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1. Introduction and preliminaries

Let S be a semigroup, and let S1 denote a semigroup obtained from S by adding an identity element if S

lacks one. If S already contains an identity element, then S1 is equivalent to S . For a nonempty subset I

of S , the term ideal is assigned to I if both SI and IS are subsets of I . If a ∈ S , the smallest ideal of S

containing a is identified as S1aS1 and is referred to as the principal ideal generated by a . Moreover, an ideal
I is considered minimal if there is no ideal J such that J ⊊ I . Conversely, an ideal I is deemed maximal if
there is no ideal J such that I ⊊ J ⊊ S .

Consider a nonempty set X , and let T (X) represent the full transformation semigroup on X under the
composition of functions. Within semigroup theory, the semigroup T (X) holds paramount significance as it
serves as a foundational framework, allowing any semigroup to be viewed as an isomorphic subsemigroup. A
comprehensive exploration of T (X) has revealed numerous fundamental properties, and substantial research
efforts have been dedicated to investigating various specific subsemigroups within the structure.

Henceforth, the cardinality of any set A will be denoted by |A| . In 1952, Malcev [15] demonstrated that
the ideals in T (X) precisely take the form

Tr = {α ∈ T (X) : |Xα| < r},

where 2 ≤ r ≤ |X|′ , and |X|′ represents the minimum cardinality greater than |X| . It is evident that the ideals
in T (X) form a chain under set inclusion. Over the years, the concept of full transformation semigroups has
experienced significant growth, incorporating and building upon earlier discoveries. A well-recognized extension
of T (X) is represented by the semigroups T (X,Y ) and Fix(X,Y ) , where Y is a subset of X . These are
defined as follows:

T (X,Y ) = {α ∈ T (X) : Y α ⊆ Y } and Fix(X,Y ) = {α ∈ T (X) : yα = y for all y ∈ Y }.
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Since T (X,X) = T (X) and Fix(X, ∅) = T (X) , both are considered generalizations of T (X) . Specifically, all
three aforementioned semigroups contain idX , the identity map on X , as an identity element. Furthermore, it
holds that Fix(X,Y ) ⊆ T (X,Y ) ⊆ T (X) , with the inclusion being strictly observed in general.

The exploration of T (X,Y ) was initiated by Magill [14] in 1966, while Honyam and Sanwong [12] delved
into Fix(X,Y ) in 2013. Extensive examination of the algebraic properties of these semigroups has been
undertaken. For T (X,Y ) , please refer to [3, 6, 10, 11, 16, 21, 23, 24]. For Fix(X,Y ) , consult [1, 2, 4, 12, 17, 18].
Additionally, Honyam and Sanwong determined the ideals of both T (X,Y ) and Fix(X,Y ) in [10] and [12],
respectively. For the semigroup T (X,Y ) , its ideals precisely consist of sets in the form

K(Z) = {α ∈ T (X,Y ) : |Xα| ≤ |Xβ|, |Y α| ≤ |Y β|, and |Xα \ Y | ≤ |Xβ \ Y | for some β ∈ Z},

where ∅ ̸= Z ⊆ T (X,Y ) . Concerning the semigroup Fix(X,Y ) , its ideals are exactly the sets

Fixr = {α ∈ Fix(X,Y ) : |Xα \ Y | < r},

where 1 ≤ r ≤ |X \ Y |′ . The ideals in Fix(X,Y ) form a chain under set inclusion, whereas the ideals in
T (X,Y ) do not.

Consider P (X) , the semigroup comprising all partial transformations on X under the composition
of functions. It is noteworthy that the three previously mentioned transformation semigroups are strictly
encompassed within P (X) . The concept of construction semigroups T (X,Y ) and Fix(X,Y ) can be employed
to formulate generalizations of P (X) as follows:

PT (X,Y ) = {α ∈ P (X) : (domα ∩ Y )α ⊆ Y },

where ∅ ̸= Y ⊆ X and domα denotes the domain of α . Furthermore, for Y ⊊ X , let

PFix(X,Y ) = {α ∈ P (X) : yα = y for all y ∈ domα ∩ Y }.

Since PT (X,X) = P (X) and PFix(X, ∅) = P (X) , both semigroups are regarded as extensions of P (X) .
However, they find application in distinct scenarios and complement each other. Various algebraic properties
of PT (X,Y ) and PFix(X,Y ) have been explored; for example, refer to [5, 7, 19, 20, 25, 26].

In this article, we systematically identify all ideals and their respective properties within PT (X,Y ) and
PFix(X,Y ) . Additionally, we conduct an examination of principal, minimal, and maximal ideals in these
semigroups, illustrating that the ideals do not generally form a chain under set inclusion.

In the context of this paper, we adhere to the convention of right-to-left function application. Specifically,
in the composition αβ , the transformation α is applied first. For any α ∈ P (X) , we denote the domain and
image of α as domα and imα, respectively. For notions and notations that are not explicitly defined herein,
the reader is referred to [8, 9, 13].

