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Abstract: In this study, we investigate the m -th order elliptic operators on n -dimensional bounded domain Ω ⊂ Rn

with discontinuous coefficients in the rearrangement-invariant Sobolev space Wm
X (Ω) . In general, the considered

rearrangement-invariant spaces are not separable, so the use of classical methods in these spaces requires substantial
modification of classical methods and a lot of preparation, concerning correctness of substitution operator, problems
related to the extension operator in such spaces, etc. For this purpose, the corresponding separable subspaces of these
spaces, in which the set of compact supported infinitely differentiable functions is dense, are introduced based on the
shift operator. We establish interior Schauder-type estimates in the above subspaces. Note that Lebesgue spaces Lp (Ω) ,
grand-Lebesgue spaces, Marcinkiewicz spaces, weak-type Lw

p spaces, etc. are also covered by such spaces.

Key words: Banach function space, rearrangement-invariant spaces, Sobolev spaces, elliptic operator, Schauder type
estimate

1. Introduction
Over the last years, so-called nonstandard spaces of functions have been actively used in many problems of pure
mathematics, mechanics, and mathematical physics. The emergence of new functional spaces, such as Morrey
space and grand-Lebesgue space, naturally requires the development of appropriate theory. That is why various
problems in such spaces began to be intensively studied (see [1, 4–23, 25–33] ). The methods of harmonic
analysis in such spaces are well developed. At the same time, the various problems of differential equations
in nonstandard Sobolev spaces, generated by the norms of these spaces, have also begun to be studied. It
should be noted that, according to Luxemburg’s classification (see [2]), all these spaces are Banach function
spaces (b.f.s). The first research of this kind about Morrey type spaces dates back to 2000 to continue up to
the present. (Note that in case of |Ω| = +∞ , the Morrey space Lp,λ(Ω) is not Banach function space. In this
work, we consider only the case |Ω| < +∞ .) Similar studies have been also carried out for grand-Lebesgue
spaces(see [7, 9, 10, 16, 28, 29, 33] ). Most of these spaces are rearrangement-invariant (see [2, 27]). These
circumstances require the study of solvability problems of elliptic equations in rearrangement-invariant Sobolev
spaces, generated by rearrangement-invariant Banach function spaces.
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This work is a continuation and generalization of the studies [8–10, 31], which deal with the elliptic
operators in grand Sobolev spaces and rearrangement-invariant Sobolev spaces. In [31], the boundedness of
substitution operator and extension operators from Wm

Xs
(Ω) to Wm

Xs
(Ω1) (for some Ω1 ⊃ Ω) has been studied.

Some basic aspects of these works, which we will use in this work, are described in Section 2.
In this paper, we study the m -th order elliptic operators on n -dimensional bounded domain Ω ⊂ Rn

with discontinuous coefficients in the rearrangement-invariant Sobolev space Wm
X (Ω) , generated by norm of

some rearrangement-invariant Banach function space X (Ω) . In general, the considered rearrangement-invariant
spaces are not separable; therefore, using classical methods in these spaces requires the essential modification
of classical methods and a lot of preparation, concerning correctness of substitution operator, problems related
to the extension operator in such spaces, etc. To this aim, based on the shift operator, corresponding separable
subspaces of these spaces are introduced, in which the set of compact supported infinitely differentiable functions
is dense. In the classical case, Schauder type estimates play a very important role in the establishment of the
Fredholmness of elliptic operators. For this purpose, we establish interior Schauder type estimates in the above
subspaces. Note that Lebesgue spaces Lp (Ω) , grand Lebesgue spaces, Marcinkiewicz spaces, weak-type Lw

p

spaces, etc. are also covered by such spaces.

2. Essential information and notations
We will use the following standard notations: Z+ - set of nonnegative integers, R+ = [0, +∞) , |x| =√
x21 + ....+ x2n - the norm of x = (x1, ..., xn) ∈ Rn , Br (x0) = {x ∈ Rn : |x− x0| < r} - the open ball in

Rn , and ∂Ω will be the boundary of the domain Ω , Ω = Ω
⋃
∂Ω will stand for the closure of Ω . Ω1 ⊂⊂ Ω2

means that Ω1 ⊂ Ω2 . |Ω| is Lebesgue measure of the set Ω . The diameter of the set Ω will be denoted by
d (Ω) = dΩ = diamΩ, ρ (x, M) = dist (x,M) - the distance between x and the set M . M1∆M2 will be the
symmetric difference of the sets M1 and M2 . Accept

Ωr (x0) = Ω
⋂
Br (x0) , Br = Br (0) ,Ω− δ = {x : x+ δ ∈ Ω} (∀δ ∈ Rn) ,

Ωε = {x : dist (x, Ω) < ε} , (∀ε > 0) .

ℑ (Ω) will denote the set of measurable functions on Ω ⊂ Rn , [X,Y ] - Banach space of bounded operators
acting from X to Y , ∥T∥X→Y . ∥T∥[X] -the norm of the operator T ∈ [X] . Unit balls in Banach function
space X and associate space X ′ will be denoted by BX and BX′ , respectively. α = (α1, α2, ..., αn) will be
a multiindex with the coordinates αk ∈ Z+, ∀k = 1, n; ∂i =

∂
∂xi

will denote the differentiation operator and
∂α = ∂α1

1 ∂α2
2 ...∂αn

n . For every ξ = (ξ1, ξ2, ..., ξn) , we assume ξα = (ξα1
1 , ξα2

2 , ..., ξαn
n ) . By the m -th order

diffeomorphism of two domains in Rn with sufficiently smooth boundaries, we will mean the homeomorphism
of these domains, i.e. an invertible function that maps one domain into another, such that both the function
and its inverse are m -time differentiable. By Cm(Ω) , we denote Banach space of m − th order continuous
differentiable on Ω functions with norm

∥f∥Cm(Ω) =
∑

|α|≤m

∥∂αf∥Cm(Ω), (2.1)

where ∥g∥C(Ω) = supx∈Ω |g(x)| .
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2.1. Banach function spaces

For more details on Banach function spaces, related notions, and main properties of these spaces, we refer the
readers to [2, 20, 27]. Here we give some necessary information.

Let X be a Banach function space, X ′ be an associated space, ρ (f) be a function norm of f ∈ X .
Denote the corresponding associate norm by ρ′ (f) . Also, denote by Xb the closure of the set of all simple
functions in X , and by Xa the set of all functions from X with an absolutely continuous norm. The theorem
below is true.

Theorem 2.1 a) The inclusions Xa ⊂ Xb ⊂ X , hold.
b) Subspaces Xa and Xb coincide if and only if for every set E of finite measure, χE has an absolutely

continuous norm.

Let X = X (ρ) be a rearrangement-invariant Banach function space over an infinite, nonatomic, totally
σ -finite measure space (M, µ) .

Definition 2.2 For each t > 0 , let Et denote the dilation operator defined on ℑ0 (R
+, m) by

(Etf) (s) = f (ts) , (0 < t <∞) .

Let
hX (t) =

∥∥E1/t

∥∥
[X̃] , (0 < t <∞) ,

where X̃ is Luxemburg presentation of X (about this concept see f.e. [2]).

