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Cefixime and griseofulvin were taken as a positive control standard for antibacterial and antifungal studies, respectively. 
Antimicrobial activity of all the compounds from series 1 and 2 were carried out at the predetermined concentration of 25 
µg/mL. Summarised antimicrobial study results were collated in Table 3 and Figures 5 and 6.

Table 3. Antibacterial and antifungal activity of samples zone of inhibition in mm) and in percentage.

Compound
details

Zone of inhibition in mm and percentage @ 25 µg/mL

S.A
mm

S.A
%

S.P
mm

S.P
%

E.C
mm

E.C
%

P.A
mm

P. A
%

C.A
mm

C. A
%

A.C
mm

A.C
%

Gram-positive bacteria Gram-negative bacteria Fungal strains
  2-phenyl benzoxazole scaffold  
Sample -1 15 54% 17 69% 10 40% 15 55% 21 68% 21 68%
Sample -2 20 72% 15 61% 12 50% 16 62% 23 73% 22 70%
Sample -3 16 58% 11 47% 15 63% 17 67% 24 78% 23 73%
Sample -4 20 72% 18 73% 17 61% 18 71% 20 64% 21 68%
Sample -5 19 63% 18 68% 15 61% 13 56% 21 68% 20 64%
Sample -6 14 51% 15 60% 13 55% 16 62% 22 70% 18 55%
Sample -7 19 66% 16 65% 18 63% 18 71% 23 73% 19 59%
Sample -8 16 58% 18 73% 18 63% 13 51% 21 68% 17 52%
Sample -9 17 61% 13 51% 17 61% 16 62% 22 70% 18 55%
Sample -10 13 54% 11 50% 7 35% 12 50% 21 68% 21 68%
Sample -11 12 50% 21 82% 17 61% 16 62% 20 64% 22 70%
Sample -12 19 68% 19 76% 19 66% 13 51% 19 61% 20 64%
Sample -13 14 49% 14 60% 15 70% 18 71% 21 68% 19 59%
Sample -14 18 63% 16 65% 18 72% 13 51% 20 64% 21 68%
  2-N-phenyl benzoxazole scaffold  
Sample -15 17 61% 18 73% 16 60% 16 62% 21 68% 23 73%
Sample -16 15 53% 17 67% 19 76% 14 50% 22 70% 22 70%
Sample -17 19 66% 16 65% 16 65% 17 67% 20 64% 21 68%
Sample -18 21 81% 19 82% 20 85% 22 76% 19 61% 20 64%
Sample -19 20 72% 12 47% 19 77% 14 60% 21 68% 19 59%
Sample -20 18 63% 15 61% 17 69% 15 59% 23 73% 17 52%
Sample -21 23 80% 22 85% 22 90% 20 72% 22 70% 19 59%
Sample -22 21 78% 19 76% 20 80% 17 67% 21 68% 21 68%
Sample -23 16 58% 20 79% 16 66% 12 47% 20 64% 20 64%
Sample -24 14 50% 17 69% 17 69% 18 71% 19 61% 21 68%
Sample -25 19 66% 16 65% 18 73% 13 51% 22 70% 18 55%
Sample -26 21 78% 17 69% 19 78% 12 47% 21 68% 22 70%
  Positive controls  

Cefixime
22   19   18   20          
29   26   25   28          
33   35   36   37          

Griseofulvin 
                34   35  
                47   43  
                52   55  

CA: Candida albicans; AC: Aspergillus Clavatus. SA: Staphylococcus aureus; SP: Streptococcus pyrogenes; EA: Escherichia coli; PA: 
Pseudomonas aeruinosa. 
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3.3.1. Antibacterial activity-Short SAR
All the test compounds from both the series viz. 2-phenyl benzoxazole and 2-Amino phenyl benzoxazoles showed 
significant antibacterial activity. Among the tested samples, compounds from 2-amino phenyl benzoxazole series showed 
higher antibacterial potential than 2-phenyl benzoxazole scaffold. Compound-18 showed higher antibacterial activity 
against Staphylococcus aureus (81% inhibition at 25 µg/mL). Both compound-18 and compound-21 showed potent activity 
against Streptococcus pyogenes (82%, inhibition) and staphylococcus aureus (85% inhibition). Compound-21 showed the 
highest antibacterial activity against Escherichia coli with 90 % of inhibition of growth. Observed inhibition of compound 
21 against pseudomonas aeruginosa is 72%. 

