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Abstract: Spherical product surfaces are obtained with the help of a special product by considering two curves in
n−dimensional space. One of their special cases is rotational surface. The reason why the present study is significant
that the spherical product is used to construct hypersurfaces. (n−1)−curves are needed during this construction. Firstly,
the spherical product hypersurfaces are defined in E4 , Gaussian and mean curvature are yielded and then conditions
being flat or minimal are examined. Moreover, superquadrics, which are associated with spherical product, are handled
for the first time in hypersurface form and give some examples. Finally, spherical product hypersurfaces are generalized
to n−dimensional Euclidean space and contribute to literature.
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1. Introduction
In differential geometry, using the sum of the curves, many times using the product of the functions, some
surfaces can be created. These are translation and factorable surfaces [3, 7]. In addition, the surfaces can also
be created with the help of a product called spherical product. The concept of spherical product comes from
the definition of rotational embedding (see, [12]). Using this product on the curves α (x) = (f1(x), f2(x)) and
β (y) = (g1(y), g2(y)) , the parametrization

α (x)⊗ β (y) = (f1(x), f2(x)g1(y), f2(x)g2(y)) (1.1)

is specified and this corresponds to a spherical product surface in 3−dimensional Euclidean space [5]. Such
a surface was also evaluated in Euclidean 4−space E4 and remarkable results were obtained [6]. Among the
special cases of this, the most familiar are the rotational surfaces and the superquadrics. These two concepts
have a wide coverage in geometry with their visual examples [8, 11].

In (1.1), by taking β (y) = (cos y, sin y) , the surfaces of revolution are encountered. Some of them
are ruled, developable, helicoidal, canal, tube surfaces and catenoid, also have many applications in different
disciplines [1, 4, 13].

Especially, the other form, a superquadric is handled by spherical product of superellipses or superhyper-
bols whose simple forms we know from analytical geometry. Created surface is superellipsoid, superhyperboloid
with one piece or hyperboloid with two pieces or toroid [11].
∗Correspondence: gunay.ozturk@idu.edu.tr
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Moreover, in geometry, surfaces can also be considered under the category of hypersurfaces. The concept
of hypersurfaces are known as (n− 1)−surface in n−dimensional Euclidean space and defined by the following
set:

M = {x ∈ U ⊂ En : φ(x) = c, c is constant and U is open set} . (1.2)

Many related studies can be founded in [2, 9, 10].
In the present study, the spherical product is considered for the first time on hypersurfaces. Firstly, in

section 2, basic concepts about hypersurfaces are given. In section 3, spherical product hypersurfaces are defined
with the help of 3−curves in 4−dimensional Euclidean space and demonstrated to be regular. The mean and
Gaussian curvatures are yielded. The necessary and sufficient condition for the hypersurface to be flat is that
one of the curves forming the hypersurface is a straight line. The condition being minimal is analyzed. In
section 4, superquadrics in hypersurface form are defined in E4, some examples are given and the projections
to E3 are plotted. Finally, in section 5, the spherical product hypersurface are generalized and the related
parametrization is presented in n−dimensional Euclidean space En.

2. Preliminaries
In the present section, we mention some general expressions for hypersurfaces in E4.

Let r = (r1, r2, r3, r4) , s = (s1, s2, s3, s4) and t = (t1, t2, t3, t4) be the vector fields in Euclidean 4−space,
the inner product ⟨r, s⟩ and the vector product r × s× t is given by

⟨r, s⟩ = r1s1 + r2s2 + r3s3 + r4s4, (2.1)

and

r × s× t =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
r1 r2 r3 r4
s1 s2 s3 s4
t1 t2 t3 t4

∣∣∣∣∣∣∣∣ , (2.2)

respectively.
Let M : F (x, y, z) be a hypersurface in E4, then M is expressed as

F : E3 → E4

(x, y, z) → F (x, y, z)

F (x, y, z) = (F1 (x, y, z) , F2 (x, y, z) , F3 (x, y, z) , F4 (x, y, z)) (2.3)

and the unit normal vector field of M is calculated by

η =
Fx × Fy × Fz

∥Fx × Fy × Fz∥
. (2.4)

