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Abstract: In this research, we investigate the intriguing realm of pointwise bislant Riemannian submersions, a gen-
eralization of many previous submersions, such as antiinvariant, slant, semislant, pointwise slant, pointwise semislant,
and bislant submersions, within the framework of almost product manifolds. After giving an original example, we
delve into the submersion’s integrability conditions and geodesics. We explore the concept of φ−pluriharmonicity and
φ− invariance within this context. The study sheds light on the profound interplay between pointwise bislant submer-
sions’ fibers and their being either geodesic or mixed geodesic, offering valuable insights into these intriguing mappings’
geometric properties.
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1. Introduction
The theory of submanifolds has been shown to be quite useful in Differential Geometry. It generalizes the
concept of curves and surfaces to higher dimensions, aids in representing configuration spaces of physical
systems, allows for the representation of complex shapes and motion paths in an efficient, compact manner
in robotics and computers, and so on. Overall, submanifolds provide a powerful and flexible framework for
understanding complex geometries and their intrinsic properties. They offer a deeper insight into the structure
of spaces, and crucially, they find applications across a wide range of disciplines, making them an essential
concept in modern mathematics and its various applications.

The importance of submanifolds prompted the Geometers to define and study specific submanifolds.
One of the ways to obtain a submanifold is by working with submersions. The most well-known and studied
map of this kind is the Riemannian Submersion. The notion of Riemannian submersion was introduced first
by O’Neill [9]. Riemannian submersions have significant implications in physics, particularly in the study of
gauge theories and field theories. In the context of fiber bundles, Riemannian submersions often arise when
dealing with the projection of a higher-dimensional physical space onto a lower-dimensional base manifold.
This projection preserves certain geometric and metric properties, making it a valuable tool in modeling and
understanding physical phenomena, such as gauge field theories and the geometry of spacetime in general
relativity. Additionally, Riemannian submersions find applications in optimal control theory, providing insights
into the dynamics and symmetries of physical systems.
∗Correspondence: csayer@fiu.edu
2010 AMS Mathematics Subject Classification: 53C15; 53B20.
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Later, Watson considered Riemannian submersions between almost Hermitian manifolds and called them
almost Hermitian submersions [18] , where the submersion is a complex mapping. Consequently, the vertical
and horizontal distributions are invariant with respect to the almost complex structure of the total manifold
of the submersion. Another submersion, called an antiinvariant Riemannian submersion, was defined also in a
complex context by Şahin [15]: in this case, the fibers are horizontal under the action of the almost complex
structure, i.e. they are antiinvariant submanifolds of the total space. Outside of these specific cases, the notion
of a Riemannian submersion has been considered in many other contexts, such as contact [2], complex [6, 17],
almost product [13], and more. In all of these studies, submersions were defined based on the action of the
structure of the manifold on the fibers.

Recently, in the complex context, Sepet defined and studied pointwise bislant Riemannian submersion
[14], while two of the current paper’s authors defined and studied bislant Riemannian submersion [11]. The
current paper attempts to fill a gap in the literature by studying a corresponding notion of pointwise bislant
Riemannian submersion in the almost product context, which is a generalization of many submersions defined
before such as slant [16], pointwise slant [4], semislant [7], pointwise semislant [10], and conformal quasi bislant
[8]. It is structured as follows. In Section 2, we establish the groundwork for acquiring a thorough comprehension
of Riemannian submersion and almost product Riemannian manifolds within the field of Differential Geometry.
Section 3 starts with the definition and an original example of a pointwise bislant Riemannian submersion in the
almost product context. Following the customary focus on prior research, our inquiry examines the integrability
of the fibers. We delve into the exploration of totally geodesic fibers within the context of a pointwise bislant
Riemannian submersion. By investigating the properties of totally geodesic fibers, we aim to gain deeper insights
into the geometric structures of the underlying submersion. The last part of our paper is devoted to the notion
of φ−pluriharmonicity and φ− invariance, which are new approaches to investigate the mixed geodesics of the
fibers and generalize the notion of harmonicity.

2. Preliminaries
In this section, we lay the foundation for a comprehensive understanding of Riemannian submersion and almost
product Riemannian manifolds in differential geometry. The preliminary concepts presented here serve as
essential building blocks to grasp the more advanced aspects of these topics. We will introduce key ideas related
to differential geometry, Riemannian metrics, submersions, and some special types of Riemannian manifolds
such as almost product Riemannian manifold and locally product Riemannian manifold. These fundamental
concepts are crucial for comprehending the geometry and properties of Riemannian submersions and will pave
the way for exploring their applications and implications.