The compound 1 from aryl benzoxazole series showed moderate E. coli activity. In order to boost the E. coli activity, 
NH group was inserted between the phenyl and benzoxazole ring. To our surprise, the compound 18 containing 
an “F” substituent at phenyl ring has shown improved E. coli activity. Introduction of a methyl group at 7th position 
(compound-21) further boosted the activity against E. coli (Figure 7). Observed biological activities are consistent with the 
molecular docking studies and consensus score function calculated using surflex docking.

With encouraging results from the disk diffusion studies, two active compounds were evaluated for MIC assay, in order 
to find the lowest concentration capable of inhibiting the bacterial growth. The MIC values are provided in the Table 4. 
Both the compounds demonstrated the potential antimicrobial profiles against gram-negative strains (P. aeruginosa and E. 
coli) with MICs (approximately 1 µg mL−1)
3.3.2. Antifungal activity
All the test samples from both the series viz. 2-phenyl benzoxazole and 2-amino phenyl benzoxazole series showed 
significant antifungal activity. Among them, compound-2, 3, and 20 showed good antifungal activity against Candida 

 

 

Figure 5: Graphical illustration of in vitro toxicity effect of all compounds against 

bacteria 

 

Figure 6: Graphical illustration of in vitro toxicity effect of all compounds against fungi 

Figure 5. Graphical illustration of in vitro toxicity effect of all compounds against bacteria.

Figure 6. Graphical illustration of in vitro toxicity effect of all compounds against fungi.
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albicans with percentage inhibition of >70%. Furthermore, these compounds showed good antifungal activity against 
Aspergillus clavatus with >70% or higher percentage inhibition. 

With encouraging results from the disk diffusion studies, five active compounds were evaluated for MIC assay in order 
to find the lowest concentration, capable of inhibiting the fungal growth. The MIC values are provided in Table 5. Most of 
the compounds demonstrated the potential antimicrobial profiles against Aspergillus clavatus and Candida albicans with 
MICs (approximately 1 µg mL−1)
3.4. Molecular docking studies
In order to get the insights on mechanism of antimicrobial activities of the synthesized benzoxazole derivatives, the docking 
studies and molecular modelling were performed. For the molecular docking studies, X-ray crystal structure of PDB code: 
1KZN; resolution 2.30 Å- DNA gyrase E. coli 24 kDa domain in complex with clorobiocin was utilised with the help of 
sybyl-X software’s surflex-dock programme. Clorobiocin is an amino coumarin antibiotic which acts by inhibiting the 
DNA gyrase enzyme. Binding mode and the “H” bond interactions displayed by clorobiocin is shown in Figures 8A–8C). 

Figure 7: Co-relation of E.Coli In-Vitro biological activity and surflex docking results for 

benzoxazole derivatives (Short SAR) Table 4. Minimum inhibitory concentrations (MIC50) of two benzoxazole derivatives against four 
bacteria.

Compounds
MIC50 (µg/mL)

S. aureus S. pyogenes E. coli P. aeruginosa

Compound-18 15.3  ± 04 16.1 ± 02 16.5 ± 07 16.6 ± 04
Compound-21 15.2 ± 03 14.8 ± 05 13.2 ± 01 18.7 ± 05
Cefixime 0.9 ± 0.05 0.8 ± 0.06 1 ± 0.03 0.9 ± 0.04

Figure 7. Correlation of E. coli in vitro biological activity and surflex docking results for benzoxazole derivatives (Short SAR).

Table 5. Minimum inhibitory concentrations (MIC50) of two benzoxazole 
derivatives against two Fungi.

Compounds
MIC50 (µg/mL)

C. albicans A. clavatus

Compound-2 17 ± 0.4 NA
Compound-3 16 ± 0.3 17 ± 0.3
Compound-11 NA 17 ± 0.2
Compound-20 15 ± 0.1 NA
Compound-26 NA 16 ± 0.3
Griseofulvin 1.5 ± 0.2 1.3 ± 0.2
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Chlorobiocin has displayed key hydrogen bonding interactions of ASN46 (1.72 Å; 2.29 Å; 2.67 Å), ASP73 (2.04Å; 3.72 Å), 
and ARG136 (2.49 Å; 1.91 Å; 2.52 Å).

