
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 48 Number 4 Article 4 

7-3-2024 

On Vietoris’ hybrid number sequence On Vietoris’ hybrid number sequence 

NURTEN GÜRSES 

GÜLSÜM YELİZ SAÇLI 

SALİM YÜCE 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
GÜRSES, NURTEN; SAÇLI, GÜLSÜM YELİZ; and YÜCE, SALİM (2024) "On Vietoris’ hybrid number 
sequence," Turkish Journal of Mathematics: Vol. 48: No. 4, Article 4. https://doi.org/10.55730/
1300-0098.3533 
Available at: https://journals.tubitak.gov.tr/math/vol48/iss4/4 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
This Research Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been 
accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. 
For more information, please contact pinar.dundar@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol48
https://journals.tubitak.gov.tr/math/vol48/iss4
https://journals.tubitak.gov.tr/math/vol48/iss4/4
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0098.3533
https://doi.org/10.55730/1300-0098.3533
https://journals.tubitak.gov.tr/math/vol48/iss4/4?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:pinar.dundar@tubitak.gov.tr


Turk J Math
(2024) 48: 658 – 672
© TÜBİTAK
doi:10.55730/1300-0098.3533

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On Vietoris’ hybrid number sequence

Nurten GÜRSES, Gülsüm Yeliz SAÇLI, Salim YÜCE∗
Department of Mathematics, Faculty of Arts and Sciences, Yıldız Technical University, İstanbul, Turkiye

Received: 25.05.2023 • Accepted/Published Online: 07.05.2024 • Final Version: 03.07.2024

Abstract: This work is intended to establish a relation between Vietoris’ sequence, which is a rational sequence, and
hybrid numbers. Then it provides some characteristic properties of the hybrid numbers with Vietoris’ number coefficients.
Some relations between this hybrid number and its norm, the recurrence relations, the generating function, Binet-like
formula and Catalan-like identities are also indicated. Furthermore, a determinantal approach is presented to obtain
elements of Vietoris’ hybrid number sequence.
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1. Introduction
A hybrid number z = a+ bi+ cϵ+dh, a, b, c, d ∈ R which come to exist by linear combination of complex, dual
and hyperbolic numbers introduced by Özdemir, [18]. Here, the hybrid units i, ϵ and h satisfy the conditions:

i2 = −1, ϵ2 = 0,h2 = 1, ih = −hi = ϵ+ i, (1.1)

where 1 ↔ (1, 0, 0, 0), i ↔ (0, 1, 0, 0), ϵ ↔ (0, 0, 1, 0) , h ↔ (0, 0, 0, 1) represent real, complex, dual, and
hyperbolic units, respectively. The set of hybrid numbers is a non-commutative ring according to addition and
multiplication (see detailed information in [11, 18].)

Before continuing with the importance of the paper, it seems worthwhile to mention the special number
sequences. Fibonacci number sequence is one of the most important special integer sequences with almost
limitless applications. Mathematicians have been fascinated by it for almost 800 years. One may refer to the
first comprehensive survey of mathematics’ most fascinating number sequences Fibonacci and Lucas numbers
[13, 17] for details. The study of the relation between special number sequences and multicomponent number
systems has attracted much attention. This is largely due to the following problem: Can existing special number
sequences be generalized to different number systems? This problem is studied for special hybrid numbers such
as Fibonacci, Lucas, Pell, Padovan, etc., and their properties and so on; see [7, 10, 12, 15, 20–23].

As a general case of integer sequences, Vietoris’ number sequence is one of the rational sequences. This
special rational sequence is firstly defined in a theorem by Vietoris [24] with important applications, in harmonic
analysis [1] and in the theory of stable holomorphic functions [19]. The sth element of the Vietoris’ number
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sequence {vs}s≥0 is given by the formula:

vs =
1

2s

(
s⌊
s
2

⌋ )
, s ≥ 0, (1.2)

where
(

s⌊
s
2

⌋ )
is the central binomial coefficient ([14]) and the notion ⌊, ⌋ represents the floor function. The

first several values of this sequence are (related with the sequence A283208 in OEIS∗):

1,
1

2
,
1

2
,
3

8
,
3

8
,
5

16
,
5

16
,
35

128
,
35

128
,
63

256
,
63

256
, ...

The detailed information including the properties of Vietoris’ number sequence can be found in [2–5, 8, 9, 14, 25].
Our main research is concerned with Vietoris’ number sequence with 4 -dimensions via noncommutative

hybrid numbers by a unified approach. For this target, the study is organized as follows. In Section 2, basic
concepts about the hybrid numbers and the Vietoris’ number sequence are presented. In Section 3, starting
with the definition of Vietoris’ hybrid numbers, several properties, the recurrence relations, and Catalan-like
identities are discussed. Furthermore, a generating function and Binet-like formula are examined. This section
finishes with a tridiagonal matrix approach to Vietoris’ hybrid numbers.