2. Main results
Consider any cardinal number p and define p′ to be the minimum cardinal q such that q > p , i.e., p′ =

min{q : q > p}. It is crucial to emphasize that the existence of p′ is guaranteed due to the well-ordered nature
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of cardinals. When p is finite, p′ = p+ 1 , representing its successor. The ideals of P (X) , as presented in [22],
constitute the only sets of the form

Pr = {α ∈ P (X) : |imα| < r},

where 2 ≤ r ≤ |X|′. Clearly, the ideals of P (X) form a chain under set inclusion.

To characterize the ideals of PT (X,Y ) , unless otherwise stated, we let |X| = a , |Y | = b , and |X\Y | = c .
Furthermore, for each triplet of cardinals r , s , and t satisfying 1 ≤ r ≤ a′ , 1 ≤ s ≤ b′ , and 1 ≤ t ≤ c′ , we
define the subset PT (r, s, t) of PT (X,Y ) as follows:

PT (r, s, t) = {α ∈ PT (X,Y ) : |imα| < r, |Y α| < s, and |imα\Y | < t}.

Evidently, PT (r, s, t) can be empty, and PT (a′, b′, c′) = PT (X,Y ) . In cases where PT (r, s, t) is not empty,
we obtain the following:

Theorem 2.1 Let PT (r, s, t) ̸= ∅ . Then the set PT (r, s, t) is an ideal of PT (X,Y ).

Proof Let α ∈ PT (r, s, t) and λ, µ ∈ PT (X,Y ). Then |imα| < r, |Y α| < s and |imα\Y | < t. By
simple set-theoretical arguments, we can conclude that |imλαµ| ≤ |imα| < r , |Y λαµ| ≤ |Y α| < s , and
|imλαµ\Y | ≤ |imα\Y | < t . Thus, λαµ ∈ PT (r, s, t) , and consequently, PT (r, s, t) forms an ideal of PT (X,Y ) .

2

Observe that if r ≤ u, s ≤ v , and t ≤ w , then we have PT (r, s, t) ⊆ PT (u, v, w) . However, the following
example demonstrates that there exists an ideal in PT (X,Y ) that does not conform to the form of PT (r, s, t) .
This also illustrates that the ideals in PT (X,Y ) do not form a chain under set inclusion.

Example 2.2 Considering X = {1, 2, 3, 4} and Y = {1, 2} , we have |X| = 4 , |Y | = 2 , and |X\Y | = 2 . Both
PT (3, 3, 1) and PT (4, 2, 2) are ideals of PT (X,Y ) , and therefore, the union of PT (3, 3, 1) and PT (4, 2, 2)

is also an ideal of PT (X,Y ) . To demonstrate that PT (3, 3, 1) ∪ PT (4, 2, 2) does not constitute a member
of the form PT (r, s, t) , we suppose, to the contrary, that PT (3, 3, 1) ∪ PT (4, 2, 2) = PT (r, s, t) for some
1 ≤ r ≤ 5, 1 ≤ s ≤ 3 , and 1 ≤ t ≤ 3. If r < 4 or t < 2, then there is

α =

(
1 3 4
1 2 4

)
∈ PT (4, 2, 2)\PT (r, s, t),

and if s < 3, then there is

β =

(
1 2
1 2

)
∈ PT (3, 3, 1)\PT (r, s, t).

Both cases contradict with the supposition. Hence, r ≥ 4, s = 3 and t ≥ 2. However, there exists

γ =

(
1 2 4
1 2 3

)
∈ PT (r , 3, t),

but γ /∈ PT (3, 3, 1) ∪ PT (4, 2, 2), so PT (3, 3, 1) ∪ PT (4, 2, 2) ̸= PT (r , 3, t) for all r ≥ 4 , and t ≥ 2. Since
α ∈ PT (4, 2, 2)\PT (3, 3, 1) and β ∈ PT (3, 3, 1)\PT (4, 2, 2), we obtain that the ideals of PT (X,Y ) do not form
a chain.
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In order to determine all ideals of PT (X,Y ) , we refer to the result from [19] as follows:

Lemma 2.3 [19] Let α, β ∈ PT (X,Y ). Then α = λβµ for some λ, µ ∈ PT (X,Y ) if and only if |imα| ≤ |imβ| ,
|Y α| ≤ |Y β| and |imα\Y | ≤ |imβ\Y |.

Moreover, we define the set PT [Z] , for ∅ ̸= Z ⊆ PT (X,Y ) , as:

PT [Z] = {α ∈ PT (X,Y ) : |imα| ≤ |imβ|, |Y α| ≤ |Y β|, |imα\Y | ≤ |imβ\Y | for some β ∈ Z}.

It is evident that Z ⊆ PT [Z] , and furthermore, if Z1 ⊆ Z2 , then PT [Z1] ⊆ PT [Z2] .

