 0 ... 0
0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
...

...
...

... . . . ...

0 0 0 0 ... 1


E,

where E is the product of elementary matrices in the following form


1 0 0 · · · 0

∂φ(x1)
∂x2

1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




1 0 0 · · · 0
0 1 0 · · · 0

∂φ(x1)
∂x3

0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 ...


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

∂φ(x1)
∂xn

0 0 · · · 1

 ,

thus its determinant is 1 + lv, where v ∈Ann(F) depends only on the elements xj for j ̸= 1. By Lemma 3.4,
1 + lv is invertible. Then it follows from Corollary 3.11 that φ is a wild automorphism of F . 2

The following example establishes the existence of a wild automorphism of a free Leibniz algebra with any
finite number of generators. For three generators the automorphism in Example 3.13 is an analog of the Anick
automorphism (see [4, p. 343]). Umirbaev proved that the Anick automorphism is wild (see [12]).

Example 3.13 The endomorphism γ of the free Leibniz algebra with generators x1, . . . , xn defined by

γ :

 x1 → x1 + x3(x1x3 − x3x2)
x2 → x2 + (x1x3 − x3x2)x3
xi → xi, i ̸= 1, 2

is wild. The endomorphism γ is the composition of the automorphisms α1, α2, α3, α4, α5, α6, α7, α8, α9 such
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that γ = α1α2α3α4α5α6α7α8α9, where the automorphisms are defined by

α1 : x2 → x2 + x1,

xi → xi, i ̸= 2,

α2 : x1 → x1 + x3(x2x3),

xi → xi, i ̸= 1,

α3 : x2 → x2 − x1,

xi → xi, i ̸= 2,

α4 : x2 → x2 + x3(x1x3) + x1x3x3,

xi → xi, i ̸= 2,

α5 : x2 → x2 − x3x3x2,

xi → xi, i ̸= 2,

α7 : x1 → x1 + (x3x3)(x2x3)x3,

xi → xi, i ̸= 1,

α9 : x1 → x1 − (x3x3)((x2 − x1)x3)x3,

xi → xi, i ̸= 1,

α6 = α3 and α8 = α1. Let us take ψi = α1α2 · · ·αi for i = 1, . . . , 9 . It is obtained that ψi(x3) = x3 . Then
identity (3.9) implies that

Jγ = Jα1
ψ1(Jα2

)ψ2(Jα3
)ψ3(Jα4

)ψ4(Jα5
)ψ5(Jα6

)ψ6(Jα7
)ψ7(Jα8

)ψ8(Jα9
).

Since the determinant is multiplicative for invertible matrices, we obtain the determinant of the Jacobian matrix
Jγ as

det Jγ = det Jα1
detψ1(Jα2

) detψ2(Jα3
) detψ3(Jα4

) detψ4(Jα5
) detψ5(Jα6

) detψ6(Jα7
) detψ7(Jα8

) detψ8(Jα9
).(3.21)

The automorphisms α1, α2, α3, α4, α6, α7 and α8 are elementary. Therefore we have det Jα1 , detψ1(Jα2),

detψ2(Jα3), detψ3(Jα4), detψ5(Jα6), detψ6(Jα7) and detψ7(Jα8) are nonzero elements of the ground field
K by Proposition 3.8 and 3.9. Furthermore det Jα5

= 1 − lx3x3
and α5 is wild by Theorem 3.12. The image

ψ4(x3) = x3 holds detψ4(Jα5
) = 1− lx3x3

. Now let us find the detψ8(Jα9
) . The Jacobian matrix of α9 is

J(α9) =



1− rx3 lx3x3rx3 0 0 0 . . . 0
rx3

lx3x3
rx3

1 0 0 . . . 0
(rx3

+ lx3
)r(x2−x1)x3

rx3
+ l(x2−x1)lx3x3

rx3
+ l(x3x3)((x2−x1)x3) 0 1 0 . . . 0

0 0 0 1 . . . 0

: : : :
. . . :