Definition 2.3 Let X = X (ρ) be a rearrangement-invariant Banach function space over an infinite, nonatomic,
totally σ -finite measure space (M, µ) . The Boyd indices of X are the numbers αX and βX defined by

αX = sup
0<t<1

log hX(t)

log t
, βX = sup

1<t<∞

log hX(t)

log t
.

2.2. Some assumptions

Hereinafter, we will assume the following: let K =
{
(x1, ..., xn) : |xi| < d

2

}
⊂ Rn be a cube, X (K) be a

rearrangement-invariant Banach function space defined on K with Lebesgue measure and the function ∥.∥X(K) .

If Ω ⊂ K : Ω ⊂ K is a connected domain, by X (Ω) we will mean the space of restrictions of all functions from
X (K) to Ω with corresponding norm, i.e.

X (Ω) =
{
f ∈ ℑ (K) : ∥f∥X(Ω) = ∥fχΩ∥X(K) < +∞

}
,

with the norm ∥·∥X(Ω) .

Suppose Ω+Ω ⊂ K . In case of relation Ω+ δ = {t+ δ : t ∈ Ω} , we consider such δ ∈ Rn : Ω+ δ ⊂ K .

When we consider the function ∀f ∈ X (Ω) as a function from X (K) , we assume that f
∣∣∣K\Ω ≡ 0.
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By Tδ , for δ ∈ Rn : |δ| < dist (∂Ω, ∂K) , we denote the additive shift operator, defined in the following
way: (Tδf) (x) = f (x+ δ) , for everyf ∈ X(Ω) . By Xs(Ω), we denote the subspace of all functions from X (Ω) ,
which have the following property:

α) ∥Tδ (f)− f∥X → 0, δ → 0, (2.2)

where δ ∈ Rn is a shift vector and Tδf (x) = f (x+ δ) is a corresponding shift operator.
Let us accept the following condition:

β) ∀En → ∅ ⇒ ∥χEn
∥X → 0. (2.3)

Lemmas 2.4 and 2.5 below have been proved in [8, 31].

Lemma 2.4 If β) holds, then Xs = Xa = Xb = C∞
0 (Ω) (the closure is taken in topology of X(Ω)).

Lemma 2.5 Let X(Ω) be a rearrangement-invariant Banach function space defined on the domain Ω ⊂ Rn

and ∥χE∥E → 0, |E| → 0 . Then ∀φ ∈ L∞ (Ω) , ∀f ∈ Xs(Ω) implies φf ∈ Xs(Ω) .

2.3. Convolution operator

For the function f defined on Ω ⊂ K , we define a new function fd on Rn as follows: Firstly, we continue f

by zero on the whole of K , and then periodically on the whole of Rn , and denote

∥fd (·+ kd)∥X(K) = ∥fd (·)∥X(K) = ∥f∥ , ∀k ∈ Zn.

Since X (K) is a rearrangement invariant space, it follows that fd (·) and fd (·+ y) , (∀y ∈ Rn) are equimea-
surable functions. Then we have

∥fd (·+ y)∥X(Ω) = ∥fd∥X(Ω) = ∥f∥X(Ω) , ∀y ∈ Rn.

By the convolution of the functions f, g defined on Ω ⊂ K , f ∈ X (Ω) , g ∈ X ′ (Ω) , we mean

(f ∗ g) (x) =
∫
fd (x− y) gd (y) dy, (2.4)

denoted as f ∗ g .

2.4. The singular operator

Let ω : [0,∞) → R+ be an infinitely differentiable function, which is equal to zero for t ≥ 1 and takes positive
values for arbitrary t < 1 . Then the cap function is defined as follows

ωr (x) = cr−nω

(
|x|2

r2

)
, (2.5)

where c is chosen in such a way that
∫
Rn ωr (x) dx = 1 .
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Let f be any integrable function defined on Ω : Ω ⊂ K . We introduce

fr (x) = (ωr ∗ f) (x) =
∫
Ω

ωr (x− y) f (y) dy. (2.6)

Note that f is equal to zero on K\Ω , and we always consider such r > 0 that supp fr ⊂ K .
The following statements have been proved in [8].

Lemma 2.6 For ∀f ∈ X, g ∈ X ′ , the relations

Tδ (f ∗ g) (x) = (Tδf ∗ g) (x) = (f ∗ Tδg) (x) ,

hold.

The following lemma shows that the convolution operator can be defined for arbitrary f, g ∈ X (see [8]).

Lemma 2.7 Let X(Ω) be a rearrangement-invariant Banach function space defined on the domain Ω . Then
for arbitrary f, g ∈ X(Ω) there is a convolution f ∗ g and the following inequality holds:

∥f ∗ g∥X(Ω) ≤ ∥f∥X(Ω) ∥g∥L1(Ω) .

This lemma directly implies the following

Theorem 2.8 Let X(Ω) be a rearrangement-invariant Banach function space defined on the domain Ω ⊂ Rn .
Then for arbitrary f, g ∈ X(Ω) there is a convolution f ∗ g ∈ X(Ω) and

∥f ∗ g∥X(Ω) ≤ C ∥f∥X(Ω) ∥g∥X(Ω) ,

where C is independent of f and g , i.e. the convolution operator acts continuously from X to X .

Let us consider the following singular kernel

k (x) =
ω (x)

|x|n
,

where ω (x) is infinitely differentiable positive homogeneous function of degree zero, which satisfies∫
|x|=1

ω (x) dσ = 0,

dσ being a surface element on the unit sphere. Denote by S the corresponding singular operator

(Sf) (x) = (k ∗ f) (x) =
∫
Ω

k (x− y) f (y) dy. (2.7)

The following theorem is true.

Theorem 2.9 (see, [24]) For ∀p ∈ (1, ∞) , singular operator acts boundedly in Lp (Ω) , i.e. S ∈ [Lp(Ω)] .
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The following Boyd’s theorem plays a very important role in obtaining many results.

Theorem 2.10 (see, [2]) Let 1 < p < q < ∞ , T ∈ [Lp] , T ∈ [Lq] and X be a rearrangement-invariant
Banach function space with Boyd indices αX , βX : 1

q < αX ≤ βX < 1
p . Then T ∈ [X] .

The above two theorems have the following:

Corollary 2.11 If X is a rearrangement-invariant Banach function space with Boyd indices αX , βX : 0 <

αX ≤ βX < 1 , then the singular operator S is bounded in X : S ∈ [X] .

Moreover, the following statement holds.

Problem 2.12 (see, [8]) If X is a rearrangement-invariant Banach function space with Boyd indices αX , βX :

0 < αX ≤ βX < 1 , then the subspace Xs is invariant subspace of S .

2.5. Substitution operator
Let D; Ω be domains in Rn and φ : D → Ω be an invertible mapping preserving measurable sets. Then the
substitution operator is defined as follows φ : f → f ◦ φ .

The following theorem has been proved in [31].

Theorem 2.13 Let D; Ω ⊂ K . Then: a) Let φ : D → Ω be a one-to-one mapping from D onto Ω, itself and
its inverse transforms measurable sets to measurable sets and satisfies

∃δ > 0 : ∀E ∈ (D,µ) ⇒ δµ (E) ≤ µ (φ(E)) ≤ δ−1µ (E) . (2.8)

Then the substitution operator φ is an isomorphism between X (Ω) and X (D) . Furthermore,

δ ≤ ∥φ∥ ≤ δ−1.

b) If X (D) and X (Ω) have the property β) , then the operator φ is an isomorphism between X (D) and
X (Ω) if and only if the relation (2.8) holds.