2.1. Riemannian submersions
This section is devoted to the basics of Riemannian submersions.

Let (M, g) and (N, ḡ) be Riemannian manifolds. A surjective mapping π : (M, g) → (N, ḡ) is called a
Riemannian submersion [9] if

i) π has maximal rank;

ii) the restriction of the differential map π∗ on (kerπ∗)
⊥ is a linear isometry.

In this case, we recall the following observations and concepts;
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• For each q ∈ N , π−1(q) is a k -dimensional submanifold of M and called a fiber, where k = dim(M) −
dim(N).

• A vector field on M is called vertical (resp. horizontal) if it is always tangent (resp. orthogonal) to fibers.

• We will denote by V and H the projections on the vertical distribution kerπ∗ and the horizontal
distribution kerπ⊥

∗ , respectively.

• The manifold (M, g) is called total manifold and the manifold (N, ḡ) is called base manifold of the
submersion π : (M, g) → (N, ḡ) .

• A vector field X on M is called basic if X is horizontal and π -related to a vector field X∗ on N, i.e.

π∗Xp = X∗π(p), ∀p ∈ M.

The last fact given above yields the following Lemma [9], which explains the preservation of brackets, inner
products, and covariant derivatives;

Lemma 2.1 Let π : (M, g) → (N, ḡ) be a Riemannian submersion between Riemannian manifolds. If X and
Y are basic vector fields, then

• g(X,Y ) = ḡ(X∗, Y∗) ◦ π ,

• the horizontal part H[X,Y ] of [X,Y ] is a basic vector field corresponding to [X∗, Y∗],

• the horizontal part H(∇M
X Y ) of ∇M

X Y is the basic vector field corresponding to ∇N
X∗

Y∗,

• [U,X] is vertical for any vector field U of kerπ∗.

The geometry of Riemannian submersions is characterized by O’Neill’s tensors T and A , defined as follows:

TEG = V∇VEHG+H∇VEVG, (2.1)

AEG = V∇HEHG+H∇HEVG (2.2)

for any vector fields E and F on M, where ∇ is the Levi-Civita connection of g . One can see that a Riemannian
submersion π has totally geodesic fibers if and only if T vanishes. On the other side, A acts on the horizontal
distribution and measures the obstruction to the integrability of this distribution. Moreover, TE and AE are
skew-symmetric operators on the tangent bundle of M reversing the vertical and the horizontal distributions.
Now we give the properties of the tensor fields T and A .

Let V,W be vertical and X,Y be horizontal vector fields on M , then we have

TV W = TWV, (2.3)

AXY = −AY X =
1

2
V[X,Y ]. (2.4)

On the other hand, from (2.1) and (2.2), we obtain

∇V W = TV W + ∇̂V W, (2.5)
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∇V X = TV X +H∇V X, (2.6)

∇XV = AXV + V∇XV, (2.7)

∇XY = H∇XY +AXY, (2.8)

where ∇̂V W = V∇V W . If X is basic
H∇V X = AXV.

Remark 2.2 In this paper, we will assume all horizontal vector fields as basic vector fields.

For more details, we refer to O’Neill’s paper [9] and the book [6].
Let π be a C∞ -map from a Riemannian manifold (M, g) to a Riemannian manifold (N, g) . The second

fundamental form of π is given by

(∇π∗) (X,Y ) = ∇π
Xπ∗Y − π∗ (∇XY ) for X,Y ∈ Γ(TM), (2.9)

where ∇π is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the
metrics g and g , [5].

If (∇π∗)(X,Y ) = 0 for any X,Y ∈ Γ(TM), π is called a totally geodesic map. In particular, if
(∇π∗)(X,Y ) = 0, X, Y ∈ Γ(D) for any subset D of TM, π is called a D− totally geodesic map, [5].

2.2. Almost product Riemannian and locally product Riemannian manifolds
An m -dimensional manifold M is called almost product manifold if it is equipped with an almost product
structure φ , which is a tensor field of type (1,1) satisfying

φ2 = id, (φ ̸= ±id) , (2.10)

denoted by (M,φ) . Also for E,G ∈ Γ(TM) , if (M,φ) admits a Riemannian metric g satisfying

g(φE,φG) = g(E,G), (2.11)

then M is said to be an almost product Riemannian manifold.
Let ∇ be the Riemannian connection with respect to the metric g on M . Then M is called a locally product
Riemannian manifold (briefly, l.p.R.) if φ is parallel with respect to the connection, i.e. [19]

∇φ = 0. (2.12)

3. Pointwise bislant submersions
In this section, we define and study pointwise bislant Riemannian submersion in almost product context.

