
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 48 Number 3 Article 15 

5-1-2024 

Generalizations of Zassenhaus lemma and Jordan-Hölder Generalizations of Zassenhaus lemma and Jordan-Hölder 

theorem for 2−crossed modules theorem for 2−crossed modules 

SELİM ÇETİN 
seliimcetin@gmail.com 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

Recommended Citation Recommended Citation 
ÇETİN, SELİM (2024) "Generalizations of Zassenhaus lemma and Jordan-Hölder theorem for 2−crossed 
modules," Turkish Journal of Mathematics: Vol. 48: No. 3, Article 15. https://doi.org/10.55730/
1300-0098.3526 
Available at: https://journals.tubitak.gov.tr/math/vol48/iss3/15 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact pinar.dundar@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol48
https://journals.tubitak.gov.tr/math/vol48/iss3
https://journals.tubitak.gov.tr/math/vol48/iss3/15
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss3%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0098.3526
https://doi.org/10.55730/1300-0098.3526
https://journals.tubitak.gov.tr/math/vol48/iss3/15?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss3%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pinar.dundar@tubitak.gov.tr


Turk J Math
(2024) 48: 567 – 593
© TÜBİTAK
doi:10.55730/1300-0098.3526

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Generalizations of Zassenhaus lemma and Jordan-Hölder theorem
for 2−crossed modules

Selim ÇETİN∗
Department of Mathematics, Faculty of Arts and Humanities,

Burdur Mehmet Akif Ersoy University, Burdur, Turkiye

Received: 26.10.2023 • Accepted/Published Online: 07.03.2024 • Final Version: 10.05.2024

Abstract: We present a comprehensive generalization of the Zassenhaus Lemma, the Scherier Refinement Theorem, and
the Jordan-Hölder Theorem, extending their applicability to both crossed modules and 2−crossed modules. It is discov-
ered that the previously established normality conditions are insufficient for forming quotient objects of 2−subcrossed
modules, as demonstrated through an illustrative example, and these conditions are rigorously revised to allow these
generalizations. These new conditions now yield results that are categorically accurate. Additionally, the study has led
to the derivation of several supplementary results, including isomorphism theorems for 2−crossed modules.

Key words: Crossed module, normality, Zassenhaus lemma, isomorphism theorems

1. Introduction and preliminaries
Crossed modules, in conjunction with their topological background, constitute structures that are algebraically
widespread and significant. One of the most notable reasons for their algebraic importance is the fact that any
group G can be analyzed through the crossed modules (T,G, ∂) that can be established on it. This situation
has some similarities with the intimate connection between modules and rings, as it was stated in [22] that to
study rings without some reference to modules is inconceivable.

First introduced by Whitehead [23, 24], crossed modules are structures that model the homotopy 2-type,
just as homotopy 1-types can be classified by groups. While crossed modules can be studied within the framework
of homotopy theory, which is the origin of the concept, they can also be studied with categorical or pure algebraic
approaches. In fact, Lue and Norrie have addressed crossed modules from the axiomatic algebraic perspective
and have shown in their studies that many concepts in group theory surprisingly correspond to similar concepts
in crossed modules, which have sufficiently well-behaved properties [13, 19]. This made it possible to develop
an interesting and comprehensive algebraic theory of crossed modules, which directly generalizes the theory of
groups in many aspects.

Crossed modules, which are one of the best-known structures of higher-dimensional group theory, among
others [1, 2, 4–10, 14–17] and which have many naturally equivalent structures as Cat−1 groups, simplicial
groups, strict 2−groups, have many equivalent definitions using different mathematical tools. For the purpose
of this study, we prefer to give the axiomatic definition, which is the most common in the literature.
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A crossed module is a triple (T,G, ∂) , where T is a G−group (i.e. the group G acts on the group T by
automorphisms) and ∂ : T −→ G is a G−equivariant group homomorphism satisfying the Peiffer rule. More
explicitly ∂ fulfills the properties

CM1) ∂(g . t) = g∂tg−1

CM2) ∂(s) . t = sts−1

for all s, t ∈ T and g ∈ G , where g . t stands for the action of the element g on t .
Crossed modules generalize both the notion of a group and the notion of a normal subgroup of a group.

Indeed any group G can naturally be identified with both the crossed modules (1, G, inc) and (G,G, id) , where
in the latter the crossed module G acts on itself by conjugation, and these identifications specify two fully
faithful functors from the category of groups Gr to the category of crossed modules XMod . On the other hand,
any normal subgroup N of a group G naturally gives rise to the crossed module (N,G, inc) , where G acts on N

by conjugation, and as a crossed module (T,G, ∂) is sometimes called a G−crossed module, a normal subgroup
of G defines a G−crossed module, making it possible to interpret G−crossed modules as generalizations of
normal subgroups of G .