2.6. Sobolev spaces and extension theorems

We will denote by Wm
X (Ω) and Wm

Xs
(Ω) the following spaces of functions

Wm
X (Ω) =

{
f ∈ X(Ω) : ∂pf ∈ X(Ω), ∀p ∈ Zn

+, |p| ≤ m
}
,

Wm
Xs

(Ω) =
{
f ∈Wm

X(Ω) : ∥Tδf − f∥Wm
X (Ω) → 0, δ → 0

}
,

with the corresponding norm

∥f∥Wm
X (Ω) =

∑
|p|≤m

∥∂pf∥X(Ω) . (2.9)

The shift operator is continuous on Wm
Xs

(Ω) ; therefore, Wm
Xs

(Ω) is a closed subspace of Wm
X(Ω).

Subspace
0

Wm
Xs

(Ω) is defined as
0

Wm
Xs

(Ω) = C∞
0 (Ω) (closure is taken in the space Wm

X (Ω)).
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Remark 2.14 It is clear that every function u ∈
0

Wm
Xs

(Ω) can be extended by zero on the whole of K .

Lemma 2.15 (Minkowski-type inequality) (see, [8, 31]) Let Ω1 ⊂ K, Ω2 ⊂ Rk be domains, X (Ω1) be a
functional Banach space, and f : Ω1 × Ω2 → R be a measurable function. If f (·, y) ∈ X (Ω1) for m−a.e.
y ∈ Ω2 and ∥f (·, y)∥X(Ω1)

∈ L1 (Ω2) , then the following inequality holds:

∥∥∥∥∫
Ω2

f(x, y)dy

∥∥∥∥
X(Ω1)

≤
∫
Ω2

∥f(·, y)∥X(Ω1)
dy. (2.10)

Remark 2.16 Let f ∈ X (Ω) , ∀h > 0 . Let us consider the function defined as follows:

fi,h (x) =

∫ xi+h

xi

f (x1, ..., xi−1, τ, xi+1, ..., xn) dτ =

=

∫ h

0

f (x1, ..., xi−1, xi + τ, xi+1, ..., xn) dτ.

In case of rearrangement-invariant space, the following relation has been proved in [24]:

∥fi,h∥X ≤ h ∥f∥X . (2.11)

When Ω = Br , we will use the notations X (r) , Xs(r), W
m
X (r) , Wm

Xs
(r) , and in case of space Wm

Xs
(Ω) ,

we can introduce the equivalence norm

∥f∥WXs(Ω),dΩ
=
∑

|p|≤m

d
|p|
Ω ∥∂pf∥X(Ω) .

Theorems and corollaries below have been proved in [31].

Theorem 2.17 Let D; Ω : D, Ω ⊂ K and φ : D → Ω be a C(m) -class diffeomorphism. If u ∈ WXm
s (Ω) ,

then v = u ◦ φ ∈WXm
s (D) and the following inequality holds:

c1 ∥u∥WX1
s (Ω) ≤ ∥v∥WX1

s (D) ≤ c2 ∥u∥WX1
s (Ω) , (2.12)

where the constants depend only on the norms of φ and φ−1 .

Theorem 2.18 Let Ω be a C(m) -class bounded domain and Ω ⊂ Ω1, Ω1 ⊂ K . Then there exists a bounded

extension operator θ acting from Wm
Xs

(Ω) to
0

Wm
Xs

(Ω1) such that the relations

u ∈Wm
Xs

(Ω) , v = θu⇒ (∀x ∈ Ω ⇒ v (x) = u (x)) , ∀x ∈ Ω → (θv)(x) = u(x),

hold and
∃c > 0 : ∥v∥Wm

Xs
(Ω1)

≤ c ∥u∥Wm
Xs

(Ω) , ∀u ∈Wm
Xs

(Ω) , (2.13)

where c is independent of u (·) .
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Corollary 2.19 If there exists a bounded extension operator from Wm
Xs

(Ω) to
0

Wm
Xs

(Ω) , then C∞
(
Ω
)
=

WXm
s (Ω) in topology of Wm

Xs
(Ω) .

Corollary 2.20 If there exists a bounded extension operator from Wm
Xs

(Ω) to Wm
Xs

(Ω1) , then there exists a

bounded extension operator from Wm
Xs

(Ω) to
0

Wm
Xs

(Ω1) .

3. Main results

Let Ω : Ω ⊂ K be an arbitrary domain and all assumptions made at the beginning of Section 2.1 hold.
X (K) is a rearrangement-invariant Banach function space (with Lebesgue measure), which has the property
β) . Without loss of generality, we can assume B1 ⊂ K (remember that B1 is a unit ball in Rn ), Ω+Ω ⊂ K .

3.1. Elliptic operator of m-th order

Let L be an elliptic differential operator of m -th order

L =
∑

|p|≤m

ap (x) ∂
p, (3.1)

where p = (p1, p2, ..., pn), pk ∈ Z+, ∀k = 1, n, ap (·) ∈ L∞ (Ω) are real functions. Consider the elliptic operator
L0 :

L0 =
∑

|p|=m

a0p∂
p, (3.2)

with the constant coefficients a0p .
By solution of the equation Lu = f , we will mean a strong solution, i.e. a function u which belongs to

the corresponding space and satisfies a.e. the equality Lu = f . By J(x) we denote the fundamental solution
of the equation L0φ = 0 , with constant coefficients.

We will use the following classical result (see, e.g., [3, p.222]).

Theorem 3.1 For an arbitrary elliptic operator L0 of m-th order of the form (3.2) with constant coefficient,
the function J (x) with following properties can be constructed:

i) If n is odd or if n is even and n > m , then

J (x) =
ω (x)

|x|n−m ,

where ω (x) is a homogeneous function of degree zero (i.e. ω (tx) = ω (x) , ∀t > 0) .

If n is even and n ≤ m , then J (x) = q (x) log |x| + ω(x)

|x|n−m , where q is a homogeneous polynomial of

degree m− n .
ii) The function J (x) satisfies (in a generalized sense) the equation

L0J (x) = δ (x) ,
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where δ is a Dirac function, i.e. for every infinitely differentiable compactly supported function φ (·) , the
following equation is true:

φ (x) =

∫
[L0φ (y)] J (x− y) dy = L0

∫
φ (y) J (x− y) dy.

Let us consider the elliptic operator (3.1) and assign a “tangential operator”

Lx0 =
∑

|p|=m

ap (x0) ∂
p, (3.3)

to it at every point x0 ∈ Ω . Denote by Jx0
(.) the fundamental solution of the equation Lx0

φ = 0 in accordance
with Theorem 3.1. The function Jx0

is called a parametrix for the equation Lφ = 0 with singularity at the
point x0. Let

(Sx0
φ) (x) = ψ (x) =

∫
Jx0

(x− y)φ (y) dy,

and
Tx0

= Sx0
(Lx0

− L) . (3.4)

For every infinitely differentiable compactly supported function φ the relation

Sx0
Lx0

= Lx0
Sx0

= I, i.e. Sx0
Lx0

φ = Lx0
Sx0

φ = φ,

holds (see, e.g., [3, pp. 224-225]). Some properties of these operators are established in the following.