Theorem 2.4 The ideals of PT (X,Y ) are precisely those sets of the form PT [Z] , where Z is a nonempty
subset of PT (X,Y ).

Proof To prove that PT [Z] is an ideal of PT (X,Y ) , let α ∈ PT [Z] and λ, µ ∈ PT (X,Y ). Then
|imα| ≤ |imβ|, |Y α| ≤ |Y β| and |imα\Y | ≤ |imβ\Y | for some β ∈ Z. By employing a comparable proof
as demonstrated in Theorem 2.1, we obtain |imλαµ| ≤ |imα|, |Y λαµ| ≤ |Y α| and |imλαµ\Y | ≤ |imα\Y |.
Thus, |imλαµ| ≤ |imβ|, |Y λαµ| ≤ |Y β| and |imλαµ\Y | ≤ |imβ\Y |. Hence, λαµ ∈ PT [Z] , implying that
PT [Z] is an ideal of PT (X,Y ) .

Now, let I be an ideal of PT (X,Y ) . To prove that I = PT [I] , we begin by considering α ∈ PT [I] .
Then |imα| ≤ |imβ|, |Y α| ≤ |Y β|, and |imα\Y | ≤ |imβ\Y | for some β ∈ I. By Lemma 2.3, we have α = λβµ

for some λ, µ ∈ PT (X,Y ). Since β ∈ I and I is an ideal of PT (X,Y ) , it follows that α = λβµ ∈ I. Hence,
PT [I] ⊆ I. Since I is already included in PT [I] , we conclude that I = PT [I], as required. 2

Note that for an ideal I of PT (X,Y ) , as indicated in the proof of Theorem 2.4, we have PT [I] = I .
Additionally, it is possible for the difference sets Z to yield the same ideal in PT (X,Y ) . To distinguish subsets
of PT (X,Y ) that form distinct ideals, we define a subset Jr,s,t of PT (X,Y ) , where 0 ≤ r ≤ a, 0 ≤ s ≤ b , and
0 ≤ t ≤ c , as follows:

Jr,s,t = {α ∈ PT (X,Y ) : |imα| = r, |Y α| = s and |imα\Y | = t}.

Observe that if r , s , and t satisfy any of the conditions s+ t > r , r− s− t > b− s , or r− s− t > c− t , then
Jr,s,t = ∅ . On the other hand, if s+ t ≤ r , r− s− t ≤ b− s , and r− s− t ≤ c− t , then we define αr,s,t ∈ Jr,s,t

by choosing S ⊆ Y and T ⊆ X \ Y with |S| = s and |T | = t . Next, we let R ⊆ (X \ Y ) \ T and R′ ⊆ Y \ S
with |R| = r − s − t = |R′| . Now, fixing a bijection σ : R → R′ , we define αr,s,t = σ ∪ idS ∪ idT , where idS

and idT are the identity maps on S and T , respectively.

Let Z be a collection of all αr,s,t , where Jr,s,t ̸= ∅ . It is evident that |Z ∩ Jr,s,t| = 1 . A nonempty
subset Z of Z is called pt-pure if for any distinct two elements αn1,n2,n3

and αm1,m2,m3
in Z , there exist

i, j ∈ {1, 2, 3} such that ni > mi and mj > nj .

Theorem 2.5 Let X be a finite set. The ideals of PT (X,Y ) are precisely those sets of the form PT [Z] , where
Z is a pt-pure subset of Z . In particular, distinct pt-pure subsets of Z result in distinct ideals.
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Proof Let I be any ideal of PT (X,Y ) . Let r = max{|imα| : α ∈ I} , s = max{|Y α| : α ∈ I} ,
and t = max{|imα \ Y | : α ∈ I} . Choose α ∈ Jr,sr,tr ∩ I , where sr = max{u : Jr,u,v ∩ I ̸= ∅} and
tr = max{v : Jr,u,v ∩ I ̸= ∅} . Similarly, we choose β ∈ Jrs,s,ts ∩ I and γ ∈ Jrt,st,t∩ I . By Lemma 2.3, we obtain
that αr,sr,tr , αrs,s,ts , and αrt,st,t belong to I . Let ZI =

{
αr,sr,tr , αrs,s,ts , αrt,st,t

}
. Note that the elements

in ZI may not differ at all and ZI is a pt-pure subset. It is clear that I ⊆ PT [ZI ] . Let δ ∈ PT [ZI ] . Then
|im δ| ≤ u, |Y δ| ≤ v, and |im δ \ Y | ≤ w for some u, v, w with αu,v,w ∈ ZI . According to Lemma 2.3, we have
δ = λαu,v,wµ ∈ I , thus implying I = PT [ZI ] .