In internal viewpoint, it is also possible to define subobjects and subobjects normal subobjects in XMod .
Consider two crossed modules (T,G, ∂) and (S,H, ∂′) . We call (S,H, ∂′) a subcrossed module of (T,G, ∂) if
S and H are subgroups of T and G , respectively, ∂′ is the restriction of d and also the action of H on S

is inherited from the action of G on T . For practical purposes, we often denote also the restriction of ∂ by ∂

again. The situation, where (S,H, ∂) is a subcrossed module of (T,G, ∂) is denoted by (S,H, ∂) ≤ (T,G, ∂) .
In this case, the normality of (S,H, ∂) in (T,G, ∂) is defined by the conditions

i) H is a normal subgroup of G ,
ii) g . s ∈ S for all g ∈ g and s ∈ S ,
iii) (h . t)t−1 ∈ S for all h ∈ H and t ∈ T ,

and denoted by (S,H, ∂) ⊴ (T,G, ∂) .
If (S,H, ∂) ⊴ (T,G, ∂) , then by definition we have H ⊴ G . Additionally, it is easly seen that also S ⊴ T .

Thus, it is possible to form a crossed module
(
T/S,G/H, ∂

)
, where ∂(tS) = ∂(t)H and G/H acts on T/S by

the formula (gH) . (tS) = (g . t)S . This is called the quotient crossed module of (T,G, ∂) by (S,H, ∂) and is

denoted by (T,G,∂)
(S,H,∂) .

A crossed module homomorphism from a crossed module (T,G, ∂) to a crossed module (T ′, G′, ∂′) is a
pair (θ, σ) of group homomorphisms θ : T −→ T ′ , σ : G −→ G′ , such that σ∂ = ∂′θ and θ(g . t) = σ(g) . θ(t)

for all g ∈ G and t ∈ T . Therefore, a crossed module homomorphism can be summarized by the following
commutative diagrams.

T

θ

��

∂ // G

σ

��
T ′

∂′
// G′

G× T

(σ,θ)

��

▷ // T

θ

��
G′ × T ′

▷′
// T ′
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Such a crossed module homomorphism defines a normal subcrossed module (ker θ, kerσ, ∂) of (T,G, ∂)

and a subcrossed module (im θ, imσ, ∂′) of (T ′, G′, ∂′) . While the former is called the kernel of the crossed
module homomorphism (θ, σ) , the latter is called the image of (θ, σ) .

It is worth noting that there is a close relationship between the concepts of a normal subcrossed module
and the kernel of a crossed module homomorphism. Namely, as we stated in the previous paragraph, the
kernel of a crossed module homomorphism (θ, σ) : (T,G, ∂) −→ (T ′, G′, ∂′) is a normal subcrossed module of
(T,G, ∂) and conversely, any normal subcrossed module (S,H, ∂) of (T,G, ∂) gives rise to a crossed module
homomorphism (θq, σq) : (T,G, ∂) −→

(
T/S,G/H, ∂

)
defined as θq(t) = tS , σq(g) = gH , whose kernel is equal

to (S,H, ∂) .
As a significant result of the discussion above, it can be stated that normal subcrossed modules of a

crossed module (T,G, ∂) are exactly the kernels of crossed module homomorphisms originating from (T,G, ∂) .
This provides us an important criterion for defining normal objects. Extending this approach from the category
of crossed modules to the category of 2−crossed modules is the reason why we need to revise the definition of
the normal 2−subcrossed module in the literature. Indeed, a counterexample is also presented in this article to
illustrate that the present definition may not always be sufficient to construct a well-defined quotient 2−crossed
module. For more details, see Example 2.

In the context of high-dimensional group theory 2−crossed modules, which are first introduced by Con-
duché in [3], model 3−groups, just as crossed modules model 2−groups [18]. Some fundamental definitions
regarding 2−crossed modules are given in Section 3. Despite their seemingly complex structure, it is quite in-
teresting to encounter examples of 2−crossed modules in natural sciences, for instance in axion electrodynamics
in the framework of particle physics [11].

Isomorphism theorems are well-known major results of group theory. As crossed modules generalize the
group theory, the question arises whether if one can generalize isomorphism theorems to crossed modules. The
answer is positive, and in fact the isomorphism theorems for crossed modules have really been well established
and found their places in the literature. Relevant results can be found collectively in [19]. One way to further
generalize these theorems is to investigate the validity of the results for 2−crossed modules. A part of the
current work involves identifying the structures that correctly describe the quotient objects of the 2−crossed
modules, and then to prove the generalizations of the isomorphism theorems.

Some of the important mathematical results that are somewhat related to isomorphism theorems are the
Zassenhaus lemma, the Schreier refinement theorem, and the Jordan–Hölder theorem. The Zassenhaus lemma
is also known as the butterfly lemma in the literature, and this nomenclature is based on the shape of the
Hasse diagram for the lattice of subgroups involved in the lemma, given by Lang [12]. The Schreier refinement
theorem is an important result on refinements of subnormal series of subgroups of a group, whose proof depends
on the Zassenhaus lemma. The Jordan-Hölder theorem, on the other hand, is an important result that can be
qualified as a fundamental theorem for the composition series of groups. Some of the results of this article are
generalizations of the above lemmas and theorems, which play an important role in group theory, both in the
theory of crossed modules and in the theory of 2−crossed modules.
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2. The case of crossed modules
Lemma 1 Consider two subcrossed modules (S,H, ∂) and (R,K, ∂) of a crossed module (T,G, ∂) and (P,N, ∂) ,
and let (Q,M, ∂) be normal subcrossed modules of (S,H, ∂) and (R,K, ∂) , respectively. Then

(P,N, ∂)
(
(S,H, ∂) ∩ (Q,M, ∂)

)
is a normal subcrossed module of

(P,N, ∂)
(
(S,H, ∂) ∩ (R,K, ∂)

)
and

(Q,M, ∂)
(
(P,N, ∂) ∩ (R,K, ∂)

)
is a normal subcrossed module of

(Q,M, ∂)
(
(S,H, ∂) ∩ (R,K, ∂)

)
.