Lemma 3.2 Let X(K) be a rearrangement-invariant Banach function space with Boyd indices αX , βX ∈ (0; 1)

and L be the m-th order elliptic operator on the domain Ω ⊂⊂ K . Then:

i) L, Lx0
∈
[
Wm

X(Ω), X(Ω)
]

. Furthermore, if β) holds, then L, Lx0
∈
[
Wm

Xs(Ω), Xs(Ω)
]

.

ii) Let the property β) holds, r > 0 : B2r (x0) ⊂ Ω and φ ∈
0

Wm
Xs

(Br (x0)) . Then there exists
C = C (r,m,L) > 0 , such that

∥Sx0φ∥Wm
X (r) ≤ C ∥φ∥X(r) . (3.5)

iii) Sx0
∈ [X (Ω)].

iv) If β) holds, then Sx0 ∈ [Xs (Ω)].

v) If ε ∈ Cm
(
Ω
)
, then the multiplication operator defined as Mε (u) = εu, u ∈Wm

X (Ω) , is a continuous
operator on Wm

Xs
(Ω) .

Proof i) If u ∈Wm
X (Ω) , then taking into account that ap (x) ∈ L∞ (Ω) , we have∥∥∥∥ap (·) ∂pu∂xp

∥∥∥∥
X(Ω)

≤ ∥ap (·)∥L∞

∥∥∥∥∂pu∂xp

∥∥∥∥
X(Ω)

, ∀ |p| = 0,m.

If β) holds, then by Lemma 2.5 the relation

∂pu ∈ Xs(Ω) ⇒ ap (x)
∂pu

∂xp
∈ Xs(Ω),
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is true. Consequently, in both cases, we obtain

∥Lu∥X(Ω) =

∥∥∥∥∥∥
∑

|p|≤m

ap (x)
∂pu

∂xp

∥∥∥∥∥∥
X(Ω)

≤ C ∥u∥Wm
X (Ω) ,

where the constant C is independent of u .
ii) Let φ ∈ C∞

0 (Br (x0)) . Since

(Sx0
φ) (x) =

∫
Br

Jx0
(x− y)φ (y) dy, (x ∈ Br (x0)) ,

for |p| = m the formula

(∂pSx0
)φ (x) =

∫
Br

∂pxJx0
(x− y)φ (y) dy + C ′φ (x) , (3.6)

is true, where C ′ ̸= 0 is a constant (see, [3, p. 235]). The kernel ∂pJx0
(x) is singular for |p| = m . Applying

the continuity of singular operator in X(K) to (3.6), we have

∥∂pSx0φ∥X(r) ≤ C ∥φ∥X(r) . (3.7)

Consider the case |p| < m. In this case, the kernel has a weak singularity and the relation

∂pSx0
φ =

∫
Br

∂pxJx0
(x− y)φ (y) dy,

holds. For ∂pJx0
, the estimate

|∂pJx0
(x)| ≤ C |x|m−n−|p|

,

is true. Therefore,

|∂pSx0φ| ≤ C

∫
Br

|x− y|m−n−|p| |φ (y)| dy = CI (x) , (3.8)

where I (x) =
∫
Br

|x− y|m−n−|p| |φ (y)| dy . Let

f (x) =

{
|x|m−n−|p|

, |x| < r,
0, |x| ≥ r

; g (x) =

{
|φ (x)| , |x| < r,
0, |x| ≥ r.

It is clear that supp (f ∗ g) ⊂ B2r . Using Lemma 2.7, we have

∥I (·)∥X(r) ≤ ∥f ∗ g∥X(Ω) ≤ ∥f∥L1(Rn) ∥g∥X(r) .

Since

∥f∥L1(Rn) = ∥f∥L1(r)
=

∫
Br

dx

|x|n−m+|p| =
|B1| 2m−|p|

m− |p|
rm−|p|,

the estimate
||∂pSx0

φ||X(r) ≤ C ∥I (·)∥X(r) ≤ Crm−|p| ∥φ∥X(r) ,

802



MAMEDOV and ÇETİN/Turk J Math

holds, where C > 0 is a constant independent of r . Hence, for ∀p : |p| < m the relation

||∂pSx0φ||X(r) ≤ Crm−|p| ∥φ∥X(r) , (3.9)

holds. It is clear that Crm−|p| is independent of φ . From C∞
0 (Br (x0)) =

0

Wm
Xs

(Ω) and the continuity of the

operator ∂pJx0 (x)φ (·) , it immediately follows that (3.5) is true for every φ ∈
0

Wm
Xs

(Ω) .

iii) Let u ∈ X (Ω) be an arbitrary function. Without loss of a generality, we consider the case n > m .
Using Lemma 2.7, we obtain

∥Sx0
u (x)∥X(Ω) =

∣∣∣∣∣∣∣∣∫ Jx0
(x− y)u (y) dy

∣∣∣∣∣∣∣∣
X(Ω)

≤

∣∣∣∣∣
∣∣∣∣∣
∫
Bε(x0)

Jx0
(x− y)u (y) dy

∣∣∣∣∣
∣∣∣∣∣
X(Ω)

+

+

∣∣∣∣∣
∣∣∣∣∣
∫
Ω\Bε(x0)

Jx0
(x− y)u (y) dy

∣∣∣∣∣
∣∣∣∣∣
X(Ω)

≤ Cεm ∥u∥X(ε) + C1 ∥u∥X(Ω\Bε(x))
≤ C ′ ∥u∥X(Ω) .

iv) We will use the following evident relation

Tδ ((Sx0
u) (x)) = (Sx0

u) (x+ δ) =

∫
Jx0

(x+ δ − y)u (y) dy =

=

∫
Jx0

(x− (y − δ))u ((y − δ) + δ) dy =

∫
Jx0

(x− z)u (z + δ) dz = Sx0
(Tδu (x)) , (3.10)

(by the convolution f ∗ g we mean (2.4)). Let u ∈ Xs (Ω) . Then, by statement iii) and (3.10), we have

∥Tδ (Sx0u) (.)− (Sx0u) (·)∥X(Ω) ≤ ∥Sx0Tδu− Sx0u∥X(Ω) =

= ∥Sx0
(Tδu− u)∥ ≤ C ′ ∥Tδu− u∥X(Ω) → 0, δ → 0.

v) Let φ ∈Wm
Xs

(Ω) and ψ =Mεφ . For k ≤ m , it is clear that

∂k

∂xk
ψ (x) =

∑
|p|≤|k|

Cp∂
p̃ε∂pu,

where |p̃| = |k| − |p| and Cp are some constants. Consequently,

∥∥∥∥ ∂k∂xkψ
∥∥∥∥
X(Ω)

≤ max
|p|<|k|

|Cp|
∑

|p|≤|k|

∥∥∥∂∼
p
ε
∥∥∥
Cm(Ω)

∑
|p|≤|k|

∥∂pu∥X(Ω) =

= const ∥ε∥Cm(Ω) ∥u∥Wm−1
X (Ω) .