The first fundamental form of M is given with the help of the coefficients

e = ⟨Fx, Fx⟩ , f = ⟨Fx, Fy⟩ , a = ⟨Fx, Fz⟩ ,

g = ⟨Fy, Fy⟩ , b = ⟨Fy, Fz⟩ , c = ⟨Fz, Fz⟩ , (2.5)
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and the second fundamental form of M is written by the coefficients

l = ⟨Fxx, η⟩ , m = ⟨Fxy, η⟩ , p = ⟨Fxz, η⟩ ,

n = ⟨Fyy, η⟩ , t = ⟨Fyz, η⟩ , v = ⟨Fzz, η⟩ , (2.6)

(see, [9]).
Suppose I and II are the matrices corresponding to the 1st and 2nd fundamental form. Then, the shape

operator matrix can be obtained by
S = (I)−1II. (2.7)

Definition 2.1 Let M be a hypersurface given by (2.3) in E4 . Then, the mean curvature and the Gaussian
curvature of M is defined by

H =
tr (S)

3
(2.8)

and

K =
det(II)

det(I)
= det(S) (2.9)

respectively [2, 9].

3. Spherical product hypersurfaces in 4−dimensional Euclidean space

Definition 3.1 Let fi, gi, hi (i = 1, 2) be smooth functions and α, β, γ : I ⊂ R → E2 be regular curves in
E2 given by α (x) = (f1(x), f2(x)) , β (y) = (g1(y), g2(y)) , γ (z) = (h1(z), h2(z)) . Spherical product of these
curves (α (x)⊗ β (y)⊗ γ(z)) defines a 3−surface and is called spherical product hypersurface in E4.

Hence, for the parametrization of this, we write

F (x, y, z) = α (x)⊗ β (y)⊗ γ(z) =

[
f1(x)
f2(x)

]
⊗
[

g1(y)
g2(y)

]
⊗
[

h1(z)
h2(z)

]

=

[
f1(x)
f2(x)

]
⊗

 g1(y)
g2(y)h1(z)
g2(y)h2(z)

 .

It follows that
F (x, y, z) = (f1(x), f2(x)g1(y), f2(x)g2(y)h1(z), f2(x)g2(y)h2(z)) . (3.1)

It is clear that the spherical product β (y)⊗ γ(z) is congruent to spherical product surface in E3 as

G (y, z) = (g1(y), g2(y)h1(z), g2(y)h2(z)) . (3.2)

Example 3.2 Choosing the curves α (x) = (f1(x), x) , β (y) = (cos y, sin y) and γ (z) = (cos z, sin z) , the
spherical product hypersurface

M : F (x, y, z) = (f1(x), x cos y, x sin y cos z, x sin y sin z)
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corresponds to a rotational hypersurface in Euclidean 4−space E4.

Let M be a spherical product hypersurface given by (3.1) in E4. Then, the vectors

Fx =
∂F (x, y, z)

∂x
= (f ′

1, f
′
2g1, f

′
2g2h1, f

′
2g2h2) ,

Fy =
∂F (x, y, z)

∂y
= (0, f2g

′
1, f2g

′
2h1, f2g

′
2h2) , (3.3)

Fz =
∂F (x, y, z)

∂z
= (0, 0, f2g2h

′
1, f2g2h

′
2) ,

span the tangent space T (M).

The normal vector field is obtained by the vector product of Fx, Fy, and Fz as

η =
f2
2 g2

W

(
f ′
2

(
g1g

′
2 − g′1g2

) (
h1h

′
2 − h′

1h2

)
,−f ′

1g
′
2

(
h1h

′
2 − h′

1h2

)
, f ′

1g
′
1h

′
2,−f ′

1g
′
1h

′
1

)
. (3.4)

Here, W = ∥Fx × Fy × Fz∥ and obtained as

W 2 = f4
2 g

2
2

[
(h1h

′
2 − h′

1h2)
2
(
f ′2
2 (g1g

′
2 − g′1g2)

2
+ f ′2

1 g′22

)
+ f ′2

1 g′21
(
h′2
1 + h′2

2

)]
.