2. Basic notions and arguments

To be brief, but a little bit more detailed, in this section we give a discussion of the hybrid numbers ([11, 18])
and then restrict this discussion to the Vietoris’ number sequence ([2–5, 8, 9, 14, 24, 25]) also.

Let z1 = a1 + b1i+ c1ϵ+ d1h and z2 = a2 + b2i+ c2ϵ+ d2h be hybrid numbers. For the equality z1 = z2

is valid if and only if a1 = a2, b1 = b2, c1 = c2 and d1 = d2 . The addition (hence subtraction) of the hybrid
numbers z1 and z2 is z1 + z2 = (a1 ± a2) + (b1 ± b2)i + (c1 ± c2)ϵ+ (d1 ± d2)h . By means of the conditions in

Table 1. The multiplication of the hybrid units, [18]
. i ϵ h
i −1 1− h ϵ+ i
ϵ 1 + h 0 −ϵ
h −ϵ− i ϵ 1

Table 1 which are extended form of the equations (1.1), the multiplication of the hybrid numbers z1 and z2 is
given as:

z1z2 = (a1a2 − b1b2 + b1c2 + b2c1 + d1d2) + (a1b2 + a2b1 + b1d2−d1b2)i
+(a1c2 + b1d2 + a2c1 − c1d2 − b2d1 + c2d1)ϵ+ (a1d2 − b1c2 + b2c1 + a2d1)h.

The multiplication is not commutative but associative. For z1 , Sz1 = a1 is called the scalar part and
Vz1 = b1i + c1ϵ+ d1h is called the vector part. The conjugate of z1 is:

z1 = a1 − b1i − c1ϵ− d1h. (2.1)
∗The Encyclopedia of Integer Sequences, https://oeis.org/book.
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We thus get z1 = Sz1 −Vz1 . Every hybrid number can be written with 2× 2 real matrices:

M(z1) = M (a1 + b1i + c1ϵ+ d1h) =
[

a1 + c1 b1 − c1 + d1
−b1 + c1 + d1 a1 − c1

]
, (2.2)

with

M(1) ↔
(

1 0
0 1

)
,M(i) ↔

(
0 1
−1 0

)
,M(ϵ) ↔

(
1 −1
1 −1

)
,M(h) ↔

(
0 1
1 0

)
.

Furthermore, the character of z1 is defined by

C(z1) = z1z1 = z1z1 = a21 + (b1 − c1)
2 − c21 − d21 = det(M(z1)). (2.3)

z1 is spacelike, timelike, lightlike if C(z1) < 0 , C(z1) > 0 , C(z1) = 0 , respectively. The norm of z1 is:

||z1|| =
√
|C(z1)| =

√
|a21 + (b1 − c1)2 − c21 − d21|. (2.4)

The inverse of z1 is given by: z−1
1 =

z1

C(z1)
, ||z1|| ̸= 0. The hybrid vector of z1 is: ξz1 = ((b1 − c1), c1, d1) and

Cξ(z1) = −(b1 − c1)
2 + c21 + d21 =

(tr(M(z1)))
2 − 4 det(M(z1))

4
. (2.5)

z1 is elliptic (complike), hyperbolic (hyperlike), parabolic (duallike) if Cξ(z1) < 0 , Cξ(z1) > 0 , Cξ(z1) = 0 ,
respectively. The norm of the hybrid vector of z1 is denoted by N(z1) =

√
|Cξ(z1)| .

Now, let us discuss the basic properties of Vietoris’ number sequence {vs}s≥0 belonging to the sth

element formula given by equation (1.2). Even members of {vs}s≥0 are given by: v2n = 1
22n

(
2n
n

)
, n ≥ 0,

where v2n = v2n−1 . The two-term recurrence relation for {v2n}n≥0 is given as:

v2n+2 = d(2n)v2n, n ≥ 0, (2.6)

where d(k) = k+1
k+2 , k ≥ 0 . Hence v2n in terms of any v2k or v0 can be written follows, respectively ([8, 9]):

v2n =

n−k∏
l=1

d(2n− 2l)v2k, n > k, (2.7)

v2n+2 =

n∏
i=0

d(2i)v0 =
(2n+ 1)!!