The lemma is proved. 2

Lemma below plays a special role in establishing the existence of the solution to the equation Lu = f.
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Lemma 3.3 (see [3, p. 216]) If φ ∈Wm
p (Ω) and suppφ ⊂⊂ Ω has a compact support, then

φ = Tx0
φ+ Sx0

Lφ,

and if φ = Tx0
φ+ Sx0

f, then Lφ = f.

Applicability of this lemma is based on the boundedness of Tx0 . In the sequel, this condition is fulfilled
every time. It is a consequence of Main Lemma 3.5 given below.

Definition 3.4 We will say that the operator L has the property Px0
) if its coefficients satisfy the conditions:

i) ap ∈ L∞ (Br (x0)) , |p| ≤ m, for some r > 0 ; ii) ∃r > 0 : for |p| = m the coefficients ap (·) coincide a.e.
in Br (x0) with some bounded and continuous function at the point x0 .

If the condition Px0) is fulfilled, then the operator Tx0 has the property stated in the following Main
Lemma 3.5, proved in [8].

Lemma 3.5 (Main Lemma) Let X(K) be a rearrangement-invariant Banach function space with Boyd indices
αX , βX ∈ (0; 1) and L be the m-th order elliptic operator on domain Ω ⊂ K , which has the property Px0) at
the point x0 . Let φ ∈Wm

Xs
(Br (x0)) and φ vanish in some neighborhood of |x− x0| = r0 . Then

∥Tx0
φ∥Wm

X (Br(x0))
≤ σ (r) ∥φ∥Wm

X (Br(x0))
,

where the function σ (r) → 0, r → 0 , depends only on the coefficients of L and their modulus of continuity.

Before stating the next lemma, let us make some remark concerning the domain Ω .
Property c). We say that the domain Ω admits the extension of functions of the space Wm

Xs
(Ω) , if

there exists a domain Ω′ ⊃ Ω and a linear mapping θ of the space Wm
Xs

(Ω) into Wm
Xs

(Ω′) such that

∀x ∈ Ω ⇒ (θu) (x) = u (x) ,

∥θu∥Wm
Xs

(Ω′) ≤ const ∥u∥Wm
Xs

(Ω) , ∀u ∈Wm
Xs

(Ω) .

Remark 3.6 Theorem 2.18 shows that the domains with sufficiently smooth boundary have Property c).

Moreover, if so, then a bounded extension operator from Wm
Xs

(Ω) to
0

Wm
Xs

(Ω′) exists.

To establish our main result, we need some local estimates. For this, we introduce the following function.
Let ω (·) be a function defined on [0, 1] such that

0 ≤ t <
1

3
, ω (t) = 1,

2

3
< t ≤ 1, ω (t) = 0 .

For 0 < R1 < R2 , the function ξ (x) is defined as

ξ (x) = ξ (R1, R2, x) =

{
1, |x| ≤ R1,

ω
(

|x|−R1

R2−R1

)
, R1 < |x| ≤ R2 .

The following lemma was proved in [9].
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Lemma 3.7 ∀R1 : 0 < R1 < R2 , the inequality

∥ξ∥Cm(R2)
≤ C

(
1− R1

R2

)−m

, (3.11)

holds.

The following lemma is true.

Lemma 3.8 Let X(K) be a rearrangement-invariant Banach function space with Boyd indices αX , βX ∈ (0; 1)

and L be an m− th order elliptic operator on domain Ω ⊂⊂ K , whose coefficients satisfy the conditions:

∃R2 : ap (·) ∈ C
(
B (R2)

)
, ∀p : |p| = m; ap (·) ∈ L∞ (B (R2)) , ∀p : |p| < m.

Then there exists C = (R2, L) > 0 , depending only on R2 and the coefficients of L , such that for ∀u ∈
WXm

s (R2) the following inequality holds

∥u∥Wm
Xs

(R1)
≤ C

(
1− R1

R2

)−m (
∥Lu∥X(R2)

+ ∥u∥Wm−1
Xs

(R2)

)
, ∀R1 : 0 < R1 < R2. (3.12)

Proof Consider the function φ (x) = ξ (R1, R2, x) u (x) . It is clear that

∀x ∈ BR1
⇒ φ (x) = u (x) ⇒ ∥u∥Wm

Xs
(R1)

≤ ∥φ∥Wm
Xs

(R2)
,

and φ ∈Wm
Xs

(Ω) . Moreover, φ vanishes in some neighborhood of |x| = R2 . Therefore, we can apply Lemmas
3.2-iii), 3.3 and 3.5. Consequently, it suffices to prove the following inequality

∥φ∥Wm
Xs

(R1)
≤ C

(
1− R1

R2

)−m (
∥Lu∥X(R2)

+ ∥u∥Wm−1
Xs

(R2)

)
, ∀R1 : 0 < R1 < R2.

Since suppφ ⊂ BR2
, we have φ = T0φ+ S0Lφ . By Main Lemma 3.5, ∃R′ > 0 such that the inequality

∥T0φ∥Wm
X (R2)

≤ 1

2
∥φ∥Wm

X (R2)
,

holds for ∀R2 < R′. We assume that R2 is selected from this condition and B2R2 ⊂ Ω . So we immediately
obtain the following inequality:

∥φ∥Wm
X (R2)

≤ 2 ∥S0Lφ∥Wm
X (R2)

.

By Lemma 3.3 - ii), the inequality

∥S0Lφ∥Wm
X (R2)

≤ C ′ ∥Lφ∥X(R2)
,

holds for some C ′ > 0 depending only on R2 . On the other hand,

Lφ = ξLu+M (u, ξ) , (3.13)
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where
M (u, ξ) =

∑
|p|<m

Cp (x) ∂
p̃ξ∂pu,

|p̃| = m− |p| and Cp (·) is some linear combination of coefficients of the operator L . Consequently,

∥M (u, ξ)∥X(R2)
≤ max

|p|<m
∥Cp (x)∥

∑
|p|<m

∥∥∥∂∼
p
ξ
∥∥∥
Cm(R2)

∑
|p|<m

∥∂pu∥X(R2)
=

= C ∥ξ∥Cm(R2)
∥u∥Wm−1

X (R2)
.

As a result, we obtain
∥Lφ∥X(R2)

≤ ∥ξ∥Cm(R2)
∥Lu∥X(R2)

+ ∥M (u, ξ)∥X(R2)
≤

≤ C ∥ξ∥Cm(R2)

(
∥Lu∥X(R2)

+ ∥u∥Wm−1
Xs

(R2)

)
≤

≤ C

(
1− R1

R2

)−m (
∥Lu∥X(R2)

+ ∥u∥Wm−1
Xs

(R2)

)
, (3.14)

where C is a constant depending only on R2 and the coefficients ap(·) .
Lemma is proved. 2

Remark 3.9 The relation (3.12) holds for arbitrary domain Ω , which admits extension to the domain Ω1 :

Ω ⊂ Ω1 . It can be similarly proved as the estimate (3.14):

∥Lu∥X(Ω) ≤ ∥Lφ∥X(Ω1)
≤ C

(
∥Lu∥X(Ω1)

+ ∥u∥Wm−1
Xs

(Ω1)

)
,

holds, where φ = uε, ε ∈ C∞ (K) , 0 ≤ ε ≤ 1, ε|Ω = 1, ε|C\Ω1
= 0.