Next, we consider any pure subsets Z1 and Z2 of Z with Z1 ̸= Z2 . Without loss of generality, if one
is strictly contained in the other, we assume that Z1 ⊊ Z2 . Then there exists αr,s,t ∈ Z2 \ Z1 . Since Z2 is a
pt-pure subset of Z , for each αu,v,w ∈ Z1 , u > r or v > s or w > t . Hence, αr,s,t ∈ PT [Z2] \PT [Z1] . For the
case Z1 ⊈ Z2 and Z2 ⊈ Z1 , we have Z1 \ Z2 ̸= ∅ and Z2 \ Z1 ̸= ∅ . Let r1 = max{u : αu,v,w ∈ Z1 \ Z2} and
r2 = max{u : αu,v,w ∈ Z2 \ Z1} . Then there exist αr1,s1,t1 ∈ Z1 \ Z2 and αr2,s2,t2 ∈ Z2 \ Z1 .

Case 1: r1 > r2 . If αr1,s1,t1 ∈ PT [Z2] , then there exists αu,v,w ∈ Z2 such that r2 < r1 ≤ u , s2 ≤ v ,
and t2 ≤ w2 . The maximum value of r2 implies that αu,v,w ∈ Z1 , which contradicts the fact that Z1 is a pure
subset. Hence, αr1,s1,t1 ∈ PT [Z1] \ PT [Z2] .

Case 2: r2 > r1 . Using the same argument as in Case 1, we can conclude that αr2,s2,t2 ∈ PT [Z2] \

PT [Z1] .
Case 3: r1 = r2 . Let v1 = max{v : αr1,v,w ∈ Z1 \Z2} and v2 = max{v : αr2,v,w ∈ Z2 \Z1} . If v1 ̸= v2 ,

applying the same previous argument, we conclude that PT [Z1] ̸= PT [Z2] . In the case where v1 = v2 , we let
w1 = maxw : αr1,v1,w ∈ Z1 \ Z2 and w2 = maxw : αr2,v2,w ∈ Z2 \ Z1 . Consequently, we have w1 ̸= w2 and
also establish PT [Z1] ̸= PT [Z2] . 2

To simplify notation, in the case of Z being a finite set such that Z = {α1, α2, . . . , αn} , we use the
notation PT [α1, α2, . . . , αn] instead of PT [{α1, α2, . . . , αn}] . It is clear that PT [Z] =

∪
γ∈Z PT [γ].

For α, β ∈ PT (X,Y ) , PT [α] ⊆ PT [β] if and only if |imα| ≤ |imβ|, |Y α| ≤ |Y β| , and |imα\Y | ≤
|imβ\Y |. Consequently, PT [α] = PT [β] if and only if |imα| = |imβ|, |Y α| = |Y β| , and |imα\Y | = |imβ\Y |.
Additionally, if α, β ∈ Z , PT [α] and PT [β] are distinct.

Proposition 2.6 The principal ideals of PT (X,Y ) are precisely those sets of the form PT [αr,s,t] .

Proof Let αr,s,t ∈ Z . Our objective is to demonstrate that PT [αr,s,t] = PT (X,Y )αr,s,tPT (X,Y ) . We begin
by considering β ∈ PT [αr,s,t] . This implies that |imβ| ≤ r, |Y β| ≤ s , and |imβ\Y | ≤ t . According to Lemma
2.3, we can express β as λαr,s,tµ for some λ, µ ∈ PT (X,Y ) . Consequently, we have established that β belongs
to PT (X,Y )αr,s,tPT (X,Y ) . On the other hand, consider γ in PT (X,Y )αr,s,tPT (X,Y ) . This implies that
γ = θαr,s,tη for some θ, η ∈ PT (X,Y ) . Since αr,s,t ∈ PT [αr,s,t] and PT [αr,s,t] is an ideal, we can conclude
that γ is an element of PT [αr,s,t] . Therefore, PT [αr,s,t] = PT (X,Y )αr,s,tPT (X,Y ) is a principal ideal within
PT (X,Y ) .

Let I be any principal ideal of PT (X,Y ) . Then I = PT (X,Y )αPT (X,Y ) for some α ∈ PT (X,Y ) . Let
|imα| = r, |Y α| = s , and |imα \ Y | = t . By Lemma 2.3, α = λαr,s,tµ and αr,s,t = λ′αµ′ for some λ, λ′, µ, µ′ ∈
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PT (X,Y ) . Hence, I = PT (X,Y )αPT (X,Y ) ⊆ PT (X,Y )αr,s,tPT (X,Y ) ⊆ PT (X,Y )αPT (X,Y ) = I .
Therefore, I = PT (X,Y )αr,s,tPT (X,Y ) = PT [αr,s,t] . 2

Next, we will discuss the minimal and maximal ideals of PT (X,Y ) . It is clear that J0,0,0 = {∅} =

PT [α0,0,0] is the minimum ideal of PT (X,Y ).