The binding mode of all the ligands docked in the active site of the enzyme is shown in Figures 8A and 8B. Expected 
binding energies of the compounds calculated using surflex-dock programme are recorded in Table 6. As per the docking 
study, all the ligands from both the series have shown very good docking score with respect to E. coli.

Docking poses of each of the ligands were analysed for the key interactions with the protein. For the majority of the 
compounds, hydrophobic and hydrophilic interactions at active sites of the protein were conserved (ASN46 amino acid 
residue). Figures 9A and 9B represent docked view of all the compounds at the active site of the DNA gyrase enzyme. Out 
of all the compounds under investigation, compounds 21 and 18 showed interesting docking outcomes. 

Figures 10A–10C and Figures 11A–11C represent the 3D views for the compounds 21 and 18, respectively, when 
docked in the chlorobiocin binding site. The outcome shows that the compounds are well integrated into the binding 
pocket as in the case of chlorobiocin.

As shown in Figures 10A–10C), at the active site of the enzyme (PDB ID: 1KZN), compound 21 was involved in the 
two key hydrogen bonding interactions. Hydrogen atom of the amino group in the 2nd position of benzoxazole ring 
(NH-Ar) and oxygen atom of ASN46 (N-H-----O-ASN46, 2.30 Å) creates a hydrogen bonding interaction. Docked view 
also showed additional interaction of hydrogen atom of THR165 (N-----H-THR165, 2.23 Å) with nitrogen atom (N) of 
benzoxazole ring.

As portrayed in Figures 11A–11C, compound 18 at the active site of the enzyme (PDB ID: 1KZN) also exhibited similar 
pattern of two hydrogen bonding interactions. Hydrogen atom of amino group present on the 2nd position of benzoxazole 
ring (NH-Ar) and oxygen atom of ASN46 (N-H-----O-ASN46, 2.44 Å) makes a hydrogen bonding interaction. Another 
interaction came from hydrogen atom of THR165 (N-----H-THR165, 2.25 Å) with nitrogen atom (N) of benzoxazole ring.

Figures 12A and 12B signify the additional hydrophilic and hydrophobic amino acids encircled around the studied 
compounds 21 and 18. 

  

 

Figure 8: Docked vision of Chlorobiocin at the active site of the enzyme PDB: 1KZN 

A B 

C 

Figure 8. Docked vision of chlorobiocin at the active site of the enzyme PDB: 1KZN.
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All the compounds showed a consensus score in the range of 6.50–1.86. Consensus score indicates the summation of 
all the forces of interface between the protein and ligands calculated via surflex dock program. These scores signify that the 
molecules are favourably binding to the protein in comparison to the reference chlorobiocin (Table 6). We anticipate the 

Table 6. Surflex docking score (kcal/mol) of the derivatives.

Compounds C scorea Crash scoreb Polar scorec D scored PMF scoree G scoref Chem scoreg