The matrix I corresponding the 1st fundamental form is

I =

 e f a
f g b
a b c

 , (3.5)

where the coefficients are calculated as

e = f ′2
1 + f ′2

2

[
g21 + g22

(
h2
1 + h2

2

)]
= f ′2

1 + f ′2
2 ∥G (y, z)∥2 ,

f = f ′
2f2

[
g′1g1 + g′2g2

(
h2
1 + h2

2

)]
= f ′

2f2 ⟨G (y, z) , Gy (y, z)⟩ ,

a = f ′
2f2g

2
2 (h

′
1h1 + h′

2h2) = f ′
2f2 ⟨G (y, z) , Gz (y, z)⟩ ,

g = f2
2

[
g′21 + g′22

(
h2
1 + h2

2

)]
= f2

2 ∥Gy (y, z)∥2 , (3.6)

b = f2
2 g

′
2g2 (h

′
1h1 + h′

2h2) = f2
2 ⟨Gy (y, z) , Gz (y, z)⟩ ,

c = f2
2 g

2
2

(
h′2
1 + h′2

2

)
= f2

2 ∥Gz (y, z)∥2 .

It can be seen from the equations (3.5) and (3.6) that det I = W 2 . Since this expression is positive definite, M
is regular.

The second partial derivatives are

Fxx = (f ′′
1 , f

′′
2 g1, f

′′
2 g2h1, f

′′
2 g2h2) ,

Fxy = (0, f ′
2g

′
1, f

′
2g

′
2h1, f

′
2g

′
2h2) ,

Fxz = (0, 0, f ′
2g2h

′
1, f

′
2g2h

′
2) ,

Fyy = (0, f2g
′′
1 , f2g

′′
2h1, f2g

′′
2h2) , (3.7)

Fyz = (0, 0, f2g
′
2h

′
1, f2g

′
2h

′
2) ,

Fzz = (0, 0, f2g2h
′′
1 , f2g2h

′′
2) .
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From now on, we will use the following abbreviations

A(x) = f ′′
1 f

′
2 − f ′′

2 f
′
1,

B(y) = g1g
′
2 − g′1g2,

C(y) = g′1g
′′
2 − g′′1 g

′
2, (3.8)

D(z) = h1h
′
2 − h′

1h2,

E(z) = h′′
1h

′
2 − h′

1h
′′
2 .

By the use of (3.7), (3.4), and (2.6), we can write the matrix II corresponding the 2nd fundamental form as

II =

 l 0 0
0 n 0
0 0 v

 , (3.9)

where l, n, and v are given by

l =
f2
2 g2
W

A(x)B(y)D(z),

n =
f ′
1f

3
2 g2

W
C(y)D(z), (3.10)

v =
f ′
1g

′
1f

3
2 g

2
2

W
E(z).

Theorem 3.3 Let M be a spherical product hypersurface in Euclidean 4−space E4. Then, the Gaussian
curvature of M is presented by

K =
f ′2
1 f8

2 g
4
2g

′
1A(x)B(y)C(y)D2(z)E(z)

W 3
, (3.11)

where the functions A(x), B(y), C(y), D(z), and E(z) are specified by (3.8).

Proof With the help of the equalities (3.5), (3.6), (3.9), (3.10) with (2.9), we get the desired result. 2

Theorem 3.4 Let M be a spherical product hypersurface in Euclidean 4−space E4. Then, M has zero Gaussian
curvature (flat) if and only if one of the curves forming the hypersurface is a straight line.

Proof Let M be a spherical product hypersurface given by (3.1). If M is flat (K = 0), then by using the
equation (3.11), we obtain that at least one of the following equalities is satisfied:

A(x) = 0,

B(y) = 0,

C(y) = 0,

D(z) = 0,

E(z) = 0.
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2

This means that the curve α(x) or β(y) or γ(z) is congruent to a straight line. In addition, the converse
statement is trivial.

Theorem 3.5 Let M be a spherical product hypersurface in Euclidean 4−space E4. Then, the mean curvature
of M is presented by

H =
f5
2 g2

3W 3


D(z)

 f2A(x)B(y)
(
∥Gy∥2 ∥Gz∥2 − ⟨Gy , Gz⟩2

)
+f ′

1C(y)
(
f ′2
1 ∥Gz∥2 + f ′2

2

(
∥G∥2 ∥Gz∥2 − ⟨G,Gz⟩2

)) 
+g2f ′

1g
′
1E(z)

(
f ′2
1 ∥Gy∥2 + f ′2

2

(
∥G∥2 ∥Gy∥2 − ⟨G,Gy⟩2

))
 , (3.12)

where A(x), B(y), C(y), D(z), E(z) are indicated in (3.8) and G = G(y, z) is a 3D−spherical product surface
parametrization specified as (3.2).