Definition 3.1 Let (M, g, φ) be an almost product Riemannian manifold and (N, ḡ) be a Riemannian manifold.
A Riemannian submersion π : (M, g, φ) → (N, ḡ) is called a pointwise bislant Riemannian submersion if the
vertical distribution kerπ∗ of φ decomposes into two orthogonal complementary (pointwise slant) distributions
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Dθ1 and Dθ2 .
In this case, we have the decomposition

kerπ∗ = Dθ1 ⊕Dθ2 , (3.1)

where Dθi is a pointwise slant distribution and the angle θi between φU and the space (Dθi)q , (∀q ∈ M) , which
is independent of the choice of nonzero vector U ∈ Γ(Dθi)q , is called slant function of the pointwise bislant
Riemannian submersion, for i = 1, 2 .

Now, we give an example to prove the existence of the pointwise bislant Riemannian submersion concept.

Example 3.2 Consider the standard Euclidean space R8 with the standard metric g . One can see that

φ1(x1, x2, ..., x8) = (−x3, x4,−x1, x2,−x7, x8,−x5, x6)

and
φ2(x1, x2, ..., x8) = (x2, x1, x4, x3, x6, x5, x8, x7)

are almost product Riemannian structures on R8 , where φ1φ2 = −φ2φ1 . We can define a new almost product
Riemannian structure such that

φ1,2 = fφ1 + gφ2,

where f and g defined by

f : R8 − {−1} → R

f(x1, x2, ..., x8) = − x1√
(x1)2 + 1

g : R8 → R

g(x1, x2, ..., x8) =
1√

(x1)2 + 1
.

Therefore, (R8, φ1,2, g) is an almost product Riemannian manifold.
Now, let π be a map between R8 and R4 defined by

π(x1, x2, ..., x8) =

(
x1 − x3√

2
,
x2 − x4√

2
,
x5 + x8√

2
,
−x6 + x7√

2

)
.

The following decomposition of kerπ∗

kerπ∗ = Dθ1 ⊕Dθ2 ,

where

Dθ1 = span

{
∂

∂x1
+

∂

∂x3
,

∂

∂x2
+

∂

∂x4

}
,

Dθ2 = span

{
∂

∂x5
− ∂

∂x8
,

∂

∂x6
+

∂

∂x7

}
shows that π is a pointwise bislant submersion with the slant functions

θ1 = cos−1(g), and θ2 = cos−1(−f).
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Remark 3.3 The following table shows the importance of our work. It gives that pointwise bislant submersion
is a generalization of some other submersions defined and studied before in the literature.

Table 1. Subclasses of a pointwise bislant Riemannian submersion.

dimDθ1 dimDθ2 Submersion Reference
̸= 0 (θ1 constant) 0 slant [16]
̸= 0 (θ1 function) 0 pointwise slant [4]

̸= 0 (θ1 = π
2 ) 0 anti invariant [15]

̸= 0 (θ1 = 0) ̸= 0 (θ2 constant) semislant [7]
̸= 0 (θ1 = 0) ̸= 0 (θ2 function) pointwise semislant [10]

̸= 0 (θ1 constant) ̸= 0 (θ2 constant) bislant [11]

Let π : (M, g, φ) → (N, ḡ) be a pointwise bislant submersion from an almost product Riemannian
manifold M onto a Riemannian manifold N . Then, for any V ∈ Γ(kerπ∗) , we may decompose φV into
vertical and horizontal parts:

φV = tV + nV, (3.2)

where tV ∈ Γ(kerπ∗) and nV ∈ Γ(kerπ∗
⊥) . Similarly, for any ξ ∈ Γ(kerπ∗

⊥) ,

φξ = Tξ +Nξ, (3.3)

where Tξ ∈ Γ(kerπ∗) and Nξ ∈ Γ(kerπ∗
⊥) .

Remark 3.4 The concept of pointwise bislant Riemannian submersion in the complex context was given first
by Sepet, [14], which is a special case of the work of Sayar et al., [12]. In this case, while the canonical structure
t is not symmetric, t2 shows up symmetric, which yields us to define such submersions. In our current work,
t becomes symmetric and all the results appear different than the previous works done before.
Moreover, the last two sections include the original results, which have not been given in the literature.

Under these circumstances, we have the following identities for the canonical structures given above.