Moreover,
(P,N, ∂)

(
(S,H, ∂) ∩ (R,K, ∂)

)
(P,N, ∂)

(
(S,H, ∂) ∩ (Q,M, ∂)

) ∼=
(Q,M, ∂)

(
(S,H, ∂) ∩ (R,K, ∂)

)
(Q,M, ∂)

(
(P,N, ∂) ∩ (R,K, ∂)

) ·
Proof From the definitions of the intersection of two subcrossed modules, the product of a subcrossed module
and a normal subcrossed module, and the quotient crossed module, we must show that(

P (S ∩R)

P (S ∩Q)
,
N(H ∩K)

N(H ∩M)
, ∂1

)
∼=

(
Q(S ∩R)

Q(P ∩R)
,
M(H ∩K)

M(N ∩K)
, ∂2

)
.

For this purpose, we consider the crossed module

(S,H, ∂) ∩ (R,K, ∂)(
(P,N, ∂) ∩ (R,K, ∂)

)(
(S,H, ∂) ∩ (Q,M, ∂)

) =

(
S ∩R

(P ∩R)(S ∩Q)
,

H ∩K

(N ∩K)(H ∩M)
, ∂

)
.

It is known from the group theory that the functions

θ :
P (S ∩R)

P (S ∩Q)
−→ S ∩R

(P ∩R)(S ∩Q)

σ :
N(H ∩K)

N(H ∩M)
−→ H ∩K

(N ∩K)(H ∩M)

given by θ
(
ptP (S ∩Q)

)
= t(P ∩R)(S ∩Q) and σ

(
ngN(H ∩M)

)
= g(N ∩K)(H ∩M) are group isomorphisms

[21].

Then for each ptP (S ∩Q) ∈ P (S∩R)
P (S∩Q) ,

σ∂1
(
ptP (S ∩Q)

)
= σ

(
∂(pt)N(H ∩M)

)
= σ

(
∂p∂tN(H ∩M)

)
= ∂t(N ∩K)(H ∩M) = ∂

(
t(P ∩R)(S ∩Q)

)
= ∂θ

(
ptP (S ∩Q)

)
and for each ngN(H ∩M) ∈ N(H∩K)

N(H∩M) ,

θ
(
ngN(H ∩M) . ptP (S ∩Q)

)
= θ

(
(ng . pt)P (S ∩Q)

)
570
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= θ
(
(ng . pt)(g . t)−1(g . t)P (S ∩Q)

)
= θ

(
(ng . p)

(
n . (g . t)

)
(g . t)−1(g . t)P (S ∩Q)

)
= θ

(
(p′(g . t)P (S ∩Q)

)
= (g . t)(P ∩R)(S ∩Q)

= g(N ∩K)(H ∩M) . t(P ∩R)(S ∩Q)

= σ
(
ngN(H ∩M)

)
. θ

(
(ptP (S ∩Q)

)
which proves that (θ, σ) is a crossed module isomorphism.

The isomorphism
(Q(S∩R)
Q(P∩R) ,

M(H∩K)
M(N∩K) , ∂2

) ∼=
(

S∩R
(P∩R)(S∩Q) ,

H∩K
(N∩K)(H∩M) , ∂

)
is similarly seen from the

symmetry. 2

Definition 1 [19] A normal series (series of length n) of a crossed module (T,G, ∂) consists of subcrossed
modules (Ti, Gi, ∂) , i = 0, ..., n , such that, (Ti, Gi, ∂) ⊴ (Ti−1, Gi−1, ∂) for i = 1, ..., n and

1 = Tn

��

// Tn−1

��

// · · · // T1

��

// T0 = T

∂

��
1 = Gn

// Gn−1
// · · · // G1

// G0 = G

In this case, the quotient crossed modules

(T0, G0, ∂0)

(T1, G1, ∂1)
,
(T1, G1, ∂1)

(T2, G2, ∂2)
, · · · , (Tn−1, Gn−1, ∂n−1)

(Tn, Gn, ∂n)

are called factor crossed modules of (T,G, ∂) .

Definition 2 Given two normal series

1 = Tn

��

// Tn−1

��

// · · · // T1

��

// T0 = T

∂

��
1 = Gn

// Gn−1
// · · · // G1

// G0 = G

and
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1 = Tim

��

// Tim−1

��

// · · · // Ti1

��

// Ti0 = T

∂

��
1 = Gim

// Gim−1
// · · · // Gi1

// Gi0 = G

of a crossed module (T,G, ∂) . If i0 = 0 , im = n and ik−1 < ik for each k = 1, · · · ,m , then the former series
is said to be a refinement of the latter.

Definition 3 A crossed module (T,G, ∂) is called simple if its only normal subcrossed modules are (1, 1, 1)

and (T,G, ∂) .