Proof Let M be a spherical product hypersurface given by (3.1) in E4. By the use of (2.7), (3.5), and (3.9),
we get

tr (S) = l

(
gc− b2

W 2

)
+ n

(
ec− a2

W 2

)
+ v

(
eg − f2

W 2

)
. (3.13)

Also, substituting the 1st and 2nd fundamental form coefficients (3.6), (3.10) into (3.13) and using (2.8), we
yield the mean curvature of M as (3.12) and complete the proof. 2

Corollary 3.6 Let M be a spherical product hypersurface given by (3.1). With the help of (3.12), the following
cases occur:

(a) If the curve γ(z) is a straight line passing through the origin, then M has zero mean curvature
(minimal).

(b) If α(x) , β(y) , and γ(z) are straight lines, then M has zero mean curvature (minimal).

4. Superquadrics in hypersurface form

The concept of superellipse is associated with the definition of Lame curve that is represented by(
x1

a1

)m

+

(
x2

a2

)m

= 1. (4.1)

Lame curves which are studied by Loria, 1910 and named by Gabriel Lame have nine types. While the number
m increases, the curve gets closer to rectangularity. Superellipses are the special case of these curves and given
by (

x1

a1

) 2
ϵ

+

(
x2

a2

) 2
ϵ

= 1. (4.2)

Also, the parametric form is represented by

α(x) = (a1 cos
ε x, a2 sin

ϵ x) . (4.3)
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It is clear that the case ϵ = 1 is the simplest form known from analytical geometry. In addition to superellipses,
superhiperbola has a similar definition.

Using the spherical product of these types of curves, we encounter with superellipsoid, superhyperboloid,
and supertoroid which are generally called superquadrics. Now, we define superquadrics with the form of
hypersurfaces in 4−dimensional Euclidean space.

Definition 4.1 Let α, β, γ be the superellipses or the superhyperbolas in E2. The spherical product of these
curves (α⊗ β ⊗ γ ) defines a 3−surface called superquadrics in hypersurface form in E4.

Example 4.2 Suppose the related curves (superellipses) are chosen as

α(x) = (a1 cos
ε1 x, sinε1 x) ,

β(y) = (a2 cos
ε2 y, sinϵ2 y) , (4.4)

γ(z) = (a3 cos
ε3 z, a4 sin

ε3 z) .

Then, the spherical product of these curves is presented as

F (x, y, z) = (a1 cos
ε1 x, a2 sin

ε1 x cosε2 y, a3 sin
ε1 x sinϵ2 y cosε3 z, a4 sin

ε1 x sinϵ2 y sinε3 z) .

This parametrization is congruent to superellipsoid in hypersurface form. Actually, it satisfies the equation

(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

+

(
x4

a4

)2

= 1. (4.5)

We can plot the projection of a superellipsoid in E3 (as shown in Figure 1) by taking a1 = 1, a2 = 2,

a3 = a4 = 3, ϵ1 = 3, ϵ2 = 2, ϵ3 = 1, and z = π, with Maple command

plot3d (x1(u, v), x2(u, v), x3(u, v) + x4(u+ v)], u = −2 ∗ Pi...2 ∗ Pi, v : −2 ∗ Pi..2 ∗ Pi)

Figure 1. Projection of a superellipsoid in hypersurface form
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Example 4.3 Suppose the curves (superhyperbola and superellipses) are chosen as

α(x) = (a1 tan
ϵ1 x, secϵ1 x) ,

β(y) = (a2 cos
ϵ2 y, sinϵ2 y) , (4.6)

γ(z) = (a3 cos
ϵ3 z, a4 sin

ϵ3 z) .

Then, the spherical product of these curves is presented as

F (x, y, z) = (a1 tan
ϵ1 x, a2 sec

ϵ1 x cosϵ2 y, a3 sec
ϵ1 x sinϵ2 y cosϵ3 z, a4 sec

ϵ1 x sinϵ2 y sinϵ3 z) .