Lemma 3.5 Let π be a pointwise bislant submersion from an almost product Riemannian manifold (M, g, φ)

onto a Riemannian manifold (N, ḡ) . Then, we have

X = t2X + TnX, (3.4)

0 = NnX + ntX, (3.5)

Y = N2Y + nTY, (3.6)

0 = tTY + TNY, (3.7)

where X ∈ Γ(kerπ∗) , Y ∈ Γ(kerπ∗
⊥) .

Proof The proof follows from (2.10). 2

The following lemma gives similar results to the previous one in the case of almost product structure φ is
parallel.
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Lemma 3.6 Let π be a pointwise bislant submersion from a locally product Riemannian (l.p.R.) manifold
(M, g, φ) onto a Riemannian manifold (N, ḡ) . Then, we have

∇̂XtY + TXnY = TTXY + t∇̂XY,

TXtY +AnY X = NTXY + n∇̂XY,

∇̂βTξ +AβNξ = TH∇βξ + tAβξ,

AβTξ +H∇βNξ = NH∇βξ + nAβξ,

∇̂βtX +AβnX = TAβX + t∇̂βX,

AβtX +H∇βnX = NAβX + n∇̂βX,

∇̂XTξ + TXNξ = TAξX + tTXξ,

TXTξ +ANξX = NAξX + nTXξ,

where X,Y ∈ Γ(kerπ∗) and β, ξ ∈ Γ(kerπ∗
⊥) .

Proof The proof follows from (2.5) ∼ (2.8), (2.12), (3.2), and (3.3). 2

Remark 3.7 From now on, we will use the abbreviation l.p.R. for locally product Riemannian.

If we consider the pointwise distributions Dθ1 and Dθ2 with the previous Lemma 3.6, we obtain the following
results.

Lemma 3.8 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, for any V ∈ Γ(Dθi), i = 1, 2,

• tV ∈ Γ(Dθi),

• t2V = cos2 (θi)V,

• ntU = −NnU,

• TnV = sin2 (θi)V,

• g(tV, tV ) = cos2 (θi)g(V, V ),

• g(nV, nV ) = sin2 (θi)g(V, V ).

Now, we give a lemma, which is useful and used throughout our paper.

Lemma 3.9 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, g(∇XY, U) is equivalent to the followings

− csc2 θj

[
g(X, TY ntU + TtY nU +AnY nU)

]
, (3.8)

sec2 θj

[
g(∇̂XtY, tU) + g(X, TtUnY + TY ntU)

]
, (3.9)

where X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ) , i ̸= j, i, j = 1, 2.
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Proof Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ) , i ̸= j, i, j = 1, 2. By using (2.11) and (3.2), we obtain

g(∇XY, U) = g(φ∇XY, tU) + g(φ∇XY, nU). (3.10)

The first expression on the right side of (3.10) with Lemma 3.8 gives

g(φ∇XY, tU) = g(∇XY, t2U) + g(∇XY, ntU)

= cos2 θjg(∇XY, U) + g(TXY, ntU),

which yields with (3.10), (2.5), and the symmetry of the product structure φ

sin2 θjg(∇XY, U) = g(TXY, ntU) + g(TXtY, nU) + g(AnY X,nU)

shows (3.8).
On the other side, the second expression on the right side of (3.10) with the symmetry of the product

structure φ , (3.3), and Lemma 3.8 gives

g(φ∇XY, nU) = g(∇XY,TnU) + g(∇XY,NnU)

= sin2 θjg(∇XY, U) + g(TXY,NnU),

which yields with (3.10), (3.2), (2.5), and the symmetry of the product structure φ

cos2 θjg(∇XY, U) = g(∇̂XtY, tU) + g(TXnY, tU) + g(TXY,NnU)

completes the proof. 2

3.1. Integrability
In the case of studying a submersion, a natural question would be integrability conditions. In this section, we
work the integrability conditions for the pointwise slant distributions Dθi , i = 1, 2 and horizontal distribution
kerπ⊥

∗ , respectively.

The following theorem gives some conditions for the integrability of pointwise distributions Dθi .

Theorem 3.10 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, the following conditions are equivalent to each other

i) the pointwise distribution Dθi is integrable,

ii) g(TtXY − TtY X,nU) = g(AnY X −AnXY ),

iii) g(tU, ∇̂XtY − ∇̂Y tX) = g(TY nX − TXnY, tU),

where X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ) , i ̸= j, i, j = 1, 2.
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Proof Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ) , i ̸= j, i, j = 1, 2. The pointwise slant distribution Dθi is integrable
if and only if [X,Y ] ∈ Dθi , i.e. [X,Y ] ⊥ Dθj . The equation (3.8) yields

g([X,Y ], U) = − csc2 θj(g(TtY nU,X)− g(TtXnU, Y ) + g(AnY nU,X)