Definition 4 A normal series of crossed modules, of which all nontrivial factor crossed modules are simple, is
called composition series.

Definition 5 Two normal series of a crossed module (T,G, ∂) are said to be equivalent if for each factor the
crossed module corresponding to one of the normal series is isomorphic to some factor crossed modules in the
other normal series.

Theorem 1 (Scherier refinement theorem for crossed modules) Consider two normal series

1 = Sn

��

// Sn−1

��

// · · · // S1

��

// S0 = T

∂

� �
1 = Hn

// Hn−1
// · · · // H1

// H0 = G

and
1 = Rm

��

// Rm−1

��

// · · · // R1

��

// R0 = T

∂

��
1 = Km

// Km−1
// · · · // K1

// K0 = G

of a crossed module (T,G, ∂) . Then these normal series have equivalent refinements.
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Proof We define Tij = Si+1(Si ∩ Rj) , Gij = Hi+1(Hi ∩ Kj) for all 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m . Then
(Tij , Gij , ∂ij) are subcrossed modules of (T,G, ∂) , since (Si+1,Hi+1, ∂i+1) is normal in (Si,Hi, ∂i) where ∂ij

is the restriction of ∂ . Note that

Ti0 = Si+1(Si ∩R0) = Si+1(Si ∩ T ) = Si+1Si = Si

Tim = Si+1(Si ∩Rm) = Si+1(Si ∩ 1) = Si+11 = Si+1

and Gi0 = Hi , Gim = Hi+1 , similarly. Thus, we obtain a refinement

1 = Sn = T(n−1)m

��

// · · · // T(n−1)0 = Sn−1 = T(n−2)m

��

// · · · // T10 = S1 = T0m

��

// · · · // T00 = S0 = T

∂

��
1 = Hn = G(n−1)m

// · · · // G(n−1)0 = Hn−1 = G(n−2)m
// · · · // G10 = H1 = G0m

// · · · // G00 = H0 = G.

of the first normal series by the second. Similarly, we obtain a refinement of the second normal series by
constructing the crossed module T ′

ji = Rj+1(Rj∩Si) , G′
ji = Kj+1(Kj∩Hi) . By Lemma 1, we have isomorphisms

(Si+1,Hi+1,∂i+1)
(
(Si,Hi,∂i)∩(Rj ,Kj ,∂j)

)
(Si+1,Hi+1,∂i+1)

(
(Si,Hi,∂i)∩(Rj+1,Kj+1,∂j+1)

) ∼=
(Rj+1,Kj+1,∂j+1)

(
(Rj ,Kj ,∂j)∩(Si,Hi,∂i)

)
(Rj+1,Kj+1,∂j+1)

(
(Rj ,Kj ,∂j)∩(Si+1,Hi+1,∂i+1)

)
as desired. 2

Theorem 2 (Jordan-Hölder theorem for crossed modules) All composition series of a crossed module
are equivalent and have the same minimal length.

Proof This is a direct consequence of the Scherier Refinement Theorem for crossed modules and the definition
of a composition series. 2

Example 1 Let G be an abelian group given by a composition series of minimal length n , that is

1 = Gn
// Gn−1

// · · · // G1
// G0 = G.

Then it is routine to check that the crossed module (1, G, inc) also has a composition series of minimal length
n :

1 = 1

��

// 1

��

// · · · // 1

��

// 1 = 1

inc

��
1 = Gn

// Gn−1
// · · · // G1

// G0 = G
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However, the minimal length of a composite series of the abelian crossed module (G,G, id) is 2n , since

1 = Gn

��

// Gn−1

��

// Gn−1

��

// · · · // G1

��

// G0

��

// G0 = G

id

��
1 = Gn

// Gn
// Gn−1

// · · · // G1
// G1

// G0 = G

is a composition series of (G,G, id) . Note that this is not always true for a nonabelian group G , since (N,G, inc)

need not be a normal subcrossed module of (G,G, id) where N ⊴ G , if [G,G] is not contained in N .

3. The case of 2−crossed modules
Definition 6 A 2−chain complex of groups consists of groups S , L , M and group homomorphisms ∂1 : L −→
M , ∂2 : S −→ L

S
∂2 // L

∂1 // M

such that im ∂2 ⊆ ker ∂1 . If in addition im ∂2 ⊴ L and im ∂1 ⊴ M , then it is called a normal 2−complex of
groups.

Definition 7 A normal 2−complex of groups

S
∂2 // L

∂1 // M

with a mapping

{ , } : L× L // S

and the action of M on S , L , and M , where the action of M on itself is given by conjugation, is called a
2−crossed module if the following conditions hold, where m . l and m . s denote action of m ∈ M on l ∈ L

and s ∈ S , respectively, and l . s is defined to be equal to
{
∂2s, l

}
s .

1. ∂1 and ∂2 are M−equivariant, that is

i) ∂1(m . l) = m . ∂1(l)

ii) ∂2(m . s) = m . ∂2(s)

2. ∂2
{
l1, l2

}
=

(
∂1l1 . l2

)(
l1l2

−1l1
−1

)
3.