(2n+ 2)!!
. (2.8)

The three consecutive term recurrence relation with an even index is:

v2n+2 =
1

2
v2n+1 +

1

2
d (2n) v2n. (2.9)

It can also be written as:

v2n+2 =
1

2
d (2n) v2n +

1

2
d (2n) d (2n− 2) v2n−2. (2.10)
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The generating function is (see [5]):

g(x) =

√
1 + x−

√
1− x

x
√
1− x

=

∞∑
s=0

vsx
s, 0 < |x| < 1. (2.11)

The Binet-like formula is given by:

v2n = c1 (2n) r
2n
1 (2n) + c2 (2n) r

2n
2 (2n) , (2.12)

where

r1 (2n) =
1

4

(
1−

√
1 + 8d(2n)

)
, r2 (2n) =

1

4

(
1 +

√
1 + 8d(2n)

)
(2.13)

and 
c1 (2n) =

r2n2 (2n)− v2

r2n2 (2n)− r2n1 (2n)

n−1∏
k=1

(2r1(2k)− 1)r1(2k)

c2 (2n) =
v2 − r2n1 (2n)

r2n2 (2n)− r2n1 (2n)

n−1∏
k=1

(2r2(2k)− 1)r2(2k).

(2.14)

Here r1 and r2 have the following basic properties (see [8]): r2(0) = 1+
√
5

4 is half of the golden ratio,
r1(2n) + r2(2n) =

1
2 , r1(2n)r2(2n) = − 1

2d(2n) .

3. Vietoris’ hybrid numbers
In this section, we extend the results of Vietoris’ numbers to Vietoris’ hybrid numbers taking into account the
fundamental properties given in previous section.

Definition 3.1 The s th element of the hybrid sequence with Vietoris’ numbers {Vs}s≥0 is defined by Vs and
determined by as follows:

Vs = vs + vs+1i + vs+2ϵ+ vs+3h, ∀s ∈ N. (3.1)

Here the hybrid units satisfy the conditions in Table 1.

Since v2n−1 = v2n , the even and odd indexed Vietoris’ hybrid numbers are of the following forms:

V2n = v2n + v2n+2 (i + ϵ) + v2n+4h, for s = 2n (3.2)

and
V2n+1 = v2n+2 (1 + i) + v2n+4 (ϵ+ h) , for s = 2n+ 1. (3.3)

By using equation (2.6), we can write: {
V2n = v2nR(2n),

V2n+1 = v2n+2S(2n+ 2),
(3.4)

where
R(2n) = 1 + d(2n) (i + ϵ) + d(2n)d(2n+ 2)h (3.5)

S(2n+ 2) = 1 + i + d(2n+ 2) (ϵ+ h) . (3.6)
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Theorem 3.2 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. ∀n ∈ N , the following relations between the
conjugation and the norm are satisfied:

(i) †V2n − iV2n+1 − ϵV2n+2 − hV2n+3

‡V2n − V2n+1i − V2n+2ϵ− V2n+3h

}
= v2n + v2n+2 − 2v2n+4 − v2n+6,

(ii) †V2n+1 − iV2n+2 − ϵV2n+3 − hV2n+4

‡V2n+1 − V2n+2i − V2n+3ϵ− V2n+4h

}
= v2n+2 − v2n+4 − v2n+8,

(iii) Vs + Vs = 2vs ,

(iv) V2
s + ||Vs||2 = 2vsVs .

Proof On account of equations (2.1) and (2.4), the proof is obvious. 2

Theorem 3.3 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then the following matrices can be written:

M(V2n) = v2n

(
1 + d(2n) d(2n)d(2n+ 2)

d(2n)d(2n+ 2) 1− d(2n)

)
, (3.7)

M(V2n+1) = v2nd(2n)

(
1 + d(2n+ 2) 1

−1 + 2d(2n+ 2) 1− d(2n+ 2)

)
. (3.8)

Proof Applying equation (2.2) we have:

M(V2n) =

(
v2n + v2n+2 v2n+1 − v2n+2 + v2n+3

−v2n+1 + v2n+2 + v2n+3 v2n − v2n+2

)
.

Combining v2n = v2n−1 and equation (2.6), the above matrix transforms into the matrix given in equation
(3.7). Similarly M(V2n+1) can be easily calculated. 2

Corollary 3.4 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. ∀n ∈ N , the following statements are given
for the characters and types of the even and odd indexed Vietoris’ hybrid numbers:

(i) {
C(V2n) = v22n

(
1− d2(2n)− d2(2n)d2(2n+ 2)

)
,

C(V2n+1) = v22nd
2(2n)

(
2− 2d(2n+ 2)− d2(2n+ 2)

)
.

For n < 2 , V2n is timelike since C (V2n) > 0 . For n ≥ 2 , V2n is spacelike due to the fact that
C (V2n) < 0 . V2n+1 is certainly spacelike since C (V2n+1) < 0 . The lightlike Vietoris’ hybrid number is
not valid.

(ii) {
Cξ(V2n) = v22nd

2(2n)
(
1 + d2(2n+ 2)

)
,

Cξ(V2n+1) = −v22nd
2(2n)

(
1− 2d(2n+ 2)− d2(2n+ 2)

)
.