Lemma 3.10 Let Ω ⊂ Ω1 : Ω1 ⊂ Ω′ ⊂ K be domains in Rn, ω ∈ C∞
0 (K) : suppω ⊂ Ω1, and ∀u : Ω′ → R :

u|Ω1
∈ C∞ (Ω1

)
. Then the function defined as

φ =

{
uω, on Ω′,
0 on K\Ω,

satisfies:
a) belongs to C∞

0 (Ω′) ;
b) ∀m ∈ N, ∃c = c (ω) : ∥φ∥Wm

Xs
(Ω1)

≤ c ∥u∥Wm
Xs

(Ω1)
.

Proof a) This statement is obvious.
b) The statement is a consequence of

∂pφ

∂xp
=
∑
|j|≤p

Cj (ω)
∂ju

∂xj
,

where Cj (ω) =
∑j

i=0 Cij
∂iω
∂xi

.

The lemma is proved. 2

806



MAMEDOV and ÇETİN/Turk J Math

Lemma 3.11 Let X (K) be a rearrangement-invariant Banach function space with Boyd indices αX , βX ∈
(0; 1) , which has Property c) and Ω ⊂⊂ K some domain. Then ∃C > 0 , depending only n and a constant
from (3.12), and ∃δ > 0 , for ∀k = 1,m− 1, and ∀ε : 0 < ε < δ , the inequality

∥u∥Wk
Xs

(Ω) ≤ ε ∥u∥Wk+1
Xs

(Ω) + Cε−k ∥u∥X(Ω) , ∀u ∈
0

Wm
Xs

(Ω) , (3.15)

holds.

Proof i) Let us first consider one-dimensional case. We will use the following formula:

f (t+ h)− f (t) = f ′ (t)h+ f ′′(t)
2! h2 + ...+ f(k)(t)

k! hk +Rk,

Rk = 1
k!

∫ t+h

t
f (k+1) (x) (t+ h− x) dx,

where f ∈ C(2) (t− δ, t+ δ) , t > 0, h : |h| < δ . In particular, for k = 1 , we have

f(t+ h)− f(t) = f ′ (t)h+

∫ t+h

t

(t+ h− τ)f ′′ (τ) dτ.

Since ∣∣∣∣∣
∫ t+h

t

(t+ h− τ) f ′′ (τ) dτ

∣∣∣∣∣ ≤ h

∫ t+h

t

|f ′′ (τ)| dτ,

it follows that

|f ′ (t)| ≤
∫ ξ

t

|f ′′ (τ)| dτ + 1

h
|f (t+ h)− f (t)| ≤

≤
∫ t+h

t

|f ′′ (τ)| dτ + 1

h
|f (t+ h)− f (t)| , (3.16)

ii) k > 1. Let φ ∈ C∞
0 (Ω) . Fix some xi . Taking into account the inequalities (3.12) and (3.16), we obtain∥∥∥∥ ∂φ∂xi

∥∥∥∥
X(Ω)

≤ h

∥∥∥∥∂2φ∂x2i

∥∥∥∥
X(Ω)

+
2

h
∥φ∥X(Ω) , (3.17)

In the general case, for p = (p1, p2, ..., pn) , if pi ̸= 0 , the following inequalities hold

∥∂p1p2...pi...pnφ∥X(Ω) ≤ h
∥∥∥∂p1...(pi+1)...pnφ

∥∥∥
X(Ω)

+
2

h

∥∥∥∂p1...(pi−1)...pnφ
∥∥∥
X(Ω)

. (3.18)

Taking into account that for the fixed multiindices p = (p1, p2,, ..., pn) the number of difference chains of the
form

(p1, ..., pi − 1, ..., pn) → (p1, ..., pi, ..., pn) → (p1, ..., pi + 1, ..., pn) ,

is equal to n , we get the validity of the following relations

n ∥∂p1p2...pi...pnφ∥X(Ω) ≤
n∑

i=1

(
h
∥∥∥∂p1...(pi+1)...pnφ

∥∥∥
X(Ω)

+
2

h

∥∥∥∂p1...(pi−1)...pnφ
∥∥∥
X(Ω)

)
.
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Consequently, ∑
|p|=k

∥∂pφ∥X(Ω) ≤
1

n

h ∑
|p|=k+1

∥∂pφ∥X(Ω) +
2

h

∑
|p|=k−1

∥∂pφ∥X(Ω)

 . (3.19)

Assuming ε = h
n , we have

∑
|p|=k

∥∂pφ∥X(Ω) ≤ ε
∑

|p|=k+1

∥∂pφ∥X(Ω) +
2

nε

∑
|p|=k−1

∥∂pφ∥X(Ω) .

Taking into account that

∥φ∥X(Ω) ≤ ε ∥φ∥X(Ω) +
1

4ε
∥φ∥X(Ω) ,

for ∀k = 1, m− 1 , we have

∥φ∥Wk
Xs

(Ω) ≤ ε ∥φ∥Wk+1
Xs

(Ω) +max

(
1

4
,
2

n

)
ε−1 ∥φ∥Wk−1

Xs
(Ω) .

Assume Ak = ∥φ∥Wk
Xs

(Ω) . Consequently,

A1 ≤ ε1A2 + Cε1
−1A0, A2 ≤ ε2A3 + Cε−1

2 A1,

where ε1, ε2 ∈ (0, δ) are sufficiently small numbers. Therefore,

A2 ≤ ε2A3 + Cε1ε2
−1A2 + C2ε−1

1 ε−1
2 A0.

Taking ε1 = ε2
2C and ε2 = ε

2 , we obtain

A2 ≤ εA3 + C2,3ε
−2A0,

where ε > 0 is a sufficiently small number, and C2;3 is a constant depending only on n . Continuing this
process, we obtain the validity of the estimate

Ak ≤ εAk+1 + Ck;k+1ε
−kA0,

for ∀k = 1, m− 1 and arbitrarily small ε > 0 , where Ck;k+1 is a constant depending only n and m . Taking
C = max

k
Ck;k+1 , we finally obtain

∥φ∥Wk
Xs

(Ω) ≤ ε ∥φ∥Wk+1
Xs

(Ω) + Cε−k ∥φ∥X(Ω) .

The lemma is proved. 2

Lemma 3.12 Let all conditions of Lemma 3.11 hold and Ω ⊂⊂ Ω1 ⊂⊂ K some domains. Then:
i) ∃C > 0 , depending only on n and a constant from (3.12), and ∃δ > 0 , such that for ∀k = 1,m− 1 ,

and ∀ε : 0 < ε < δ , ∀u ∈Wm
Xs

(Ω) the following inequality holds

∥u∥Wk
Xs

(Ω) ≤ ε ∥u∥Wk+1
Xs

(Ω1)
+ Cε−k ∥u∥X(Ω1)

. (3.20)
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ii) If Ω0 : Ω0 ⊂ Ω , then the following relation holds

∥u∥Wk
Xs

(Ω0)
≤ ε ∥u∥Wk+1

Xs
(Ω) + Cε−k ∥u∥X(Ω1)

. (3.21)

Proof i) Let Ω ⊂ Ω2 ⊂ Ω1 : Ω ⊂ Ω2,Ω2 ⊂ Ω1 and Ω2 have Property c) with respect to the domain Ω1 .
Then, by the Corollaries 2.19 and 2.20 the sets of restrictions of functions from C∞

0 (Ω1) on the domains Ω

and Ω2 are dense in the spaces Wm
Xs

(Ω) and Wm
Xs

(Ω2) correspondingly. For this reason it is sufficient to prove

(3.20) for ∀u ∈Wm
Xs

(Ω1) : u|Ω2
∈ C∞ (Ω2

)
.