{
∂2s1, ∂2s2

}
=

[
s2, s1

]
4. i)

{
l1l2, l

}
=

(
∂1l1 . {l2, l}

){
l1, l2ll2

−1
}

ii)
{
l, l1l2

}
= {l, l1}

(
(ll1l

−1) . {l, l2}
)
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5.
{
l, ∂2s

}
=

(
∂1l . s

)(
l . s−1

)
6. m .

{
l1, l2

}
=

{
m . l1, m . l2

}
for all s, s1, s2 ∈ S , l, l1, l2 ∈ L and m ∈ M .

¶A 2−crossed module

S
∂2 // L

∂1 // M

is sometimes denoted by (S,L,M, ∂2, ∂1) or (S,L,M) shortly, when no risk of confusion is present.

Here the curly bracket { , } is named Peiffer lifting.

As shown in [3], the notation l . s introduced in the definition gives an action of L on S , keeping in
mind that {∂2s, l}−1 = ∂2s . {∂2s−1, l} . On the other hand, L also acts on S via ∂1 . Note that the general

l . s ̸= ∂1l . s

where the action on the left hand side is the action given by {∂2s, l}s and the one on the right hand side is
derived from the action of M on S via ∂1 . Although we use the same notation for both actions, this will not
cause confusion since the context clarifies it.

It is easy to verify that the condition (5) can be given equivalently

(5′) {l, ∂2s}{∂2s, l} = (∂1l . s)s
−1

using the definition of the action of L on S .

Given a 2−crossed module

S
∂2 // L

∂1 // M

we have a crossed module

S
∂2 // L

with the action l . s = {∂2s, l}s and two precrossed modules

L
∂1 // M

and

S
∂1∂2 // M

where the latter has trivial boundary map ∂1∂2 = 1M .
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Definition 8 Consider two 2−crossed modules

S
∂2 // L

∂1 // M

and

T
∂′
2 // K

∂′
1 // N.

A homomorphism
Φ : (S,L,M, ∂2, ∂1) −→ (T,K,N, ∂′

2, ∂
′
1)

is a triple Φ = (α, β, γ) of group homomorphisms

α : S −→ T

β : L −→ K

γ : M −→ N

making the diagram

S

α

��

∂2 // L

β

��

∂1 // M

γ

��
T

∂′
2

// K
∂′
1

// N

commuting (β∂2 = ∂′
2α, γ∂1 = ∂′

1β) and having the properties

α(m . s) = γ(m) . α(s)

β(m . l) = γ(m) . β(l)

α{l, l′} = {β(l), β(l′)}.

If each of α , β , and γ is an isomorphism of groups, then Φ is said to be a 2−crossed module isomorphism.

¶A homomorphism
Φ : (S,L,M, ∂2, ∂1) −→ (T,K,N, ∂′

2, ∂
′
1)

also preserves both actions of L on S since

α(l . s) = α
(
{∂2s, l}s

)
= {β∂2s, βl}αs = {∂′

2αs, βl}αs = β(l) . α(s)

and
α(∂1l . s) = γ∂1l . αs = ∂′

1β(l) . α(s).

Also, if Φ = (α, β, γ) is a 2−crossed module homomorphism, then

(α, β) : (S,L, ∂2) −→ (T,K, ∂′
2)

is a crossed module homomorphism.
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Definition 9 Let

S
∂2 // L

∂1 // M

be a 2−crossed module. If also

T
∂′
2 // K

∂′
1 // N

is a 2−crossed module with T ⊆ S , K ⊆ L , N ⊆ M with ∂′
1 = ∂1|K , ∂′

2 = ∂2|T and restricted actions
and Peiffer lifting, then (T,K,N, ∂′

2, ∂
′
1) is said to be a 2−subcrossed module of (S,L,M, ∂2, ∂1) . This case is

denoted by (T,K,N) ≤ (S,L,M) .

Definition 10 [20] Consider a 2−subcrossed module (T,K,N) of a 2−crossed module

S
∂2 // L

∂1 // M.

If

1. K ⊴ L and N ⊴ M

2. m . k ∈ K , m . t ∈ T

3. (n . l)l−1 ∈ K , (n . s)s−1 ∈ T

4. {k, l}, {l, k} ∈ T

for all s ∈ S , l ∈ L , m ∈ M , t ∈ T , k ∈ K , and n ∈ N , then (T,K,N) is said to be a normal 2−subcrossed
module of (S,L,M) and this is denoted by (T,K,N) ⊴ (S,L,M) .

Note that, from the condition (4) , we also have l . t ∈ T and (k . s)s−1 ∈ T for l ∈ L , t ∈ T , k ∈ K

and s ∈ S . Indeed, if (T,K,N) is a normal 2−subcrossed module of (S,L,M, ∂2, ∂1) then for all l ∈ L , t ∈ T ,
k ∈ K and s ∈ S , we have

l . t = {∂t, l}t ∈ T,

(k . s)s−1 = {∂s, k}ss−1 = {∂s, k} ∈ T

and also
∂1l . t ∈ T, (∂1k . s)s−1 ∈ T.

In addition, T ⊴ S since
sts−1 = ∂2(s) . t ∈ T.

As a consequence of these arguments, (T,K) is a normal subcrossed module of (S,L) , if (T,K,N) is a normal
2−subcrossed module of (S,L,M, ∂2, ∂1) .