−g(AnXnU, Y )),

which proves i) ⇔ ii). On the other side, (3.9) gives

g([X,Y ], U) = sec2 θj(g(∇̂XtY, tU) + g(X,TtUnY )− g(∇̂Y tX, tU)

−g(Y, TtUnX)),

which helps to prove i) ⇔ iii), and completes the proof. 2

Remark 3.11 Since for any X,Y ∈ Γ(kerπ∗),

[X,Y ] = ∇XY −∇Y X

= TXY + ∇̂XY − TY X − ∇̂Y X

= ∇̂XY − ∇̂Y X ⇒ [X,Y ] ∈ kerπ∗,

it is known that kerπ∗ is always integrable.
On the other side, for any ξ, β ∈ Γ(kerπ⊥

∗ ), the relation (2.4)

Aξβ = −Aβξ =
1

2
V[ξ, β]

gives that kerπ⊥
∗ is integrable if and only if it defines totally geodesic foliations on M.

Theorem 3.12 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, the horizontal distribution kerπ⊥

∗ is integrable and totally geodesic if and only if

T(AαTξ +H∇αNξ) + t(V∇αTξ +AαNξ) = 0,

where α, ξ ∈ Γ(kerπ⊥
∗ ).

Proof Let α, ξ ∈ Γ(kerπ⊥
∗ ). The parallelism of the almost product structure φ, (2.6), (2.8), (3.2), and (3.3)

give

∇αξ = φ∇αφξ

= T(AαTξ +H∇αNξ) +N(AαTξ +H∇αNξ)

+t(V∇αTξ +AαNξ) + n(V∇αTξ +AαNξ),

which completes the proof. 2
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3.2. Totally geodesics
The concept of totally geodesic fibers is essential in understanding the geometric and topological properties
of the submersions, providing insights into the relationship between the base space and the total space and
revealing the presence of symmetries and isometries. This section is devoted for the geodesics of a pointwise
bislant Riemannian submersion.

The first result is for the geodesics of the vertical distribution kerπ∗.

Theorem 3.13 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, the following are equivalent to each other

i) the vertical distribution kerπ∗ defines totally geodesic fibers,

ii) for any X,Y ∈ Γ(kerπ∗),

N(TXtY +AnY X) + n(∇̂XtY + TXnY ) = 0,

iii) for any X,Y ∈ Γ(kerπ∗), ξ ∈ Γ(kerπ⊥
∗ ),

ḡ((∇π∗)(X,Tξ), π∗(nY )) = ḡ((∇π∗)(X, tY ), π∗(Nξ)) + g(∇̂XtY,Tξ)

+ g(H∇XnY,Nξ).

Proof To show i) ⇔ ii), for any X,Y ∈ Γ(kerπ∗), we need to prove TXY = 0, i.e. ∇̂XY ∈ kerπ∗. By (2.5),
(2.6), (2.12), (3.2), and (3.3), we obtain

∇XY = φ∇XφY

= T(TXtY +AnY X) +N(TXtY +AnY X)

+t(∇̂XtY + TXnY ) + n(∇̂XtY + TXnY ).

Since V∇XY = ∇̂XY ∈ kerπ∗, i.e. H∇XY = 0, considering the horizontal part of the last equation, we get i)
⇔ ii).
Now, another approach to show the vertical distribution kerπ∗ defines totally geodesic fibers is for any
X,Y ∈ Γ(kerπ∗), and ξ ∈ Γ(kerπ⊥

∗ ) , ∇̂XY ⊥ ξ, i.e. g(∇̂XY, ξ) = 0. Using (2.5), (2.6), (2.9), (3.2), and
(3.3), we obtain

g(∇̂XY, ξ) = g(∇XφY, φξ)

= g(∇̂XtY,Tξ) + g(H∇XtY,Nξ)− g(∇XTξ, nY )

+g(H∇XnY,Nξ)

= g(∇̂XtY,Tξ)− ḡ((∇π∗)(X, tY ), π∗(Nξ))

+ḡ((∇π∗)(X,Tξ), π∗(nY )) + g(H∇XnY,Nξ),

which shows i) ⇔ iii), completes the proof. 2

By Remark 3.11 and Theorem 3.13, we give the following result.
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Corollary 3.14 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, M is a locally product

Mkerπ∗ ×Mkerπ⊥
∗

if and only if Theorem 3.12 and one of the conditions in Theorem 3.13 are satisfied, where Mkerπ∗ and Mkerπ⊥
∗

are integral manifolds of the distributions kerπ∗ , kerπ∗
⊥ , respectively.