As {∅} represents the minimum ideal within PT (X,Y ) , we can define a minimal ideal in PT (X,Y ) as an
ideal I such that {∅} ⊊ I and I satisfies the condition: if there exists an ideal J such that {∅} ⊆ J ⊆ I , then
either J = {∅} or J = I. The following theorem elaborates on the details of the minimal ideal in PT (X,Y ) .

Theorem 2.7 {∅} ∪ J1,0,0 is the unique minimal ideal of PT (X,Y ).

Proof It is routine to verify that {∅}∪J1,0,0 = PT (2, 1, 1) is an ideal of PT (X,Y ) . To prove the minimality,
we let J be an ideal of PT (X,Y ) such that {∅} ⊆ J ⊊ {∅} ∪ J1,0,0 . Then there exists α ∈ J1,0,0 , but
α /∈ J . To demonstrate that J = {∅} , we assume the contrary. In this case, there exists ∅ ̸= β ∈ J .
Since both α and β belong to J1,0,0 , by Lemma 2.3, there exist λ, µ ∈ PT (X,Y ) such that α = λβµ .
Since β ∈ J and J is an ideal, we obtain α = λβµ ∈ J , which leads to a contradiction. Consequently,
{∅} ∪ J1,0,0 qualifies as a minimal ideal within PT (X,Y ) . For the uniqueness, we let M be a minimal ideal of
PT (X,Y ) . As M is an ideal of PT (X,Y ) , it can be expressed as M = PT [Z] for some a nonempty subset
Z of PT (X,Y ) . Since {∅} ⊊ M , there must exist α ∈ M such that |imα| ≥ 1 . Since α ∈ M = PT [Z] ,
we have |imα| ≤ |imβ|, |Y α| ≤ |Y β| , and |imα\Y | ≤ |imβ\Y | for some β ∈ Z . Now, let γ ∈ J1,0,0 . Then
|im γ| = 1 ≤ |imα| ≤ |imβ| , |Y γ| = 0 ≤ |Y α| ≤ |Y β| , and |im γ\Y | = 0 ≤ |imα\Y | ≤ |imβ\Y | . This implies
that γ ∈ PT [Z] = M . Consequently, we have shown that {∅} ∪ J1,0,0 ⊆ M , and therefore, M = {∅} ∪ J1,0,0

by the minimality of M . 2

Now, we will introduce the concept of a maximal ideal in PT (X,Y ) . An ideal I in PT (X,Y ) is
categorized as a maximal ideal if, for any ideal M such that I ⊆ M ⊆ PT (X,Y ) , it holds that either M = I

or M = PT (X,Y ) .

Theorem 2.8 PT (X,Y )\Ja,b,c is the unique maximal ideal of PT (X,Y ).

Proof It is clear that PT (X,Y )\Ja,b,c = PT [PT (X,Y )\Ja,b,c] is an ideal of PT (X,Y ) . To show that
PT (X,Y )\Ja,b,c is a maximal ideal of PT (X,Y ) , we let M be an ideal of PT (X,Y ) such that PT (X,Y )\Ja,b,c ⊊

M ⊆ PT (X,Y ). This implies that there exists α ∈ M , but α /∈ PT (X,Y )\Ja,b,c . As a result, we have
|imα| = a, |Y α| = b , and |imα\Y | = c. Now, let β ∈ Ja,b,c . Since α, β ∈ Ja,b,c , there exist λ and µ in
PT (X,Y ) such that β = λαµ . Consequently, β = λαµ ∈ M since α ∈ M and M is an ideal. Thus,
M = PT (X,Y ). For the uniqueness, we let M ′ be a maximal ideal of PT (X,Y ) . Then M ∪ M ′ is an ideal
and idX /∈ M ∪M ′ , whence M ∪M ′ ⊆ PT (X,Y ) . Since M ⊆ M ∪M ′ and M is a maximal ideal, we have
M ∪M ′ = M . Similarly, we can conclude that M ∪M ′ = M ′ . Thus, M = M ∪M ′ = M ′ 2

If Y ̸= X , then PT [α1,0,1] and PT [α1,1,0] neither contains the other. This means that if Y ̸= ∅ , then
the ideals does not form a chain.
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We conclude the study of ideals on PT (X,Y ) by elucidating the set Jr,s,t and the poset of ideals in
PT (X,Y ) for the sets X = {1, 2, 3} and Y = {1, 2} . To enhance clarity, an element α in PT (X,Y ) satisfying
1α = x , 2α = y , and 3α = z is denoted as (x, y, z) . Specifically, the vacant positions in the 3-tuple signify
their exclusion from the domain of those elements. The subsets Jr,s,t with αr,s,t in red and the Hasse diagram
of ideals in PT (X,Y ) are presented in Table 1 and Figure 1, respectively.

Table 1. The subsets Jr,s,t of PT ({1, 2, 3}, {1, 2}) .