Note that the definition of normality given here is somewhat different from the one given in [20]. In
addition to the definition given there, we add conditions on Peiffer lifting of a quotient 2−crossed module. See
Lemma 2 and Example 2.
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Definition 11 [20] Consider a 2−crossed module homomorphism

Φ = (α, β, γ) : (S,L,M, ∂2, ∂1) −→ (T,K,N, ∂′
2, ∂

′
1).

The kernel of Φ is defined by kerΦ = (kerα, kerβ, ker γ) and the image of Φ is defined by imΦ =

(imα, imβ, im γ) .

It is known that kerΦ is a normal 2−subcrossed module of (S,L,M) in the sense of the definition given in [20],
and also imΦ is a 2−subcrossed module of (T,K,N) . The normality of kerΦ in the sense of the definition
given here is also seen by showing that

{k, l}, {l, k} ∈ kerα

for all k ∈ kerβ and l ∈ L . Indeed,

α{k, l} = {β(k), β(l)} = {1, β(l)}

= {∂2(1), β(l)}1 = l . 1 = 1,

α{l, k} = {β(l), β(k)} = {β(l), 1}{β(l), ∂2(1)}

=
(
∂′
1β(l) . 1

)(
β(l) . 1−1

)
= 1 · 1 = 1

gives {k, l} , {l, k} ∈ kerα .

Definition 12 [20] Let (S,L,M, ∂2, ∂1) be a 2−crossed module and (T,K,N) be a normal 2−subcrossed

module of (S,L,M) . Then the quotient 2−crossed module (S,L,M)
(T,K,N) is given by the quintuble

(
S
T ,

L
K , M

N , ∂2, ∂1
)

where ∂2 , ∂1 and Peiffer lifting are given by

∂2(sT ) = ∂2(s)K

∂1(lK) = ∂1(l)N

{l1K, l2K} = {l1, l2}T,

and the actions of M
N on S

T and L
K are given by

mN . sT = (m . s)T

mN . lK = (m . l)K.

Proposition 1 Let (S,L,M, ∂2, ∂1) be a 2−crossed module and (T,K,N) be a normal 2−subcrossed module
of (S,L,M) . Then, the triple Q = (q1,q2,q3) given by q1(s) = sT , q2(l) = lK , q3(m) = mN for all s ∈ S ,
l ∈ L and m ∈ M gives a 2−crossed module homomorphism from (S,L,M, ∂2, ∂1) to

(
S
T ,

L
K , M

N , ∂2, ∂1
)

and
kernel of Q is equal to (T,K,N) .

Proof It is known that q1 , q2 , and q3 are group homomorphisms, namely canonical mappings. The other
conditions are easily seen from the following equations, for all s ∈ S , l ∈ L , m ∈ M .
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∂2q1(s) = ∂2(sT ) = ∂2(s)K = q2∂2(s)

∂1q2(l) = ∂1(lK) = ∂1(l)N = q3∂1(l)

{q2(l1),q2(l2)} = {l1K, l2K} = {l1, l2}T = q1

(
{l1, l2}

)
q3(m) . q1(s) = mN . sT = (m . s)T = q1(m . s)

q3(m) . q2(l) = mN . lK = (m . l)K = q2(m . l).

As a result of group theoretical identities, we also have
ker Q = (kerq1, kerq2, kerq3) = (T,K,N).

2

The additional requirements on normality that {k, l} , {l, k} ∈ T for k ∈ K , l ∈ L are needed to ensure the
well-definedness of quotient Peiffer lifting. In fact, these are necessary and sufficient conditions for the Peiffer
lifting to be well-defined as seen in the following Lemma.

Lemma 2 Consider a 2−crossed module (S,L,M, ∂2, ∂1) and a 2−subcrossed module (T,K,N) of (S,L,M) ,
which satisfies all conditions of normality definition in [20]. Then the Peiffer lifting of the quotient is well-defined
if and only if {k, l} , {l, k} ∈ T for all k ∈ K , l ∈ L .

Proof Let {k, l} , {l, k} ∈ T for all k ∈ K and l ∈ L . Assume that l1K = l2K in L/K . Then l1l2
−1 ∈ K .

Observing that

{l2, l}{l1, l}−1 = {l2, l}{l1l−1
2 l2, l}−1

= {l2, l}
[(
∂1(l1l

−1
2 ) . {l2, l}

)
{l1l−1

2 , l2ll
−1
2 }

]−1

= {l2, l}{l1l−1
2 , l2ll

−1
2 }−1

(
∂1(l1l

−1
2 ) . {l2, l}−1

)
= {l2, l}{l1l−1

2 , l2ll
−1
2 }−1

((
∂1(l1l

−1
2 ) . {l2, l}−1

)
{l2, l}

)
{l2, l}

we see {l2, l}{l1, l}−1 ∈ T , hence {l1K, lK} = {l2K, lK} and from

{l, l1}−1{l, l2} =
(
(ll1l

−1) . {l, l−1
1 }

)
{l, l2}

= (ll1l
−1) .