The following result is another point of view on Theorem 3.12 and Theorem 3.13.

Theorem 3.15 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, π is a totally geodesic map if and only if Theorem 3.12 and at least one of the conditions
in Theorem 3.13 are satisfied, where Mkerπ∗ and Mkerπ⊥

∗
are integral manifolds of the distributions kerπ∗ ,

kerπ∗
⊥ , respectively.

Our subsequent interest is the geodesics of the components of the fibers, in other words, the geodesics of
the pointwise slant distributions Dθi , i = 1, 2.

Theorem 3.16 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, the followings are equivalent to each other

i) the pointwise slant distribution Dθi defines totally geodesic fibers on the vertical distribution kerπ∗ ,
(i = 1, 2) ,

ii) g(X,TY ntU + TtY nU +AnY nU) = 0,

iii) g(∇̂XtY, tU) + g(X, TtUnY + TY ntU) = 0,

iv) g(∇̂XtY, tU) + ḡ((∇π∗)(X, tU), π∗(nY )) = ḡ((∇π∗)(X,φY ), π∗(nU)),

where X,Y ∈ Γ(Dθi), U ∈ Γ(Dθj ), i ̸= j, i, j = 1, 2.

Proof The relation i) ⇔ ii) and i) ⇔ iii) follow from (3.8) and (3.9), respectively.
For the relation i) ⇔ iv), let X,Y ∈ Γ(Dθi), U ∈ Γ(Dθj ), i ̸= j, i, j = 1, 2. By using (2.5), (2.6), (2.9), (2.11),
and (2.12), we obtain

g(∇̂XY, U) = g(∇XtY, tU) + g(∇XtY, nU)

+g(∇XnY, tU) + g(∇XnY, nU)

= g(∇̂XtY, tU) + ḡ((∇π∗)(X, tU), π∗(nY ))

−ḡ((∇π∗)(X,φY ), π∗(nU)),

which gives i) ⇔ iv), and completes the proof. 2

As a result of Theorem 3.16, we give the following corollary.

884



LIGHT et al./Turk J Math

Corollary 3.17 Let π be a pointwise bislant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian
manifold (N, ḡ) . Then, the fibers are a locally product

MDθ1 ×MDθ2

if and only if one of the conditions in Theorem 3.16 is satisfied for each pointwise distribution Dθ1 and Dθ2 ,
where MDθ1 and MDθ2 are integral manifolds of the distributions Dθ1 , Dθ2 , respectively.

3.3. φ−pluriharmonicity of π

The intriguing concept of pluriharmonicity plays a crucial role in understanding the behavior of functions over
higher-dimensional domains and has significant applications in various branches of mathematics and physics.
In this section, we investigate the φ−pluriharmonicity of a pointwise bislant submersion π .

First, we give the following definition.

Definition 3.18 [3] Let π be a pointwise bislant Riemannian submersion from an l.p.R. manifold (M,φ, g)

onto a Riemannian manifold (N, ḡ) .
π is called

• Dθi − φ−pluriharmonic if for any X,Y ∈ Γ(Dθi), i = 1, 2,

• (Dθi −Dθj )− φ−pluriharmonic if for any X ∈ Γ(Dθi), Y ∈ Γ(Dθj ), i, j = 1, 2, i ̸= j,

• (kerπ∗ − kerπ⊥
∗ )− φ−pluriharmonic if for any X ∈ Γ(kerπ∗) , Y ∈ Γ(kerπ⊥

∗ ),

(∇π∗)(X,Y ) + (∇π∗)(φX,φY ) = 0. (3.11)

The following theorem gives a result in the case of π is Dθi − φ−pluriharmonic.

Theorem 3.19 Let π be a Dθi − φ−pluriharmonic pointwise bislant Riemannian submersion from an l.p.R.
manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the submersion π is a nDθi−geodesic map if
and only if

N(cos2(θi)TtXY + TtXntY ) + TXY +AnY tX +AnXtY

+n(− sin(2θi)tX(θi)Y +AntY tX + cos2(θi)∇̂tXY ) = 0,

where X,Y ∈ Γ(Dθi), i ̸= j, i, j = 1, 2.