Let ω ∈ C∞
0 (K) : 0 ≤ ω ≤ 1, ω|Ω ≡ 1, suppω ⊂ Ω2. Consider the function φ = ωu, u|Ω2

∈ C∞ (Ω2

)
. It

is clear that φ ∈ C∞
0 (Ω1) . Then, by Lemmas 3.10 and 3.11, we have

∥u∥Wk
Xs

(Ω) ≤ ∥φ∥Wm
Xs

(Ω1)
≤ ε ∥φ∥Wk+1

s (Ω1)
+ Cε−k ∥φ∥X(Ω1)

≤

≤ C1ε ∥u∥Wk+1
Xs

(Ω1)
+ CC2ε

−k ∥u∥X(Ω1)
,

where the constants are independent of u . It suffices to choose ε := C1ε .
ii) In this case, it suffices to consider

ω ∈ C∞
0 (K) : 0 ≤ ω ≤ 1, ω|Ω0

= 1, ω|C\Ω = 0,

and φ = ωu, u ∈ C∞ (Ω) .

This statement can be proved by another way: consider Ω0 ⊂ Ω′ ⊂ Ω : Ω0 ⊂ Ω′,Ω′ ⊂ Ω and Ω′ have
the property c) with respect to the domain Ω . Consequently, the statement i) can be applied.

Lemma is proved. 2

Remark 3.13 In the last step of the proof, the inequality

∃C > 0 : ∥φ∥Wk
X(Ω) ≤ C ∥u∥Wk

X(Ω) , ∀k = 0,m,

was used.

Remark 3.14 a) The inequality (3.15) holds for arbitrary ε > 0 and arbitrary u ∈
0

Wm
Xs

(Ω) . In fact, u can
be extended on Rn in the following way

fK (x1 + p1d, ..., xn + pnd) = f (x1, ..., xn) , p1, ..., pn ∈ Z,

∥fK∥X(Ω) is equal to the sum of the norms of the restriction fK on the cubes which intersect Ω . Then, the

inequalities (3.17), (3.18), (3.19) hold for arbitrary h > 0 .
b) From the proof of Lemma 3.11, it follows that the inequality (3.19) holds for arbitrary u ∈ C∞ (Ω)

which can be extended by zero on K .

The main result of this work is the following

809



MAMEDOV and ÇETİN/Turk J Math

Theorem 3.15 Let X(K) be a rearrangement-invariant Banach function space with Boyd indices αX , βX ∈
(0; 1) , L is elliptic operator on domain Ω ⊂⊂ K with coefficients aα(·) , which satisfy

i) ap (·) ∈ C
(
Ω
)
, ∀p : |p| = m; ii) ap (·) ∈ L∞ (Ω) , ∀p : |p| < m.

Then for arbitrary domain Ω0 ⊂⊂ Ω , there is a constant C > 0 , which depends only on the ellipticity constant
of L , of domains Ω0; Ω, such that for ∀u ∈Wm

Xs
(Ω) the following a priori estimate holds:

∥u∥WXm
s (Ω0)

≤ C
(
∥Lu∥X(Ω) + ∥u∥X(Ω)

)
. (3.22)

Proof We will carry out the proof in accordance with the scheme presented in the monograph [3, p. 243].
Ω0 can be covered by a finite number of open balls BR , for which the estimates of Lemmas 3.8 and 3.10 hold.
Therefore, it suffices to prove the theorem for the case where Ω0 and Ω0 are concentric balls of small radius
centered at the point x0 = 0 .

Therefore, let R > 0 be a sufficiently small number. We are going to prove that for ∀r : 0 < r < R the
following estimate holds:

∥u∥Wm
Xs

(r) ≤ C
(
1− r

R

)−m2 (
∥Lu∥X(R) + ∥u∥X(R)

)
, (3.23)

where C > 0 is a constant depending on R , but independent of r and u . Denote

A = sup
0≤r≤R

(
1− r

R

)m2

∥u∥Wm
Xs

(r) ≤ ∥u∥Wm
Xs

(R) .

If u = 0 , there is nothing to prove. For this reason, suppose u ̸= 0. Then it is clear that there exists
R1 : R/2 < R1 < R , such that

A ≤ 2

(
1− R1

R

)m2

∥u∥Wm
Xs

(R1)
.

Then for R2 : R1 < R2 < R , by Lemma 3.8, the corresponding inequality (3.12) holds, so we have

A ≤ 2
(
1− R1

R

)m2

C1

(
1− R1

R2

)−m (
∥Lu∥X(R2)

+ ∥u∥Wm−1
Xs

(R2)

)
≤

≤ 2C1

(
1− R1

R

)m2 (
1− R1

R2

)−m (
∥Lu∥X(R) + ∥u∥Wm−1

Xs
(R2)

)
.

By Lemma 3.12, for R3 : R2 < R3 < R , the relation

∥u∥Wm−1
Xs

(R2)
≤ ε ∥u∥Wm

Xs
(R3)

+ Cε−m ∥u∥X(R3)
,

holds. Therefore,

A ≤ 2C1

(
1− R1

R

)m2 (
1− R1

R2

)−m (
∥Lu∥X(R) + ε ∥u∥Wm

Xs
(R3)

+ C2ε
−m+1 ∥u∥X(R3)

)
.
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Paying attention to the fact that (
1− R3

R

)m2

∥u∥Wm
Xs

(R3)
≤ A,

we have

A ≤ 2
(
1− R1

R

)m2

C1

(
1− R1

R2

)−m

∥Lu∥X(R) +

+2ε
(
1− R1

R2

)m2

C1

(
1− R1

R2

)−m (
1− R3

R

)−m2

A+

+2C1C2ε
−m+1

(
1− R1

R

)m2 (
1− R1

R2

)−m

∥u∥X(R) ,

where ε > 0 is an arbitrary small number. Let us choose ε from the relation

2εC1

(
1− R1

R

)m(
1− R1

R2

)−m(
1− R3

R

)−m2

<
1

2
.

Then we have
1

2
A ≤ 2C1

(
1− R1

R

)m2 (
1− R1

R2

)−m

∥Lu∥X(R) +

+2C1C2ε
−m+1

(
1− R1

R

)m2 (
1− R1

R2

)−m

∥u∥X(R3)
≤

≤ C
(
∥Lu∥X(R) + ∥u∥X(R)

)
.