Hence, the Vietoris’ hybrid numbers V2n and V2n+1 are certainly hyperbolic since Cξ(V2n) > 0 and
Cξ(V2n+1) > 0 .
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Proof Considering equations (2.3), (2.5) and matrices (3.7), (3.8), the classifications can be obtained quickly.
2

Remark 3.5 For n < 2 , V2n is timelike hyperbolic, n ≥ 2 , V2n is spacelike hyperbolic and ∀n ∈ N , V2n+1 is
spacelike hyperbolic.

Proposition 3.6 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then the followings hold:

(i) V2n + V2n+1 =v2n [1 + d(2n) + 2d(2n)i + d(2n) (1 + d(2n+ 2)) ϵ+ 2d(2n)d(2n+ 2)h] ,

(ii) V2n − V2n+1 =v2n [1− d(2n) + d(2n) (1− d(2n+ 2)) ϵ],

(iii) V2n + V2n−1 = v2n [2 + (d(2n) + 1)i + 2d(2n)ϵ+ d(2n)(d(2n+ 2) + 1)h] ,

(iv) V2n − V2n−1 = v2n [(d(2n)− 1)i + d(2n)(d(2n+ 2)− 1)h] ,

(v) V2n+1 + V2n−1 = v2n [(d(2n) + 1)(1 + i) + d(2n)(d(2n+ 2) + 1)(ϵ+ h)] ,

(vi) V2n+1 − V2n−1 = v2n [(d(2n)− 1)(1 + i) + d(2n)(d(2n+ 2)− 1)(ϵ+ h)] ,

(vii) V2n + V2n+2 =v2n [(1 + d(2n)) + d(2n)(d(2n+ 2) + 1)(i + ϵ) + d(2n)d(2n+ 2)(d(2n+ 4) + 1)h] ,

(viii) V2n+2 − V2n =v2n [(d(2n)− 1) + d(2n)(d(2n+ 2)− 1)(i + ϵ) + d(2n)d(2n+ 2)(d(2n+ 4)− 1)h] .

Proof By considering equations (2.6), (3.2), and (3.3), the proofs are clear. 2

Proposition 3.7 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then, the following properties are given:

(i) V2nV2m − V2nV2m = 2v2nv2mVR(2n)+R(2m) ,

(ii) V2nV2m+1 − V2nV2m+1 = 2d(2m)v2nv2mVR(2n)+S(2m+2) ,

(iii) V2n+1V2m − V2n+1V2m = 2d(2n)v2nv2mVS(2n+2)+R(2m) ,

(iv) V2n+1V2m+1 − V2n+1V2m+1 = 2d(2n)d(2m)v2nv2mVS(2n+2)+S(2m+2).

Proof (iii) From equations (3.4), we can write:

V2n+1V2m − V2n+1V2m = v2n+2v2mS(2n+ 2)R(2m)− v2n+2v2mS(2n+ 2)R(2m).

Considering equations (3.5) and (3.6), we obtain:

V2n+1V2m − V2n+1V2m = (1 + d(2m)) i + (d(2n+ 2) + d(2m)) ϵ
+(d(2n+ 2) + d(2m)d(2m+ 2))h.

Hence from equation (2.6) and the vector part VS(2n+2)+R(2m) of S(2n+ 2) + R(2m) , the proof is obvious.
The other parts are clear using the same manner. 2

Additionally, the expression V2nV2m−V2nV2m is calculated as 2v2nv2mVR(2n)−R(2m) . One can see that the only
difference between this identity and part (i) of Proposition 3.7 is the sign in vector part. Hence the identities
V2nV2m+1 − V2nV2m+1, V2n+1V2m − V2n+1V2m and V2n+1V2m+1 − V2n+1V2m+1 can be calculated easily by
the same manner considering parts (ii)-(iv) of Proposition 3.7.
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3.1. The recurrence relations
In this subsection, the concept of the recurrence relations of Vietoris’ number sequence are extended to Vietoris’
hybrid number sequence.

Theorem 3.8 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then,

V2n+2 = V2n+1ηr(2n+ 2) = ηl(2n+ 2)V2n+1, (3.9)

where 
ηr(2n+ 2) =

η0 + η1i + η2ϵ+ η3h
2− d(2n+ 2) (2 + d(2n+ 2))

,

ηl(2n+ 2) =
η0 + η4i − η2ϵ+ η5h

2− d(2n+ 2) (2 + d(2n+ 2))

with 

η0 = 1− d2(2n+ 2) (1 + d(2n+ 4)) ,
η1 = −1 + d(2n+ 2) (1 + d(2n+ 2)− d(2n+ 4)) ,
η2 = d(2n+ 2)d(2n+ 4) (d(2n+ 2)− 1) ,
η3 = d(2n+ 2) (−d(2n+ 2) + d(2n+ 4)) ,
η4 = −1 + d(2n+ 2) (1− d(2n+ 2) + d(2n+ 4)) ,
η5 = d(2n+ 2) (−2 + d(2n+ 2) + d(2n+ 4)) .