Chlorobiocin ligand 12.14 –1.21 5.33 –189.513 –76.407 –135.711 –34.514

21 6.50 –1.16 1.07 –110.684 –10.157 –179.958 –26.970

26 6.37 –1.21 1.04 –109.258 –14.587 –191.905 –26.152

24 6.31 –1.21 1.03 –113.284 –13.841 –187.995 –26.039

20 6.22 –1.21 1.04 –103.153 –14.226 –182.568 –25.451

18 5.97 –1.12 1.06 –107.177 –11.794 –168.904 –25.606

11 5.76 –0.47 0.04 –95.768 –16.959 –183.261 –21.980

10 5.38 –0.36 0.00 –98.595 –9.572 –169.014 –21.588

14 5.33 –0.52 0.68 –94.879 –22.125 –174.047 –21.997

5 5.16 –0.54 0.00 –106.419 0.342 –172.461 –24.350

4 5.15 –0.81 0.77 –99.238 –14.442 –157.338 –24.249

22 5.13 –1.40 0.00 –102.502 –20.543 –168.249 –19.687

19 4.94 –0.34 1.13 –84.180 –35.500 –124.692 –18.652

25 4.92 –0.48 0.00 –98.863 –30.642 –173.096 –19.423

17 4.49 –1.43 1.01 –121.605 –17.512 –190.037 –27.384

1 4.31 –1.24 0.97 –110.563 –9.570 –167.539 –27.727

16 4.29 –0.55 0.00 –119.135 –12.203 –184.250 –22.019

8 4.20 –0.46 0.00 –107.520 –11.136 –167.965 –24.504

6 4.11 –1.48 0.10 –121.917 –10.342 –211.169 –25.214

15 4.06 –1.51 0.71 –127.579 –14.871 –201.069 –28.226

7 3.97 –1.63 0.90 –114.840 –6.916 –171.135 –26.125

12 3.91 –0.43 0.04 –76.655 –23.335 –164.867 –17.523

9 3.51 –0.60 0.00 –68.726 –18.233 –151.434 –16.096

23 3.44 –1.19 0.00 –96.530 5.867 –149.220 –22.389

2 2.96 –0.31 0.68 –60.627 –33.274 –132.683 –16.842

13 2.15 –1.01 0.01 –76.943 –32.598 –153.307 –17.537

3 1.86 –0.97 0.03 –74.997 –31.224 –157.151 –17.272

a Consensus score (CScore) integrates a number of general scoring functions for grading the affinity of ligands bound to the active site 
of a receptor and reports the output of total score.
b Crash score demonstrates the unfitting penetration into the binding site. Crash scores close to 0 are encouraging. Negative numbers 
specify penetration.
c Polar score indicates the influence of the polar interactions to the total score. The polar score may be valuable for excluding docking 
results that make no hydrogen bonds.
d D-score used for van der Waals interactions and charge between the ligand and the protein. 
e PMF (potential of mean force) score indicates the Helmholtz free energies of relations for protein-ligand atom pairs .
f G-score shows hydrogen bonding, internal (ligand-ligand), and complex (ligand-protein) energies. 
g Chem-score facts for lipophilic contact, H-bonding and rotational entropy, alongside with an intercept term.
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key hydrogen bond interaction of these benzoxazole moieties with ASN46 amino acid residue may be accountable for the 
consistent antibacterial activity as referred to clorobiocin.
4. Conclusion
Synthesis, biological activity and molecular docking studies of two distinct benzoxazole scaffolds are reported in this 
research work. Eco-friendly synthetic methodologies were utilised for the synthesis of both the scaffolds with quantitative 
yield. All synthesized benzoxazole derivatives demonstrated substantial antibacterial activity against Staphylococcus 
aureus, Streptococcus Pyogenes, P. Aeruginosa, and E. coli at 25 μg/mL. Furthermore, these compounds showed remarkable 
antifungal activities against Aspergillus clavatus and Candida albicans in comparison to the standard griseofulvin. 
Specifically, the compounds 18 and compound 21 displayed significant antimicrobial potential. Molecular docking studies 
were executed, to understand the basis of potential antimicrobial activity. Docking experiments revealed that these 
compounds are interacting in a similar fashion to the known DNA gyrase inhibitor chlorobiocin. Hence, we conclude that 
benzoxazole derivatives from 2-amino phenyl benzoxazole scaffolds could serve as suitable DNA gyrase inhibitors and 
may be developed as novel classes of potent antibiotic agents.

 

 

 

Figure 9: All the compounds at the active site of the enzyme PDB ID: 1KZN- docked view 
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Figure 10: Interface of compound 21 at the binding site of the enzyme (PDB ID: 1KZN) 
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Figure 9. All the compounds at the active site of the enzyme PDB ID: 1KZN- docked view.

Figure 10. Interface of compound 21 at the binding site of the enzyme (PDB ID: 1KZN).
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Figure 12: A) Hydrophobic amino acids encircled to compounds 21 (green colour) and 18 

(cyan colour). B) Hydrophilic amino acids encircled to compounds 21 and 18. 
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Figure 11: Interface of compound 18 at the binding site of the enzyme (PDB ID: 1KZN) 
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Figure 11. Interface of compound 18 at the binding site of the enzyme (PDB ID: 1KZN).