Taking into account the expression for A , we finally have

∥u∥Wm
Xs

(r) ≤ C
(
1− r

R

)−m2 (
∥Lu∥X(R) + ∥u∥X(R)

)
,

for ∀r : 0 < r < R , where C > 0 is a constant independent of r .
Theorem is proved. 2

4. Some applications
In this section, we apply the above obtained theorems to some rearrangement-invariant spaces. Let Ω ⊂ Rn be
some measurable bounded domain. Throughout this section, it is assumed that the coefficients of the elliptic
operator L satisfy the following conditions

i) ap (·) ∈ C
(
Ω
)
, ∀p : |p| = m; ii) ap (·) ∈ L∞ (Ω) , ∀p : |p| < m.

4.1. The Lebesgue spaces X = Lp (Ω) (1 < p <∞)

The corresponding norm is

∥f∥p =

(∫
Ω

|f |p dx
) 1

p

.
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It is clear that these spaces are rearrangement-invariant Banach function spaces, and the property β) holds.
Indeed

|E| → 0 ⇒ ∥χE∥p =

(∫
E

dx

) 1
p

= (mesE)
1
p → 0.

In this case, Xs = Lp (Ω) . Consequently, Wm
Xs

= Wm
p (Ω) , where Wm

p (Ω) is a classical Sobolev space of m
times differentiable functions. It is well known that the Boyd indices of these spaces are equal to (see, [27])
0 < αLp

= βLp
= 1

p < 1. Therefore, the following classical result is true.

Corollary 4.1 Let Ω ⊂ Rn be a bounded domain and Ω0 : Ω0 ⊂ Ω . Then for ∀u ∈ Wm
p (Ω) , the a priori

estimate

∥u∥Wm
p (Ω0)

≤ C
(
∥Lu∥Lp(Ω) + ∥u∥Lp(Ω)

)
,

holds, where the constant C depends only on the ellipticity constant of L , m, Ω, Ω0 and the coefficients of the
operator L .

4.2. The grand-Lebesgue spaces X = Lp) (Ω) , (1 < p < +∞)

The norm in these spaces is defined as follows:

∥f∥p) = sup
0<ε<p−1

(
ε

∫
Ω

|f |p−ε
dx

) 1
p−ε

, f ∈ Lp) (Ω) .

It is well known that the space Lp) (Ω) is a nonseparable rearrangement-invariant Banach function space,
and from the inclusion Lp ⊂ Lp) it follows that the property β) holds. Therefore, in this case, the relation

Xs = Xa = Xb = C∞
0 (Ω) , holds (the closure is taken in topology of Lp) (Ω)).

The following lemma was proved in [8].

Lemma 4.2 The Boyd indices of grand Lebesgue spaces X = Lp) (Ω) , 1 < p <∞ , are αX = βX = 1
p .

Corresponding result for these spaces takes the following form.

Corollary 4.3 Let Ω ⊂ Rn be a bounded domain and Ω0 ⊂ Ω be an arbitrary compact. Then, for ∀u ∈
Wm

p)s
(Ω) , the following a priori estimate holds:

∥u∥Wm

(Lp))s
(Ω0)

≤ C
(
∥Lu∥Lp)(Ω) + ∥u∥Lp)(Ω)

)
,

where the constant C depends only on the ellipticity constant of L , m, Ω, Ω0 and the coefficients of the operator
L .

This corollary is established in the [9]. It also should be noted that the Boyd indices of Lp) (Ω) have
been first calculated in [25] directly from the definition of these indices.
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4.3. Marcinkiewicz space X = SLp,λ (Ω)

This is a Banach function space of measurable functions (in Lebesgue sense) on Ω ( 1 < p < +∞ , 0 ≤ λ < 1)

with the norm

∥f∥p,λ = sup
E⊂Ω

(
1

|E|1−λ

∫
E

|f |p dt

) 1
p

,

where E ⊂ Ω is an arbitrary measurable subset. This space is a rearrangement-invariant Banach function space.
Recall that in the classical Morrey space Lp,λ (Ω) sup is taken over B ∩Ω , where B ⊂ Rn is an arbitrary ball.
Unlike Marcinkiewicz space, Lp,λ (Ω) is not a rearrangement-invariant space. It is clear that the inclusion
SMp,λ (Ω) ⊂ Lp,λ (Ω) is true. Let us prove that the property β) holds in SMp,λ (Ω) . Indeed

∀E ⊂ Ω, ⇒

⇒
(

1
|E|1−λ

∫
Ω
χp
Edt
) 1

p

=
(

|Ω∩E|
|E|1−λ

) 1
p ≤

(
|Ω
⋂
E|λ

) 1
p ≤ |E|

λ
p ⇒

⇒ ∥χE∥SLp.λ(Ω) ≤ |E|
λ
p → 0, E → 0 .

Under the condition 0 < λ < 1, SLp,λ (Ω) is nonseparable.
Using the results of monograph [27], it can easily be proved as follows:

Lemma 4.4 The indices of rearrangement-invariant Marcinkiewicz space X = SLp,λ (Ω) , 1 < p < +∞,

0 < λ ≤ 1 , are equal to αX = βX = 1−λ
p .

Consequently, the following corollary is true.

Corollary 4.5 Let Ω ⊂ (−π, π) ⊂ R1 and Ω0 ⊂ Ω be an arbitrary compact. Then, for ∀u ∈Wm
Xs

(Ω) with X =

SLp,λ (Ω) , the following a priori estimate holds:

∥u∥Wm

(SLp,λ)
s

(Ω) ≤ C
(
∥Lu∥SLp,λ(Ω) + ∥u∥SLp,λ(Ω)

)
,

where the constant C depends only on the L , m, Ω, Ω0 and the coefficients of the operator L .

4.4. Weak-type Lw
p (Ω) space

Lw
p (Ω) , 1 ≤ p <∞ , is a space of functions

Lw
p (Ω) =

{
f ∈ ℑ (Ω) : sup

0<λ<+∞
λpmf (λ) < +∞

}
,

where ℑ (Ω) is a set of measurable functions on Ω . In [30], the space Mr (Ω) , r > 1 , of measurable functions
was introduced with the norm

∥f∥Mr
= sup

E⊂Ω

1

|E|1−
1
r

∫
E

|f | dx,

where sup is taken over all measurable subsets E ⊂ Ω . The following lemma was also proved in [17, 30].
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Lemma 4.6 For arbitrary r > 1 , the spaces Lw
r (Ω) and Mr (Ω) coincide Lw

r (Ω) =Mr (Ω) , r > 1 .

In line with our notations, SL1,λ (Ω) =M 1
λ
(Ω) , 0 < λ < 1 . Consequently, Lw

1
λ

(Ω) = SL1,λ (Ω) and the

following corollary is true.

Corollary 4.7 Let Ω ⊂ Rn be a bounded domain and Ω0 ⊂ Ω be an arbitrary compact. Then for ∀u ∈
Wm

Xs
(Ω) , X = Lw

1
λ

(Ω) , 0 < λ < 1 , the following a priori estimate holds:

∥u∥Wm
Xs

(Ω0)
≤ C

(
∥Lu∥Lw

1
λ

(Ω) + ∥u∥Lw
1
λ

(Ω)

)
,

where the constant C depends only of the ellipticity constant of L , m, Ω, Ω0 , and the coefficients of the
operator L .
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