Proof Assumption gives, for any X,Y ∈ Γ(Dθi), i ̸= j, i, j = 1, 2,

(∇π∗)(X,Y ) + (∇π∗)(φX,φY ) = 0.
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By using (2.5), (2.6), (2.9), (2.10), (2.12), (3.2), (3.3), and Lemma 3.8, we have

0 = −π∗(TXY +AnY tX +AnXtY ) + ((∇π∗)(nX, nY ))

−π∗(φ(∇tXt2Y +∇tXntY ))

⇒ ((∇π∗)(nX, nY )) = π∗

(
TXY +AnY tX +AnXtY − sin(2θi)tX(θi)nY

+cos2(θi)NTtXY + cos2(θi)n∇̂tXY +NTtXntY + nAntY tX

)
,

which completes the proof. 2

We recall the definition of mixed geodesic; given two distributions D1 and D2 defined on the fibers of a
Riemannian submersion π, the fibers are called (D1 −D2)− mixed geodesic if TD1D2 = 0 .
(Dθ1 −Dθ2)− φ−pluriharmonicity of the pointwise bislant submersion gives the following result.

Theorem 3.20 Let π be a (Dθ1 − Dθ2) − φ−pluriharmonic pointwise bislant Riemannian submersion from
an l.p.R. manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the followings are equivalent to each
other

i) the fibers are (Dθ1 −Dθ2)−mixed geodesic,

ii) ∇N
π∗(φX)π∗(φU) = π∗(TtXtU +AnU tX +AnXtU +H∇nXnU),

iii)

∇N
π∗(φX)π∗(φU) = π∗

(
n
(
− sin(2θ2)tX(θ2)U + cos2(θ2)∇̂tXU + TtXntU

)
+N

(
cos2(θ2)TtXU +AntU tX

)
+ TtXtU +AnU tX

)
,

where X ∈ Γ(Dθ1) and U ∈ Γ(Dθ2).

Proof The (Dθ1 −Dθ2)− φ−pluriharmonicity yields, for any X ∈ Γ(Dθ1) , U ∈ Γ(Dθ2),

(∇π∗)(X,U) + (∇π∗)(φX,φU) = 0,

which gives with (2.9), (3.2), and (3.3)

−π∗(∇XU) − π∗(∇tXtU)− π∗(∇tXnU)− π∗(∇nXtU)

+∇N
π∗(φX)π∗(φU)− π∗(∇nXnU) = 0. (3.12)
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By using (2.5) ∼ (2.8), we prove the relation i) ⇔ ii).
To show i) ⇔ iii), we consider the second term in (3.12), which can be expressed with the help of (2.12), (3.2),
(3.3), and Lemma 3.8 as

−π∗(∇tXtU) = −π∗(φ(∇tXt2U) +∇tXntU)

= −π∗(φ(∇tX(cos2(θ2)U) +∇tXntU)) (3.13)

= −π∗(φ(− sin(2θ2)tX(θ2)U + cos2(θ2)TtXU + cos2(θ2)∇̂tXU)

+φ(TtXntU +AntU tX)).

Thus, if we consider (3.12) and (3.13) together, we prove the relation i) ⇔ iii), which completes the proof. 2

The last result is in the case of (kerπ∗−kerπ⊥
∗ )−φ−pluriharmonicity of a pointwise bislant submersion.

Theorem 3.21 Let π be a (kerπ∗−kerπ⊥
∗ )−φ−pluriharmonic pointwise bislant Riemannian submersion from

an l.p.R. manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibers are (kerπ∗−kerπ⊥
∗ )−mixed

geodesic if and only if

∇N
π∗(φX)π∗(φξ) = π∗(TtXTξ +ANξtX +AnXTξ +H∇nXNξ),

where X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥
∗ ).

Proof Since the submersion π is (kerπ∗−kerπ⊥
∗ )−φ−pluriharmonic, for any X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥

∗ ),

we have
(∇π∗)(X, ξ) + (∇π∗)(φX,φξ) = 0.

By using (2.5) ∼ (2.8), (2.9), (3.2), and (3.3), we obtain

π∗(∇Xξ) = π∗(∇tXTξ) + π∗(∇tXNξ) + π∗(∇nXTξ) + π∗(∇nXNξ)

−∇N
π∗(φX)π∗(φξ),

which completes the theorem. 2

Remark 3.22 The notion of a pluriharmonic map is a generalization of the idea of a harmonic map. Here it
helps us to understand when the fibers are either geodesic or mixed geodesic. This is a new approach that makes
our section important.

3.4. φ− invariant and totally geodesics
In this section, we find some conditions for a pointwise bislant submersion to be the φ− invariant of the
distributions on the total space.

We give the following concept, which helps to provide new conditions for some other concepts studied
before.