J3,2,1

(1, 2, 3) (2, 1, 3)

J2,1,0 J2,1,1 J2,2,0

(1, 1, 2) (2, 2, 1) (1, 1, 3) (2, 2, 3) (1, 2, 1) (2, 1, 2)
(1, , 2) (2, , 1) (1, , 3) (2, , 3) (1, 2, 2) (2, 1, 1)
( , 1, 2) ( , 2, 1) ( , 1, 3) ( , 2, 3) (1, 2, ) (2, 1, )

J1,0,0 J1,0,1 J1,1,0

( , , 1) ( , , 3) (1, , ) (2, , )
( , , 2) ( , 1, ) ( , 2, )

(1, 1, ) (2, 2, )
(1, , 1) (2, , 2)
( , 1, 1) ( , 2, 2)
(1, 1, 1) (2, 2, 2)

J0,0,0

∅

PT [(1, 2, 3)]

PT [(1, , 3), (1, 2, )]

PT [(1, , 3)] PT [( , , 3), (1, 2, )]

PT [( , , 3), (1, , 2)] PT [(1, 2, )]

PT [( , , 3), (1, , )] PT [(1, , 2)]

PT [( , , 3)] PT [(1, , )]

PT [( , , 1)]

PT [∅]

Figure 1. The Hasse diagram of ideals in PT ({1, 2, 3}, {1, 2}) .
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Our next propose is to explore the ideals of PFix(X,Y ) in the case where Y is a proper subset of X .
Recall that the ideals of PT (X,Y ) are of the form PT [Z] where ∅ ̸= Z ⊆ PT (X,Y ) . Since PFix(X,Y ) is a
subsemigroup of PT (X,Y ) , we easily obtain the following:

Lemma 2.9 PT [Z] ∩ PFix(X,Y ) is an ideal of PFix(X,Y ).

The following example demonstrates that there exists an ideal in PFix(X,Y ) that does not conform to
the form of PT [Z] ∩ PFix(X,Y ) .

Example 2.10 Let X = {1, 2, 3} and Y = {1, 2} . Consider the ideal

I = {∅, ( , , 1), ( , , 2), (1, , ), (1, , 1)}

in PFix(X,Y ) . If Z takes the form {( , , 1)} , {( , , 2)} , or {( , , 1), ( , , 2)} , then the corresponding
PT [Z] is {∅, ( , , 1), ( , , 2)} ; if Z = {( , , 3)} , then PT [Z] = {∅, ( , , 1), ( , , 2), ( , , 3)} ; and if
Z = {( , , 1), ( , , 3)} , then PT [Z] = {∅, ( , , 1), ( , , 2), ( , , 3)} . In all mentioned cases, it is implied
that PT [Z] ∩ PFix(X,Y ) = PT [Z] ̸= I . Furthermore, for any Z ⊆ PT (X,Y ) not falling within the
previously mentioned scenarios, PT [Z] consistently contains ( , 2, ) , which results in PT [Z]∩PFix(X,Y ) ̸= I .
Consequently, we assert that I ̸= PT [Z] ∩ PFix(X,Y ) for all Z ⊆ PT (X,Y ) .

To identify all ideals of PFix(X,Y ) , we refer to the result from [26] as follows:

Lemma 2.11 [26] Let α, β ∈ PFix(X,Y ). Then α = λβµ for some λ, µ ∈ PFix(X,Y ) if and only if
domα ∩ Y ⊆ domβ ∩ Y, |imα| ≤ |imβ| and |imα\(imβ ∩ Y )| ≤ |imβ\Y |.

Moreover, we define a subset PF [Z] , where ∅ ̸= Z ⊆ PFix(X,Y ) , as the set PF [Z] = {α ∈ PFix(X,Y ) :

domα ∩ Y ⊆ domβ ∩ Y, |imα| ≤ |imβ|, |imα\(imβ ∩ Y )| ≤ |imβ\Y | for some β ∈ Z} . Clearly, Z ⊆ PF [Z] ,
and if Z1 ⊆ Z2 , then PF [Z1] ⊆ PF [Z2] .

Following the argument presented in the proof of Theorem 2.4, we establish the following theorem:

Theorem 2.12 The ideals of PFix(X,Y ) are precisely those sets of the form PF [Z] , where Z is a nonempty
subset of PFix(X,Y ).

If Z is a finite set such that Z = {α1, α2, . . . , αn} , similar to the notation used in PT [Z] , we use the
notation PF [α1, α2, . . . , αn] instead of PF [{α1, α2, . . . , αn}] . It is clear that PF [Z] =

∪
γ∈Z PF [γ].

For α and β in PFix(X,Y ) . Then, PF [α] ⊆ PF [β] if and only if domα ∩ Y ⊆ domβ ∩ Y ,
|imα| ≤ |imβ| , and |imα\(imβ∩Y )| ≤ |imβ\Y |. Consequently, PF [α] = PF [β] if and only if |imα| = |imβ| ,
domα ∩ Y = domβ ∩ Y , |imα\(imβ ∩ Y )| ≤ |imβ\Y | and |imβ\(imα ∩ Y )| ≤ |imα\Y | .