Figure 12. A) Hydrophobic amino acids encircled to compounds 21 (green colour) and 18 (cyan colour). B) Hydrophilic 
amino acids encircled to compounds 21 and 18.
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Supporting Information Summary
Following details in support of current research will be found in supporting information.
Characterization of synthesised compounds
5, 7-dichloro-2-phenylbenzo[d]oxazole (1) 
TLC (SiO2): Rf = 0.45 (hexane: EtOAc = 10:1). Brown solid, yield=85%, MP: 112–115 °C. FTIR (KBr): 835, 850, 1098, 1242, 1597, 

3209 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.66–7.63 (m, 2H), 7.58 (d, 1H), 7.53 (d, 1H), 7.10–7.04 (m, 2H). MS: m/z [M + H] + calcd 
for C13H7Cl2NO [M + H] + 263.9903, found 264.0609.

5, 7-dichloro-2-(p-tolyl) benzo[d]oxazole (2) 
TLC (SiO2): Rf = 0.46 (hexane: EtOAc = 10:1). Brown solid, yield=87%, MP: 117–120 °C. FTIR (KBr): 838, 860, 1097, 1244, 1598, 

3207 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 8.09–8.06 (m, 2H), 7.95 (d, 1H), 7.46-7.43(m, 2H), 7.38 (d, 1H), 2.29 (s, 3H). MS: m/z [M 
+ H] + calcd for C14H9Cl2NO [M + H] + 279.1325, found 280.1506

5, 7-dichloro-2-(2, 6-dichlorophenyl) benzo[d]oxazole (3)
TLC (SiO2): Rf = 0.41 (hexane: EtOAc = 10:1). Brown solid, yield=76%, MP: 124–126 °C. FTIR (KBr): 836, 867, 1098, 1245, 1598, 

3210 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.91 (d, 1H), 7.65–7.61 (m, 2H), 7.50 (t, 1H), 7.26 (d, 1H). MS: m/z [M + H] + calcd for 
C13H5Cl4NO [M + H] + 332.9954, found 333.9801

7-methyl-2-phenylbenzo[d]oxazole (4) [51]
TLC (SiO2): Rf = 0.42 (hexane: EtOAc = 10:1). Light yellow solid, yield=88%, MP: 85–87 °C (lit. 81–83 °C). FTIR (KBr): 835, 1094, 

1243, 1597, 3200 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 8.30 (s, 2H), 7.65 (d, 1H), 7.55–7.52 (m, 3H), 7.28 (d, 1H), 7.14 (d, 1H), 2.64 
(s, 3H). MS: m/z [M + H] + calcd for C14H11NO [M + H] + 209.08, found 210.1713.

7-methyl-2-(p-tolyl) benzo[d]oxazole (5) [47]
TLC (SiO2): Rf = 0.41 (hexane: EtOAc = 10:1). Yellow solid, yield=82%, MP: 90–95 °C (lit. 88–90 °C). FTIR (KBr): 833, 1097, 1248, 

1599, 3210 cm–1. 1H-NMR (400 MHz, DMSO-d6): δ = 8.18–8.22 (m, 2 H), 7.59 (d, 1 H), 7.33-7.36 (m, 2 H), 7.24 (dd, 1 H), 7.15 (dd, 1 
H), 2.60 (s, 3 H), 2.45 (s, 3 H) ppm. MS: m/z [M + H] + calcd for C15H13NO [M + H] + 223.28, found 224.2920.

2-(2, 6-dichlorophenyl)-7-methylbenzo[d]oxazole (6)
TLC (SiO2): Rf = 0.45 (hexane: EtOAc = 10:1). Yellow solid, yield=80%, MP: 114–117 °C. FTIR (KBr): 835, 864, 1093, 1246, 1592, 

3201 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.97–7.95 (m, 1H), 7.64-7.60 (m, 2H), 7.49 (t, 1H), 7.27–7.16 (m, 2H), 2.37 (s, 3H). MS: 
m/z [M + H] + calcd for C14H9Cl2NO [M + H] + 279.1332, found 280.0710

7-bromo-2-phenylbenzo[d]oxazole (7) [51]
TLC (SiO2): Rf = 0.44 (hexane: EtOAc = 10:1). White solid, yield=86% yield. MP: 117–119 °C (lit. 115–116 °C). FTIR (KBr): 690, 835, 

1095, 1245, 1598, 3205 cm–1. 1H NMR (400 MHz, DMSO-d6): δ= 8.35-8.30 (m, 2H), 7.59–7.53 (m, 5H), 7.28–7.21 (m, 1H); MS: m/z [M 
+ H] + calcd for C13H8BrNO [M + H] + 275.1265, found 278.0558.