Definition 3.23 [3] Let π be a pointwise bislant Riemannian submersion from an l.p.R. manifold (M,φ, g)

onto a Riemannian manifold (N, ḡ) .
Then, π is called
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• Dθi − φ− invariant if for any X,Y ∈ Γ(Dθi),

• (Dθi −Dθj )− φ− invariant if for any X ∈ Γ(Dθi), Y ∈ Γ(Dθj ), i, j = 1, 2, i ̸= j,

• (kerπ∗ − kerπ⊥
∗ )− φ− invariant if for any X ∈ Γ(kerπ∗) , Y ∈ Γ(kerπ⊥

∗ ),

(∇π∗)(X,Y ) = (∇π∗)(φX,φY ). (3.14)

Now, we give a result of π being Dθi − φ− invariant, i, j = 1, 2, i ̸= j.

Theorem 3.24 Let π be a Dθi−φ− invariant pointwise bislant Riemannian submersion from an l.p.R. manifold
(M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibers are Dθi−geodesic if and only if

∇N
π∗(φX)π∗(φY ) = π∗(TtXtY +AnY tX +AnXtY +H∇nXnY ),

where X,Y ∈ Γ(Dθi), i = 1, 2, i ̸= j.

Proof The φ− invariance of the submersion π yields, for any X,Y ∈ Γ(Dθi), i = 1, 2, i ̸= j,

(∇π∗)(X,Y ) = (∇π∗)(φX,φY ),

with the help of (2.5) ∼ (2.8), (2.9), (3.2), and (3.3), we see

−π∗(∇XY ) = −π∗(∇tXtY )− π∗(∇tXnY )− π∗(∇nXtY )− π∗(∇nXnY )

= −π∗(TtXtY +AnY tX +AnXtY +H∇nXnY ) +∇N
π∗(φX)π∗(φY )

and completes the proof. 2

Next result gives a relation between (Dθ1 −Dθ2)− φ− invariance and (Dθ1 −Dθ2)−mixed geodesics of
a pointwise bislant submersion.

Theorem 3.25 Let π be a (Dθ1 −Dθ2)−φ− invariant pointwise bislant Riemannian submersion from an l.p.R.
manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibers are (Dθ1 −Dθ2)−mixed geodesics if
and only if

(∇π∗)(nX, nU) = π∗(TtXtU +AnU tX +AnXtU),

where X ∈ Γ(Dθ1) and U ∈ Γ(Dθ2).

Proof The (Dθ1 −Dθ2)− φ− invariance of the submersion π gives

(∇π∗)(X,U) = (∇π∗)(φX,φU),

from which we obtain with (2.5) ∼ (2.7), (2.9), (3.2), and (3.3)

−π∗(∇XU) = −π∗(TtXtU +AnU tX +AnXtU) + (∇π∗)(X,U).

This completes the proof. 2

The last result for φ− invariance is a relation between (kerπ∗−kerπ⊥
∗ )−φ− invariance and (kerπ∗−kerπ⊥

∗ )−mixed
geodesics.
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Theorem 3.26 Let π be a (kerπ∗ − kerπ⊥
∗ )−φ− invariant pointwise bislant Riemannian submersion from an

l.p.R. manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibres are (kerπ∗ − kerπ⊥
∗ )−mixed

geodesics if and only if
(∇π∗)(nX,Nξ) = π∗(TtXTξ +ANξtX +AnXTξ),

where X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥
∗ ).

Proof Since π is a (kerπ∗ − kerπ⊥
∗ ) − φ− invariant pointwise bislant Riemannian submersion, for any

X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥
∗ ), we have

(∇π∗)(X, ξ) = (∇π∗)(φX,φξ).

By using (2.5) ∼ (2.7), (3.2), and (3.3), we have

−π∗(∇Xξ) = (∇π∗)(nX,Nξ)− π∗(TtXTξ +ANξtX +AnXTξ),

which completes the proof. 2

Remark 3.27 In this last section, we give another new approach for the mixed geodesics of the fibers by
considering the notion of φ− invariance.

4. Conclusion
In this study, we have investigated the properties of a pointwise bislant Riemannian submersion originating from
an almost product Riemannian manifold. Our analysis focused on the integrability and geodesic conditions of
the fibers, shedding light on the intricate interplay between these structures. Additionally, we introduced a
novel concept of φ−pluriharmonicity and explored its implications in the context of the submersion. This
new notion brings forth intriguing possibilities for understanding the behavior of the submersion in a broader
context. Furthermore, we examined the φ− invariance of the submersion, which allows us to identify particular
symmetries and transformations that leave the submersion unchanged. Our findings contribute to understanding
pointwise bislant Riemannian submersions and extend the knowledge of Riemannian geometry. This work opens
up new avenues for research and may have implications in various applications across mathematics and physics.
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