(3.10)

Proof Using equations (3.4), we can write:

V2n+2 =v2n+2S(2n+ 2)
S(2n+ 2)R(2n+ 2)

S(2n+ 2)S(2n+ 2)
.

Considering Table 1, we compute S(2n+ 2)R(2n+ 2) as η0 + η1i + η2ϵ + η3h (see equations (3.10)). Also
computation of S(2n+ 2)S(2n+ 2) gives 2− d(2n+ 2) (2 + d(2n+ 2)) . Hence we obtain:

V2n+2 =V2n+1
η0 + η1i + η2ϵ+ η3h

2− d(2n+ 2) (2 + d(2n+ 2))
= V2n+1ηr(2n+ 2).

Again using equations (3.4), we now turn to the another case:

V2n+2 =v2n+2R(2n+ 2) =
R(2n+ 2)S(2n+ 2)

S(2n+ 2)S(2n+ 2)
S(2n+ 2)v2n+2.

On account of equation Table 1, the computation of R(2n+ 2)S(2n+ 2) gives
η0 + η4i − η2ϵ+ η5h (see equations (3.10)), and so

V2n+2 =
η0 + η4i − η2ϵ+ η5h

2− d(2n+ 2) (2 + d(2n+ 2))
V2n+1 = ηl(2n+ 2)V2n+1.

This completes the proof. 2

Theorem 3.9 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then,

V2n+1 = V2nζr(2n) = ζl(2n)V2n, (3.11)
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where 
ζr(2n) = d(2n)

ζ0 + ζ1i + ζ2ϵ+ ζ3h
1− d2(2n) (1 + d2(2n+ 2))

,

ζl(2n) = d(2n)
ζ0 + ζ1i + ζ4ϵ+ ζ5h

1− d2(2n) (1 + d2(2n+ 2))

with 

ζ0 = 1− d(2n)d(2n+ 2) (1 + d(2n+ 2)) ,
ζ1 = 1− d(2n),
ζ2 = −d(2n) + d(2n+ 2) (1 + d(2n)− d(2n)d(2n+ 2)) ,
ζ3 = −d(2n) + d(2n+ 2),
ζ4 = −d(2n) + d(2n+ 2) (1− d(2n) + d(2n)d(2n+ 2)) ,
ζ5 = d(2n) (1− 2d(2n+ 2)) + d(2n+ 2).

(3.12)

Proof Using equations (3.4), we obtain:

V2n+1 =d(2n)v2nS(2n+ 2) = v2nR(2n)d(2n)
R(2n)S(2n+ 2)

R(2n)R(2n)
.

According to Table 1, we see that R(2n)S(2n+ 2) = ζ0 + ζ1i + ζ2ϵ+ ζ3h (see equations (3.12)) and
R(2n)R(2n) = 1 − d2(2n)

(
1 + d2(2n+ 2)

)
. We thus get V2n+1 = V2nζr(2n) . Similarly, considering Table

1, equations (3.4) and (3.12), we obtain:

V2n+1 = d(2n)v2nS(2n+ 2)

= d(2n)
S(2n+ 2)R(2n)

R(2n)R(2n)
R(2n)v2n

= d(2n)
ζ0 + ζ1i + ζ4ϵ+ ζ5h

1− d2(2n) (1 + d2(2n+ 2))
V2n

= ζl(2n)V2n.

2

Theorem 3.10 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then,

V2n+2 = V2nµr(2n) = µl(2n)V2n,

where 
µr(2n) = d(2n)

µ0 + µ1i + µ2ϵ+ µ3h
1− d2(2n) (1 + d2(2n+ 2))

,

µl(2n) = d(2n)
µ0 + µ4i + µ2ϵ+ µ3h

1− d2(2n) (1 + d2(2n+ 2))

with 
µ0 = 1− d(2n)d(2n+ 2) (1 + d(2n+ 2)d(2n+ 4)) ,
µ1 = d(2n)

(
−1 + d2(2n+ 2)− d(2n+ 2)d(2n+ 4)

)
+ d(2n+ 2),

µ2 = −d(2n) + d(2n+ 2),
µ3 = d(2n+ 2) (−d(2n) + d(2n+ 4)) ,
µ4 = d(2n)

(
−1− d2(2n+ 2) + d(2n+ 2)d(2n+ 4)

)
+ d(2n+ 2).

(3.13)
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Proof From equations (3.4), we have:

V2n+2 =d(2n)v2nR(2n+ 2) = v2nR(2n)d(2n)
R(2n)R(2n+ 2)

R(2n)R(2n)
.