(
{l, l−1

1 }
(
(ll−1

1 l−1) . {l, l2}
))

= (ll1l
−1) . {l, l−1

1 l2}

we have {l, l1}−1{l, l2} ∈ T so that {lK, l1K} = {lK, l2K} . For the converse, we have {l1, l}{l2, l}−1, {l, l1}{l, l2}−1 ∈
T if l1l

−1
2 ∈ K . Then for all k ∈ K and l ∈ L , since k = k1−1 ∈ K ,

{k, l} = {k, l}1 = {k, l}{1, l}−1 ∈ T,

{l, k} = {l, k}1 = {l, k}{l, 1}−1 ∈ T.

2

As a result of Proposition 1, Lemma 2, and the discussion following Definition 11, the following corollary is
immediately seen, which further emphasizes that the given definition of normality is categorically correct.
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Corollary 1 Let (S,L,M, ∂2, ∂1) be a 2−crossed module and (T,K,N) be a 2−subcrossed module of (S,L,M) .The
necessary and sufficient condition for (T,K,N) to be normal is that there exists a 2−crossed module homomor-
phism Φ : (S,L,M, ∂2, ∂1) −→ (S′, L′,M ′, ∂′

2, ∂
′
1) , where (S′, L′,M ′, ∂′

2, ∂
′
1) is an arbitrary 2−crossed module,

such that kerΦ = (T,K,N) .

The following example illustrates that there are 2−subcrossed modules that are not normal but satisfy all
normality conditions except the Peiffer lifting condition. Therefore, the the Peiffer lifting condition is essential
for an accurate definition of normality for 2−subcrossed modules.

Example 2 Consider the multiplicative groups T = M = N = {1} , S = {−1, 1} , K = {−1, 1, i,−i} and L =

{1, i, j, k,−1,−i,−j,−k} , as subgroups of multiplicative group of nonzero quaternions. Then S ↪→ L → M and
T ↪→ K → N are 2−crossed modules with the homomorphisms given as inclusions and trivial homomorphisms,
all actions of M = N are trivial, and both Peiffer liftings are inverse commutator, that is

{l1, l2} = l2l1l
−1
2 l−1

1

{k1, k2} = k2k1k
−1
2 k−1

1 .

Thus l .s = {∂s, l}s = l∂sl−1∂s−1s = lsl−1s−1s = lsl−1 and similarly k.t = ktk−1 are actions by conjugation.
It is routine to check that (S,L,M) and (T,K,N) are 2−crossed modules and (T,K,N) is a 2−subcrossed
module of (S,L,M) .

(T,K,N) satisfies the first three conditions in Definition 10. In fact,

1. N ⊴ M trivially, and observing that jij−1 = −i , kik−1 = −i in particular, guides the normality of K

in L .

2. 1 . z ∈ K , 1 . 1 ∈ T and l . 1 ∈ T for 1 ∈ M , z ∈ K , 1 ∈ T , l ∈ L .

3. (1 . l)l−1 = 1 ∈ K , (1 . s)s−1 = 1 ∈ T , (z . 1)1−1 = z1z−11 = 1 ∈ T and
(
z . (−1)

)
(−1)−1 =

z(−1)z−1(−1) = 1 ∈ T for 1 ∈ N , l ∈ L , s ∈ S , z ∈ K and 1,−1 ∈ S .

However, note that the condition (4) is not satisfied since

{i, j} = jij−1i−1 = ji(−j)(−i) = jiji = (−k)(−k) = k2 = −1 /∈ T.

In this circumstance, if we try to form the quotient
(
S/T, L/K,M/N

)
, then

jK = {j1, ji, j(−1), j(−i)} = {j,−k,−j, k}

kK = {k1, ki, k(−1), k(−i)} = {k, j,−k,−j}

hence jK = kK . However,

{jK, jK} = {j, j}T = jjj−1j−1T = 1T = T = {1}

{jK, kK} = {j, k}T = kjk−1j−1T = kj(−k)(−j)T

= kjkjT = (−i)(−i)T = (−1)T = {−1}

so that {jK, jK} ̸= {jK, kK} , which is a matter of being not well-defined.
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Theorem 3 [20] Consider a 2−crossed module homomorphism

Φ = (α, β, γ) : (S,L,M, ∂2, ∂1) −→ (T,K,N, ∂′
2, ∂

′
1).

Then
(S,L,M)

kerΦ
∼= imΦ.

The above theorem is the First Isomorphism Theorem for 2−crossed modules, which was easily stated and
proven in [20] and its proof is also valid under the definitions given here. Now, we give some preliminary
definitions and propositions as a preparation for the statements of the Second and Third Isomorphism Theorems
for 2−crossed modules and some of their consequences.

Definition 13 [20] Let (T1,K1, N1) and (T2,K2, N2) be two 2−subcrossed modules of (S,L,M, ∂2, ∂1) . Then
the intersection of (T1,K1, N1) and (T2,K2, N2) is given by (T1,K1, N1)∩(T2,K2, N2) = (T1∩T2,K1∩K2, N1∩
N2).

Note that the additional condition on Peiffer lifting for normality follows immediately, which makes the following
result valid also under the definitions given here.

Proposition 2 [20] Intersection of 2−subcrossed modules is also a 2−subcrossed module. In addition, if each
2−subcrossed module is normal, then the intersection is also normal.

Definition 14 Let (S,L,M, ∂2, ∂1) be a 2−crossed module and (T,K,N) , (V, J, P ) be 2−subcrossed modules
of (S,L,M) . Then the multiplication of (T,K,N) and (V, J, P ) is given by (T,K,N)(V, J, P ) := (TV,KJ,NP ) .