7-bromo-2-(p-tolyl) benzo[d]oxazole (8)
TLC (SiO2): Rf = 0.43 (hexane: EtOAc = 10:1). Yellow solid, yield=81%, MP: 117–119 °C. FTIR (KBr): 670, 835, 1092, 1243, 1593, 

3210 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.96–7.95 (m, 2H), 7.82–7.79 (m, 1H), 7.50-7.48 (m, 2H), 7.39–7.31 (m, 2H), 2.31 (s, 3H). 
MS: m/z [M + H] + calcd for C14H10BrNO [M + H] + 286.9912, found 286.9865

7-bromo-2-(2, 6-dichlorophenyl) benzo[d]oxazole (9)
TLC (SiO2): Rf = 0.47 (hexane: EtOAc = 10:1). Yellow solid, yield=78%, MP: 125–129 °C. FTIR (KBr): 678, 836, 864, 1095, 1246, 

1597, 3210 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 7.96–7.94 (m, 1H), 7.65-7.52 (m, 3H), 7.40-7.30 (m, 2H). MS: m/z [M + H] + calcd 
for C13H6BrCl2NO [M + H] + 343.0014, found 344.0916

2-phenylbenzo[d]oxazole (10) [48]
TLC (SiO2): Rf = 0.47 (hexane: EtOAc = 10:1). Solid, Yield = 80%, MP = 110–112 °C (lit. 111–113 °C). FTIR (KBr): 836, 1095, 

1242, 1598, 3208 cm–1. 1H NMR (400 MHz, DMSO-d6) δ 8.29–8.25 (m, 2H), 7.83–7.79 (m, 1H), 7.64–7.58 (m, 1H), 7.55–7.53 (m, 3H), 
7.38–7.35 (m, 2H). MS: m/z [M + H] + for C13H9NO 195.2253 found 196.1821.

2-(p-tolyl) benzo[d]oxazole (11) [48]
TLC (SiO2): Rf = 0.44 (hexane: EtOAc = 10:1). White solid, Yield=76%. MP: 113–115 °C (lit. 112–114 °C). FTIR (KBr): 837, 1098, 

1243, 1599, 3207 cm–1. 1H NMR (400 MHz, DMSO-d6): δ= 8.17–8.15 (m, 2H), 7.78-7.76 (m, 1H), 7.59–7.57 (m, 1H), 7.37–7.35 (m, 4H), 
2.45 (s, 3H); MS: m/z (ESI) calcd for C14H11NO [M + H] + 209.2523, found 211.9318.

2-(2, 6-dichlorophenyl) benzo[d]oxazole (12)
TLC (SiO2): Rf = 0.48 (hexane: EtOAc = 10:1). Yellow solid, yield=83%, MP: 115–119 °C. FTIR (KBr): 837, 865, 1093, 1247, 1598, 

3205 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.20–8.17 (m, 2 H), 7.65–7.52 (m, 3H), 7.41–7.35 (m, 2H). MS: m/z [M + H] + calcd for 
C13H7Cl2NO [M + H] + 264.1132, found 266.0421.

5, 7-dichloro-2-(4-chlorophenyl) benzo[d]oxazole (13)
TLC (SiO2): Rf = 0.50 (hexane: EtOAc = 10:1). Yellow solid, yield=87%, MP: 118–121 °C. FTIR (KBr): 834, 868, 1095, 1248, 1599, 

3210 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.02 (d, 1H), 7.97–7.76 (m, 2H), 7.83–7.79 (m, 2H), 7.29(d, 1H). MS: m/z [M + H] + calcd 
for C13H6Cl3NO [M + H] + 298.5532, found 298.1216.