Note that, according to Lemma 2.11, we directly obtain that α ∈ PF [β] if and only if α = λβµ for
some λ, µ ∈ PFix(X,Y ) . By applying the same argument used in the proof of Proposition 2.6, we arrive at
the following theorem:
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Proposition 2.13 The principal ideals of PFix(X,Y ) are precisely those sets of the form PF [α] , where
α ∈ PFix(X,Y ) .

Next, we will examine the minimal and maximal ideals of PFix(X,Y ). Henceforth, let |X\Y | = c , we
will then proceed to define

J(A,B, t) = {α ∈ PFix(X,Y ) : domα ∩ Y = A, imα ∩ Y = B and |imα\Y | = t},

where A,B ⊆ Y , and 0 ≤ t ≤ c . It is clear that J(∅, ∅, 0) = {∅} = PF [∅] is the minimum ideal of PFix(X,Y ).

Lemma 2.14 Let y ∈ Y . Then {∅} ∪ J(∅, {y}, 0) is a minimal ideal of PFix(X,Y ) .

Proof Let y ∈ Y , x ∈ X \ Y , and γ =

(
x
y

)
. It is clear that {∅} ∪ J(∅, {y}, 0) = PF [γ] is an ideal

of PFix(X,Y ) . To prove the minimality, we let J be an ideal of PFix(X,Y ) such that {∅} ⊆ J ⊊
{∅} ∪ J(∅, {y}, 0) . Then, there exists α ∈ J(∅, {y}, 0) , but α /∈ J . To demonstrate that J = {∅} , we
assume the contrary. In this case, there exists ∅ ̸= β ∈ J . Since both α and β belong to J(∅, {y}, 0) , it follows
that domα ∩ Y = domβ ∩ Y , |imα| = 1 = |imβ| , and |imα \ (imβ ∩ Y )| = 0 = |imβ \ Y | . By Lemma 2.11,
there exist λ, µ ∈ PFix(X,Y ) such that α = λβµ . Since β ∈ J and J is an ideal, we obtain α ∈ J , which
leads to a contradiction. Consequently, {∅} ∪ J(∅, {y}, 0) qualifies as a minimal ideal within PFix(X,Y ) . 2

Lemma 2.15 Let ∅ ̸= Z ⊆ PFix(X,Y ) . If imα ∩ Y = ∅ for all α ∈ Z , then PF [Z] is not a minimal ideal
of PFix(X,Y ) .

Proof Assume that the given condition holds. The assertion is clear in the case where Z = {∅} . Therefore,

we consider the case where ∅ ̸= α ∈ Z . Let x ∈ X \ Y and consider γ =

(
x
x

)
. We can see that

dom γ ∩ Y = ∅ ⊆ domα ∩ Y , |im γ| = 1 ≤ |imα| , and |im γ \ (imα ∩ Y )| = |im γ| ≤ |imα| = |imα \ Y | .
This follows that γ ∈ PF [α] ⊆ PF [Z] . To show J(∅, {y}, 0) ⊆ PF [Z] , we let β ∈ J(∅, {y}, 0) . Then
domβ ∩ Y = ∅ = dom γ ∩ Y , |imβ| = 1 = |im γ| , and |imβ \ (im γ ∩ Y )| = |imβ| = |im γ| = |im γ \ Y | .
This implies, by Lemma 2.11, that β = λγµ for some λ, µ ∈ PFix(X,Y ) . Since PF [Z] is an ideal and
γ ∈ PF [Z] , we get β ∈ PF [Z] , which implies J(∅, {y}, 0) ⊆ PF [Z] . Hence, {∅} ∪ J(∅, {y}, 0) ⊊ PF [Z] since
γ /∈ J(∅, {y}, 0) . Therefore, PF [Z] is not minimal. 2

Theorem 2.16 The minimal ideals of PFix(X,Y ) are precisely those sets of the form {∅}∪J(∅, {y}, 0) , where
y ∈ Y .

Proof Let I be any minimal ideal of PFix(X,Y ) . According to Theorem 2.12, I = PF [Z] for some
nonempty set Z ⊆ PFix(X,Y ) . Since I is minimal, as indicated by Lemma 2.15, there exists α ∈ Z such
that imα ∩ Y ̸= ∅ . Choose y ∈ imα ∩ Y . To demonstrate that J(∅, {y}, 0) ⊆ I , let β ∈ J(∅, {y}, 0) . Then
domβ ∩ Y = ∅ ⊆ domα ∩ Y , |imβ| = 1 ≤ |imα| , and |imβ \ (imα ∩ Y )| = 0 ≤ |imα \ Y | . Consequently,
β ∈ PF [Z] = I , implying {∅} ∪ J(∅, {y}, 0) ⊆ I . Since I is minimal, we conclude that I = {∅} ∪ J(∅, {y}, 0) ,
as required. 2
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Theorem 2.17 PFix(X,Y )\J(Y, Y, c) is the unique maximal ideal of PFix(X,Y ).