The parametrization above is congruent to superhyperboloid with one piece in E4 and following equation
is hold:

−
(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

+

(
x4

a4

)2

= 1. (4.7)

The projection of a hyperboloid one piece can be yielded in E3 by taking a1 = 2, a2 = 3, a3 = a4 = 1, ϵ1 = 2,

ϵ2 = ϵ3 = 1, and z = π, with Maple. It is observed as in Figure 2.

Figure 2. Projection of a superhyperboloid (one piece)

Example 4.4 Suppose the curves (superhyperbolas) are chosen as

α(x) = (a1 tan
ϵ1 x, secϵ1 x) ,

β(y) = (a2 tan
ϵ2 y, secϵ2 y) , (4.8)

γ(z) = (a3 tan
ϵ3 z, a4 sec

ϵ3 z) .

Then, the spherical product of these curves is presented as

F (x, y, z) = (a1 tan
ϵ1 x, a2 sec

ϵ1 x tanϵ2 y, a3 sec
ϵ1 x secϵ2 y tanϵ3 z, a4 sec

ϵ1 x secϵ2 y secϵ3 z) .
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This representation is congruent to superhyperboloid with two piece in E4 due to satisfying the equation

−
(
x1

a1

)2

−
(
x2

a2

)2

−
(
x3

a3

)2

+

(
x4

a4

)2

= 1. (4.9)

In addition, by taking a1 = a2 = a3 = a4 = 1, ϵ1 = ϵ3 = 1, ϵ2 = 2, and z = π, the visiluation of the
projection of this type of hypersurface is encountered as Figure 3.

Figure 3. Projection of a superhyperboloid (two-piece)

5. The Generalization of spherical product hypersurfaces

In the present section, we purpose to obtain the parametrization of spherical product hypersurfaces in n−dimensional
Euclidean space En.

In 3−dimension using two curves:

α1 ⊗ α2 =

[
f1
f2

]
⊗

[
f3
f4

]
,

α1 ⊗ α2 = (f1, f2f3, f2f4) .

In 4−dimension using three curves:

α1 ⊗ α2 ⊗ α3 =

[
f1
f2

]
⊗
[

f3
f4

]
⊗

[
f5
f6

]
,

α1 ⊗ α2 ⊗ α3 = (f1, f2f3, f2f4f5, f2f4f6) .
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In 5−dimension using four curves:

α1 ⊗ α2 ⊗ α3 ⊗ α4 =

[
f1
f2

]
⊗

[
f3
f4

]
⊗

[
f5
f6

]
⊗
[

f7
f8

]
,

α1 ⊗ α2 ⊗ α3 ⊗ α4 = (f1, f2f3, f2f4f5, f2f4f6f7, f2f4f6f8) .

In 6−dimension using five curves:

α1 ⊗ α2 ⊗ α3 ⊗ α4 ⊗ α5 =

[
f1
f2

]
⊗

[
f3
f4

]
⊗

[
f5
f6

]
⊗

[
f7
f8

]
⊗
[

f9
f10

]
,

α1 ⊗ α2 ⊗ α3 ⊗ α4 ⊗ α5 = (f1, f2f3, f2f4f5, f2f4f6f7, f2f4f6f8f9, f2f4f6f8f10) .

Corollary 5.1 Let α1 = (f1, f2) , α2 = (f3, f4) , α3 = (f5, f6) , ... , αn−1 = (f2n−3, f2n−2) be regular curves in
E2. The spherical product of these curves defines a hypersurface in En called spherical product hypersurface.
The parametrization of this hypersurface is given by

α1 ⊗ α2 ⊗ α3 ⊗ ...⊗ αn−1 =

[
f1
f2

]
⊗
[

f3
f4

]
⊗
[

f5
f6

]
⊗ ...⊗

[
f2n−3

f2n−2

]

= f1Y1 +

n−1∑
i=2

i−1∏
j=1

f2j

 f2i−1Yi +

n−2∏
j=1

f2j

 f2n−2Yn,

where Y1, Y2, ..., Yn are coordinate functions in En.

6. Conclusion
In this study, we achieve the general parametrization of spherical product hypersurfaces and give significant
results in four-dimensional space and especially for superquadrics. We hope this work will be the base for further
studies.
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