2-(4-Chlorophenyl) benzoxazole (14) [48]
TLC (SiO2): Rf = 0.46 (hexane: EtOAc = 10:1). White solid, yield=85%, mp 145–148 °C (Lit. 144–145 °C); FTIR (KBr): 832, 1093, 

1244, 1596, 3110 cm–1. 1H NMR (400 MHz, DMSO-d6): δ 8.23-8.20 (m, 2H), 7.79–7.75 (m, 1H), 7.61–7.58 (m, 1H), 7.53–7.52 (m, 2H), 
7.40–7.37 (m, 2H). MS: m/z [M + H] + calcd for C13H9NOCl: 230.0363; found: 230.0370.
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5, 7-dichloro-N-(4-fluorophenyl) benzo[d]oxazol-2-amine (15)
TLC (SiO2): Rf = 0.48 (Hexane‒CH2Cl2 = 8:2). Brown solid; yield=68%, mp 169–172 °C. FTIR (KBr): 650, 746, 1100, 1271, 1507, 

1575, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.12(S, 1H), 7.82 (s, 1H), 7.65–7.55 (m, 2H), 7.48 (d, 1H), 7.37 (d, 
1H), 7.28–7.22 (m, 2H), 7.19–7.08 (m, 3H). MS: m/z [M + H] + calcd for C13H7Cl2FN2O: 297.1112; found 297.1015.

5, 7-dichloro-N-(4-methoxyphenyl) benzo[d]oxazol-2-amine (16)
TLC (SiO2): Rf = 0.38 (Hexane‒CH2Cl2 = 8:2). Light yellow solid; yield=86%, mp 148–150 °C. FTIR (KBr): 650, 746, 1270, 1510, 

1573, 1620, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.65 (s, 1H), 7.58 (d, 1H), 7.29-7.23 (m, 3H), 6.67-6.63 (m, 
2H), 3.74 (s, 3H). MS: m/z [M + H] + calcd for C14H10Cl2N2O2: 309.1532; found 309.1021.

5, 7-dichloro-N-phenylbenzo[d]oxazol-2-amine (17)
TLC (SiO2): Rf = 0.41 (Hexane‒CH2Cl2 = 8:2). Brown solid, yield=76%, mp 159–160 °C. FTIR (KBr): 650, 746, 1271, 1504, 1573, 

1610, 1622, 1647, 3049 cm-1. 1 H NMR (400 MHz, DMSO-d6): δ 7.95 (s, 1H), 7.58 (d, 1H), 7.53 (d, 1H), 7.49–7.46 (m, 2H), 7.28–7.20(m, 
2H), 7.03–6.90 (m, 1H). MS: m/z [M + H] + calcd for C13H8Cl2N2O: 279.1243 Found: 281.0023.

N-(4-fluorophenyl) benzo[d]oxazol-2-amine (18) [49]
TLC (SiO2): Rf = 0.47 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=88%, mp 168–170 °C (Lit.167-169 °C). FTIR (KBr): 746, 1100, 

1271, 1504, 1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.82 (s, 1H), 7.65–7.55 (m, 2H), 7.48 (d, 1H), 7.37 (d, 
1H), 7.28–7.22 (m, 2H), 7.19–7.08 (m, 3H). MS: m/z [M + H] + calcd for C13H10FN2O: 228.2372; found 229.1662

N-(4-methoxyphenyl) benzo[d]oxazol-2-amine (19) [49]
TLC (SiO2): Rf = 0.39 (Hexane‒CH2Cl2 = 8:2). Light yellow solid; yield=80%, mp 138–140 °C (Lit. 137-139 oC). FTIR (KBr): 746, 

1270, 1504, 1573, 1620, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.79 (s, 1H), 7.55–7.48 (m, 2H), 7.42 (d, 1H), 
7.31 (d, 1H), 7.20 (m, 1H), 7.08 (m, 1H), 6.97–6.90 (m, 2H), 3.82 (s, 3H). MS: m/z [M + H] + calcd for C14H13N2O2: 240.2662; found 
242.1664.