Proof It is routine to verify that PFix(X,Y )\J(Y, Y, c) = PF [PFix(X,Y )\J(Y, Y, c)] is an ideal of
PFix(X,Y ) . To show that PFix(X,Y )\J(Y, Y, c) is a maximal ideal of PFix(X,Y ) , we let M be an ideal of
PFix(X,Y ) such that PFix(X,Y )\J(Y, Y, c) ⊊ M ⊆ PFix(X,Y ). This implies that there exists an α ∈ M ,
but α /∈ PFix(X,Y )\J(Y, Y, c) . As a result, we have domα ∩ Y = Y , imα ∩ Y = Y and |imα\Y | = c.

Now, let β ∈ J(Y, Y, c) . Since α, β ∈ J(Y, Y, c) , there exist λ and µ in PFix(X,Y ) such that β = λαµ .
Consequently, β = λαµ ∈ M since α ∈ M and M is an ideal. Thus, M = PFix(X,Y ). The uniqueness can
be proved similar to Theorem 2.8. 2

Theorem 2.18 The ideals of PFix(X,Y ) form a chain under the set inclusion if and only if Y = ∅ .

Proof Assume that Y ̸= ∅ . Then there exist an element y in Y and an element x from X\Y. Define α and
β in PFix(X,Y ) by

α =

(
x
x

)
and β =

(
y
y

)
.

Since |imα \ (imβ ∩ Y )|= 1 ≰ 0 = |imβ \ Y | , it follows that α ∈ PF [α] \ PF [β] . Also, since domβ ∩ Y =

{y} ⊈ ∅ = imα∩Y , implies β ∈ PF [β]\PF [α] . This implies that neither contains the other. Hence, the ideals
of PFix(X,Y ) do not form a chain. The converse is trivial, since PFix(X,Y ) = P (X) when Y = ∅ . 2

Note that in the case where X is a finite set, we have D = J ; this implies, by Theorem 3.5 in [26], that
PF [α] = PF [β] for all α, β ∈ J(A,B, t) . Also, for α ∈ J(A,B, t) and β ∈ J(U, V,w) such that A ⊆ U , B ⊆ V

and t ≤ w , then PF [α] ⊆ PF [β] . However, the converse of this statement does not hold.

This section concludes by explicating the set J(A,B, t) and the poset of ideals within PFix(X,Y )

concerning the sets X = {1, 2, 3} and Y = {1, 2} , as depicted in Table 2 and Figure 2, respectively. The
utilization of blue color in these depictions signifies the representation of ideals in the form PT [Z]∩PFix(X,Y ) .

Table 2. The subsets J(A,B, t) of PFix({1, 2, 3}, {1, 2}) .

J(Y, Y, 1)
(1, 2, 3)

J({1}, Y, 0) J({2}, Y, 0) J({1}, {1}, 1) J({2}, {2}, 1) J(Y, Y, 0)

(1, , 2) ( , 2, 1) (1, , 3) ( , 2, 3) (1, 2, )
(1, 2, 1)
(1, 2, 2)

J({1}, {1}, 0) J({2}, {2}, 0) J(∅, {1}, 0) J(∅, {2}, 0) J(∅, ∅, 1)
(1, , ) ( , 2, ) ( , , 1) ( , , 2) ( , , 3)
(1, , 1) ( , 2, 2)

J(∅, ∅, 0)
∅
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PF [(1, 2, 3)]

PF [(1, , 3), (1, 2, ), ( , 2, 3)]

PF [(1, , 3), (1, 2, )] PF [(1, , 3), ( , 2, 3)] PF [(1, 2, ), ( , 2, 3)]

PF [( , , 3), (1, 2, )] PF [(1, , 3), ( , 2, 1)] PF [(1, , 2), ( , 2, 3)]

PF [(1, 2, )] PF [(1, , 3)] PF [( , 2, 3)]

PF [( , , 3), (1, , 2), ( , 2, 1)]

PF [(1, , 2), ( , 2, 1)]

PF [(1, , ), ( , 2, 1)] PF [( , , 3), (1, , 2)] PF [(1, , ), ( , 2, ), ( , , 3)] PF [( , , 3), ( , 2, 1)] PF [( , 2, ), (1, , 2)]

PF [(1, , 2)] PF [(1, , ), ( , , 3)] PF [(1, , ), ( , 2, )] PF [( , 2, ), ( , , 3)] PF [( , 2, 1)]

PF [( , , 3)]

PF [(1, , )] PF [( , , 1), ( , , 2)] PF [( , 2, )]

PF [( , , 1)] PF [( , , 2)]

PF [∅]

Figure 2. The Hasse diagram of ideals in PFix({1, 2, 3}, {1, 2}) .
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