Applying Table 1, we can assert that R(2n)R(2n+ 2) = µ0 + µ1i + µ2ϵ+ µ3h (see equations (3.13)), and
R(2n)R(2n) = 1− d2(2n)

(
1 + d2(2n+ 2)

)
. This gives V2n+2 = V2nµr(2n) . Moreover, we have:

V2n+2 = d(2n)v2nR(2n+ 2) = d(2n)
R(2n+ 2)R(2n)

R(2n)R(2n)
R(2n)v2n.

From this we conclude that

V2n+2 = d(2n)
µ0 + µ1i + µ2ϵ+ µ3h

1− d2(2n) (1 + d2(2n+ 2))
V2n = µl(2n)V2n,

where R(2n+ 2)R(2n) = µ0 + µ4i + µ2ϵ+ µ3h . 2

Theorem 3.11 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then,

V2n+1 = V2n−1δr(2n) = δl(2n)V2n−1,

where 
δr(2n) = d(2n)

δ0 + δ1 (i − 2h)
2− d(2n) (2 + d(2n))

,

δl(2n) = d(2n)
δ0 − δ1 (i + 2ϵ)

2− d(2n) (2 + d(2n))

with {
δ0 = 2− d(2n) (1 + d(2n+ 2))− d(2n+ 2),
δ1 = d(2n)− d(2n+ 2).

(3.14)

Considering the functions ηr, ζr, µr and δr in Theorem 3.8-Theorem 3.11, the following theorem can be given.

Theorem 3.12 Let {Vs}s≥0 be Vietoris’ hybrid number sequence. Then, the three term recurrence relations
are given by:

(i) Vs+1 = VsF1(s) + Vs−1F0(s− 1) , where

F1(s) =

{
1
2ζr(s), s = 2n
1
2ηr(s+ 1), s = 2n+ 1

and F0(s− 1) =

{
1
2δr(s), s = 2n
1
2µr(s− 1) s = 2n+ 1.

(ii) Vs+2 = VsG1(s) + Vs−2G0(s− 2), where

G1(s) =

{
1
2µr(s), s = 2n
1
2δr(s+ 1), s = 2n+ 1

and G0(s− 2) =

{
µr(s− 2)G1(s), s = 2n
δr(s− 1)G1(s) s = 2n+ 1.
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Proof (i) The proof is a simple calculation by using Theorem 3.8-Theorem 3.11, and a relation
Vs+1 = 1

2Vs+1 +
1
2Vs+1.

(ii) Let us consider the case s = 2n + 1 . From equations (3.4), we obtain V2n+3 = v2n+4S(2n + 4) . From
equation (2.10), we have:

V2n+3 =
(
1
2d(2n+ 2)v2n+2 +

1
2d(2n+ 2)d(2n)v2n

)
S(2n+ 4)

= 1
2V2n+1d(2n+ 2) S(2n+2)

S(2n+2)S(2n+2)
S(2n+ 4) + 1

2V2n−1

[
d(2n) S(2n)

S(2n)S(2n)
S(2n+ 2)

][
d(2n+ 2) S(2n+2)

S(2n+2)S(2n+2)
S(2n+ 4)

]
= 1

2V2n+1δR(2n+ 2) + 1
2V2n−1δR(2n)δR(2n+ 2)

= V2n+1G1(2n+ 1) + V2n−1G0(2n− 1).

The case s = 2n can also be proved by the same manner. 2

Theorem 3.13 Consider even values of p and R(p)R(p) ̸= 0 . A Catalan-like identity for {Vs}s≥0 is given by:

V2
s − Vs−pVs+p = V2

pT (s, p), s > p,

where

T (s, p) =

 R(p)

R(p)R(p)

⌊ s+1−p
2 ⌋∏

l=1

d

(
2

⌊
s+ 1

2

⌋
− 2l

)
2

K(s, p)

with

K(s, p) =

{
R2(s)−X (s, p)R(s− p)R(s+ p), s = 2n,
S2(s+ 1)−X (s, p)S(s+ 1− p)S(s+ 1 + p), s = 2n+ 1,

and

X (s, p) =


⌊ p

2 ⌋∏
l=1

d(s+p−2l)
d(s−p+2l−2) , s+ p even

⌊ p
2 ⌋∏

l=1

d(s+1+p−2l)
d(s−1−p+2l) , s+ p odd.