0 0 0 0 . . . 1


.
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Then

ψ8(Jα9
) =



1− rx3
lx3x3

rx3
1 0 0 . . . 0

rx3
lx3x3

rx3
1 0 0 . . . 0

(rx3
+ lx3

)rψ8(x2−x1)x3
rx3

+ lψ8(x2−x1)lx3x3
rx3

+ l(x3x3)(ψ8(x2−x1)x3) 0 1 0 . . . 0
0 0 0 1 . . . 0

: : : :
. . . :

0 0 0 0 . . . 1


.

This matrix is equal to 

1− rx3
lx3x3

rx3
0 0 0 . . . 0

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

: : : :
. . . :

0 0 0 0 . . . 1


E,

where E is the product of elementary matrices such that

1 0 0 . . . 0
rx3

lx3x3
rx3

1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0

: : :
. . . :

0 0 0 . . . 1





1 0 0 . . . 0
0 1 0 . . . 0

(rx3
+ lx3

)rψ8(x2−x1)x3
rx3

+ lψ8(x2−x1)lx3x3
rx3

+ l(x3x3)(ψ8(x2−x1)x3) 0 1 . . . 0
0 0 0 . . . 0

: : :
. . . :

0 0 0 . . . 1


.

Hence, we get det(ψ8(J(α9))) = 1− rx3
lx3x3

rx3
. It follows from

rx3
lx3x3

rx3
rx3

lx3x3
rx3

= rx3
lx3x3

lx3
lx3
lx3x3

rx3
= 0,

and Lemma 3.3 that 1− rx3
lx3x3

rx3
is invertible. By the identity (3.21) the determinant of Jγ is

det(J(γ)) = k(1 + lx3x3)(1− rx3 lx3x3rx3)

= k(1 + lx3x3 − rx3 lx3x3rx3 − lx3x3rx3 lx3x3rx3)

= k(1 + lx3x3 − rx3 lx3x3rx3)

where k ∈ K\{0} . It follows from

(lx3x3
− rx3

lx3x3
rx3

)(lx3x3
− rx3

lx3x3
rx3

) = 0,

and Lemma 3.3 that k(1 + lx3x3
− rx3

lx3x3
rx3

) is invertible, and thus Theorem 2 in [7] shows that γ is an
automorphism. Finally, we conclude from Corollary 3.11 that γ is wild.

4. Conclusion
This paper starts with investigating various properties of partial derivatives of a finitely generated free Leibniz
algebra over a field of characteristic zero. Then we characterize the invertibility of certain elements of the
universal enveloping algebra of the free Leibniz algebra. Next, we prove that every invertible Jacobian matrix
over the universal enveloping algebra of a finitely generated free Leibniz algebra can be written as the product
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of a diagonal matrix and a product of elementary matrices. Thus, using this result, we give an analog of the
Dieudonné determinant of the invertible Jacobian matrices. After that, we apply the criterion of Mikhalev
and Umirbaev (see [7, Theorem 2]) for the invertibility of an endomorphism of a finitely generated free Leibniz
algebra via its Jacobian matrix to determine whether a given endomorphism is an automorphism. Then we
establish a sufficient condition for an automorphism to be considered wild based on the determinant of its
Jacobian matrix. Building on the work of Abdykhalikov et al. [1] who constructed a wild automorphism
for free Leibniz algebras with two generators, we address the open question regarding the existence of wild
automorphisms for free Leibniz algebras with more than two generators. At the end of our paper, we establish
the existence of wild automorphisms for any finitely generated free Leibniz algebra, thereby complementing
Theorem 3 in [1]. Finally, we construct another wild automorphism for a free Leibniz algebra with n generators
analogous to the Anick automorphism when n = 3 . Umirbaev proved that the Anick automorphism of a free
associative algebra with three generators is wild (see [12]).
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