N-phenylbenzo[d]oxazol-2-amine (20) [33]
TLC (SiO2): Rf = 0.42 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=83%, mp 125–129 °C. FTIR (KBr): 746, 1270, 1504, 1573, 1625, 

1622, 1650, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ = 7.39–7.22 (m, 5 H). MS: m/z [M + H] + calcd for C13H10N2O: 210.2454; found 
210.1814.

N-(4-fluorophenyl)-7-methylbenzo[d]oxazol-2-amine (21)
TLC (SiO2): Rf = 0.43 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=84%, mp 164–167 °C. FTIR (KBr): 746, 1100, 1271, 1504, 1575, 

1600, 1630, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.82 (s, 1H), 7.65–7.63 (m, 2H), 7.47–7.44 (m, 1H), 7.38–7.36 (m, 1H), 
7.07–6.99 (m, 3H), 2.20 (s, 3H). MS: m/z [M + H] + calcd for C14H11FN2O: 242.2532; found 243.3721.

N-(4-methoxyphenyl)-7-methylbenzo[d]oxazol-2-amine (22)
TLC (SiO2): Rf = 0.38 (Hexane‒CH2Cl2 = 8:2). Light yellow solid; yield=78%, mp 145–147 °C. FTIR (KBr): 746, 1270, 1504, 1573, 

1610, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.50 (s, 1H), 7.48–7.44 (m, 1H), 7.39–7.36 (m, 1H), 7.26–7.23 
(m, 2H), 7.10–7.04 (m, 1H), 6.63–6.61 (m, 2H), 3.74 (s, 3H), 2.20 (s, 3H). MS: m/z [M + H] + calcd for C15H14N2O2: 254.2921; found 
254.2720.

7-methyl-N-phenylbenzo[d]oxazol-2-amine (23) [50]
TLC (SiO2): Rf = 0.45 (Hexane‒CH2Cl2 = 8:2). Pale brown solid, yield=83%, mp 164–167 °C (Lit. m.p. 163-166 OC). FTIR (KBr): 746, 

1271, 1504, 1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.62 (d, 1H), 7.43-7.32 (m, 3H), 7.18–7.11 (m, 2H), 
6.97 (d, 1H), 2.47 (s, 3H). MS: m/z [M + H] + calcd for C14H12N2O: 224.0951. Found: 224.0854.

7-bromo-N-(4-fluorophenyl) benzo[d]oxazol-2-amine (24)
TLC (SiO2): Rf = 0.48 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=86%, mp 171–172 °C. FTIR (KBr): 660, 749, 1100, 1271, 1504, 

1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.83 (s, 1H), 7.65–7.63 (m, 2H), 7.57–7.56 (m, 1H), 7.49–7.37 (m, 
2H), 7. 05–7.02 (m, 2H). MS: m/z [M + H] + calcd for C13H8BrFN2O: 305.9823; found 305.9820.

7-bromo-N-(4-methoxyphenyl) benzo[d]oxazol-2-amine (25)
TLC (SiO2): Rf = 0.40 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=82%, mp 148–150 °C. FTIR (KBr): 655, 746, 1270, 1504, 1573, 

1610, 1622, 1650, 2820, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 8.48 (s, 1H), 7.60 –7.56 (m, 1H), 7.49-7.36 (m, 2H), 7.26–7.24 (m, 
2H), 6.65-6.62 (m, 2H), 3.74 (s, 3H). MS: m/z [M + H] + calcd for C14H11BrN2O2: 319.1642; found 321.0813.

7-bromo-N-phenylbenzo[d]oxazol-2-amine (26)
TLC (SiO2): Rf = 0.50 (Hexane‒CH2Cl2 = 8:2). Yellow solid; yield=77%, mp 169–171 °C. FTIR (KBr): 660, 749, 1100, 1271, 1504, 

1573, 1600, 1622, 1647, 3049 cm–1. 1 H NMR (400 MHz, DMSO-d6): δ 7.80 (s, 1H), 7.56–7.53 (m, 1H), 7.50-7.36 (m, 4H), 7.28–7.26 (m, 
2H), 7. 05–7.02 (m, 1H). MS: m/z [M + H] + calcd for C13H9BrN2O: 289.1399; found 289.0932.