(3.15)

Proof Let us consider p = 2k and conduct the proof by taking s = 2n and s = 2n+ 1 , respectively.
• For s = 2n , from equations (2.7) and (3.4), we obtain:

V2n+2k = v2n+2kR(2n+ 2k) =
k∏

l=1

d(2n+ 2k − 2l)v2nR(2n+ 2k), n > k, (3.16)

and

V2n−2k = v2n−2kR(2n− 2k) =
k∏

l=1

1
d(2n−2k+2l−2)v2nR(2n− 2k), n > k. (3.17)
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From equations (3.4), (3.16), and (3.17), we get:

V2
2n − V2n−2kV2n+2k = v22nR

2(2n)− v2n−2kv2n+2kR(2n− 2k)R(2n+ 2k)

= v22k
n−k∏
l=1

d2(2n− 2l)
(
R2(2n) −X (2n, 2k)R(2n− 2k)R(2n+ 2k))

= v22k
n−k∏
l=1

d2(2n− 2l)K(2n, 2k)

= V2
2kT (2n, 2k).

• For s = 2n+ 1 , by using equations (2.7) and (3.4), we find:

V2n−2k+1 = v2n−2k+2S(2n− 2k + 2)

=
k∏

l=1

1
d(2n−2k+2l)v2n+2S(2n− 2k + 2), n > k,

(3.18)

and
V2n+2k+1 = v2n+2k+2S(2n+ 2k + 2)

=
k∏

l=1

d(2n+ 2k + 2− 2l)v2n+2S(2n+ 2k + 2), n > k.
(3.19)

By utilizing equations (3.4), (3.18), and (3.19), we have:

V2
2n+1 − V2n−2k+1V2n+2k+1

= v22n+2S
2(2n+ 2)− v2n−2k+2v2n+2k+2S(2n− 2k + 2)S(2n+ 2k + 2)

= v22k
n−k∏
l=1

d2(2n− 2l)d2(2n)
(
S2(2n+ 2)−X (2n+ 1, 2k)S(2n− 2k + 2)S(2n+ 2k + 2)

)
= v22k

n−k∏
l=1

d2(2n− 2l)d2(2n)K(2n+ 1, 2k) = V2
2kT (2n+ 1, 2k).

The proof is completed. 2

Theorem 3.14 Consider odd values of p and S(p+1)S(p+1) ̸= 0 . A Catalan-like identity for Vietoris’ hybrid
number sequence {Vs}s≥0 is given by:

V2
s − Vs−pVs+p = V2

pT ∗(s, p), s > p,

where

T ∗(s, p) =

 S(p+ 1)

S(p+ 1)S(p+ 1)

⌊ s−1−p
2 ⌋∏

l=1

d
(
2
⌊s
2

⌋
− 2l

)
2

K∗(s, p) (3.20)

with

K∗(s, p) =

{
R2(s)−X (s, p)d(s)S(s+ 1− p)S(s+ 1 + p), s = 2n,
d2(s− 1)S2(s+ 1)−X (s, p)d(s− 1)R(s− p)R(s+ p), s = 2n+ 1.

(3.21)

Here X (s, p) is the function defined in equation (3.15).
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Proof Let us consider p = 2k+1 and conduct the proof by taking s = 2n and s = 2n+1 , respectively. From
equations (2.7) and (3.4), we have the followings
• For s = 2n :

V2n−2k−1 = v2n−2kS(2n− 2k) =
k∏

l=1

1
d(2n−2k+2l−2)v2nS(2n− 2k), n > k. (3.22)

• For s = 2n+ 1 :

V2n+2k+2 = v2n+2k+2R(2n+ 2k + 2)

=
k∏

l=1

d(2n+ 2k + 2− 2l)v2n+2R(2n− 2k + 2), n > k.
(3.23)

With reference to equations (3.4), (3.20), and (3.21), substituting equations (3.19), (3.22), (3.23), and (3.17)
into V2

s − Vs−pVs+p = V2
pT ∗(s, p) in order, completes the proof. 2

Theorem 3.15 A generating function for {Vs}s≥0 is:

G(x) = 1

x3

(
g(x)(x3 + x2i + xϵ+ h)− g(x)

)
, 0 < |x| < 1,

where g(x) = 1
2

(
2x2i + (2x+ x2)ϵ+ (2 + x+ x2)h

)
.

Proof Assume that G(x) =
∞∑
s=0

Vs x
s is generating function of {Vs}s≥0 . Multiplying with x3 and considering

equation (2.11), we have:

x3G(x) =
∞∑
s=0

Vs x
s+3

= x3
∞∑
s=0

vsx
s + x2

∞∑
s=0

vs+1x
s+1i + x

∞∑
s=0

vs+2x
s+2ϵ+

∞∑
s=0

vs+3x
s+3h

= g(x)
(
x3 + x2i + xϵ+ h

)
− 1

2

(
2x2i + (2x+ x2)ϵ+ (2 + x+ x2)h

)
= g(x)

(
x3 + x2i + xϵ+ h

)
− g(x).

2

Theorem 3.16 A Binet-like formula for {Vs}s≥0 is given by:

Vs = P1(s)r
2⌊ s+1

2 ⌋
1

(
2

⌊
s+ 1

2

⌋)
+ P2(s)r

2⌊ s+1
2 ⌋

2

(
2

⌊
s+ 1

2

⌋)
,

where Pi(s) =

{
ci(s)R(s), s = 2n
ci(s+ 1)S(s+ 1), s = 2n+ 1.

(i = 1, 2)

Here, ri(s), ci(s) are the functions defined in equations (2.13) and (2.14).

Proof For s = 2n+ 1 , applying equations (2.12) and (3.4), we assert:

V2n+1 = v2n+2S2n+2

=
(
c1 (2n+ 2) r2n+2

1 (2n+ 2) +c2 (2n+ 2) r2n+2
2 (2n+ 2)

)
S(2n+ 2)

= c1 (2n+ 2) S(2n+ 2)r2n+2
1 (2n+ 2) + c2 (2n+ 2) S(2n+ 2)r2n+2

2 (2n+ 2)
= P1(2n+ 1)r2n+2

1 (2n+ 2) + P2(2n+ 1)r2n+2
2 (2n+ 2) .
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A similar proof works for the case s = 2n . 2

In the following theorem, inspired by the studies [6, 8, 16], let us discuss some special tridiagonal matrices
that generate the elements of Vietoris’ hybrid number sequence {Vs}s≥0 .

Theorem 3.17 The following tridiagonal matrices of the order n+1 with Vietoris’ hybrid number entries can
be given by:

(i) Kn+1 =



V1 −V0

F0(0) F1(1) −1
F0(1) F1(2) −1

F0(2) F1(3) −1
. . . . . . . . .

F0(n− 2) F1(n− 1) −1
F0(n− 1) F1(n)


,

(ii) Ln+1 =



V0

−1 2F1(0) F0(0)
−1 F1(1) F0(1)

−1 F1(2) F0(2)
. . . . . . . . .

−1 F1(n− 2) F0(n− 2)
−1 F1(n− 1)


,

(iii) Mn+1 =



V0

−1 2G1(0) G0(0)
−1 G1(2) G0(2)

−1 G1(4) G0(4)
. . . . . . . . .

−1 G1(2n− 4) G0(2n− 4)
−1 G1(2n− 2)


,

(iv) Nn+1 =



V1

−1 2G1(1) G0(1)
−1 G1(3) G0(3)

−1 G1(5) G0(5)
. . . . . . . . .

−1 G1(2n− 3) G0(2n− 3)
−1 G1(2n− 1)


,

where det (Kn+1) = Vn+1 , det (Ln+1) = Vn , det (Mn+1) = V2n , det (Nn+1) = V2n+1 . It is worth noting that
the determinants start always with all entries of the last column using Laplace expansion†.

Proof (i) The proof is conducted by mathematical induction. For n = 0 :

det (K1) = V1 =
1

2
+

1

2
i +

3

8
ϵ+

3

8
h.

†For any
[
mij

]
n×n

, det(
[
mij

]
n×n

) =
∑n

i=1 cinmin , with cin = (−1)i+n detYin where detYin is the i, n minor of M , [8].
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For n = 1 , considering Theorem 3.12, we get:

det

([
V1 −V0

F0(0) F1(1)

])
= V1F1(1) + V0F0(0) = V2 =

1

2
+

3

8
i +

3

8
ϵ+

5

16
h.

For n = 2 , we have:

det

 V1 −V0 0
F0(0) F1(1) −1
0 F0(1) F1(2)

 = (−1)3+3 det

([
V1 −V0

F0(0) F1(1)

])
F1(2)

−(−1)3+2 (V1)F0(1)
= V2F1(2) + V1F0(1)
= V3

=
3

8
+

3

8
i +

5

16
ϵ+

5

16
h.

For n− 1 , assume that det (Kn) = Vn. By applying Laplace expansion and Theorem 3.12 for n , we get:

det (Kn+1) = (−1)2n+2 det (Kn)F1(n)− (−1)2n+1 det (Kn−1)F0(n− 1)
= VnF1(n) + Vn−1F0(n− 1)
= Vn+1.

The other parts can be proved in a similar manner by mathematical induction. 2

4. Conclusions
Motivated by properties of Vietoris’ sequence and hybrid numbers, this work aims to bring together Vietoris’
sequence and hybrid numbers to construct Vietoris’ hybrid number sequence. Then some properties of the
hybrid numbers with Vietoris’ number coefficients are examined. For this approach, it is natural to seek the
recurrence relations, the generating function, Binet-like formula, and Catalan-like identities. The results are
also extended by the tridiagonal matrix approach for Vietoris’ hybrid numbers. We hope the concept of Vietoris’
hybrid number sequence will prove fruitful for other number sequences.
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