Proposition 3 (T,K,N) be a normal 2−subcrossed module and (V, J, P ) be a 2−subcrossed module of
(S,L,M, ∂2, ∂1) .

(i) (T,K,N)(V, J, P ) is a 2−subcrossed module of (S,L,M)

(ii) If in addition (V, J, P ) is normal, then also (T,K,N)(V, J, P ) is a normal 2−subcrossed module of
(S,L,M) .

Proof

(i) ∂2(TV ) ⊆ KJ and ∂1(KJ) ⊆ NP is clear. For t ∈ T , k ∈ K , n ∈ N , v ∈ V , j ∈ J , and p ∈ P , we have

(np) . (tv) =
(
(np) . t

)(
(np) . v

)
(p . v)−1(p . v)

=
(
(np) . t

)(
n . (p . v)

)
(p . v)−1(p . v) ∈ TV

and

(np) . (kj) =
(
(np) . k

)(
(np) . j

)
(p . j)−1(p . j)

=
(
(np) . k

)(
n . (p . j)

)
(p . j)−1(p . j) ∈ KJ.

Also, for k1, k2,∈ K , j1, j2,∈ J ,

{k1j1, k2j2} =
(
∂1k1 . {j1, k2j2}

)
{k1, j1k2j2j−1

1 }
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=

(
n .

(
{j1, k2}

(
(j1k2j

−1
1 ) . {j1, j2}

)))
t

= (n . t′)
(
n . (k′ . v)

)
t

= t′′(n . l)l−1(k′ . v)v−1vt

= t′′t′′′t′′′′vt

= t′′t′′′t′′′′t′′′′′v ∈ TV

where n = ∂1k , t = {k1, j1k2j2j−1
1 } , t′ = {j1, k2} , k′ = j1k2j

−1
1 , t′′ = n . t′ , l = k′ . v , t′′′ = (n . l)l−1 ,

t′′′′ = (k′ . v)v−1 , t′′′′′ = vtv−1 .

(ii) (1) KJ ⊴ L and NP ⊴ M follows from K,J ⊴ L and N,P ⊴ M .

(2) m . (kj) = (m . k)(m . j) ∈ KJ and m . (tv) = (m . t)(m . v) ∈ TV .

(3)
(
np) . l

)
l−1 =

(
n . (p . l)

)
(p . l)−1(p . l)l−1 ∈ KJ and(

np) . s
)
s−1 =

(
n . (p . s)

)
(p . s)−1(p . s)s−1 ∈ TV .

(4) {kj, l} =
(
∂1k . {j, l}

)
{k, jlj−1} ∈ V T = TV

{l, kj} = {l, k}
(
(lkl−1) . {l, j}

)
∈ TV .

2

Definition 15 [20] Direct product of two 2−crossed modules (S,L,M, ∂2, ∂1) and (S′, L′,M ′, ∂′
2, ∂

′
1) is defined

as the 2−crossed module

(S,L,M, ∂2, ∂1)× (S′, L′,M ′, ∂′
2, ∂

′
1) = (S × S′, L× L′,M ×M ′, ∂2 × ∂′

2, ∂1 × ∂′
1)

where

(∂1 × ∂′
1)(l, l

′) = (∂1l, ∂
′
1l

′),

(∂2 × ∂′
2)(s, s

′) = (∂2s, ∂
′
2s

′),

(m,m′) . (s, s′) = (m . s,m′ . s′),

(m,m′) . (l, l′) = (m . l,m′ . l′),{
(l1, l

′
1), (l2, l

′
2)
}
=

(
{l1, l2}, {l′1, l′2}

)
.

Proposition 4 Let (S,L,M, ∂2, ∂1) be a 2−crossed module and (T,K,N) , (V, J, P ) be normal 2−subcrossed
modules of (S,L,M) such that

i) (T,K,N)(V, J, P ) = (S,L,M) ,

ii) (T,K,N) ∩ (V, J, P ) = (1, 1, 1) .

Then,
(S,L,M) ∼= (T,K,N)× (V, J, P ).
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Proof Noting that T, V ⊴ S , K,J ⊴ L , N,P ⊴ M , TV = S , KJ = L , NP = M , T ∩ V = 1 , K ∩ J = 1

and N ∩ P = 1 , we can conclude from the group theory that

α : T × V −→ S, α(t, v) = tv

β : K × J −→ L, β(k, j) = kj

γ : N × P −→ M, γ(n, p) = np

are group isomorphisms. We see that

Φ = (α, β, γ) : (T,K,N)× (V, J, P ) −→ (S,L,M)

satisfies the remaining conditions for 2−crossed module homomorphisms.

T × V

α

��

∂2×∂2 // K × J

β

��

∂1×∂1 // N × P

γ

��
S

∂2 // L
∂1 // M

β(∂2 × ∂2)(t, v) = β(∂2t, ∂2v) = ∂2t∂2v = ∂2(tv) = ∂2α(t, v),

γ(∂1 × ∂1)(k, j) = γ(∂1k, ∂1j) = ∂1k∂1j = ∂1(kj) = ∂1β(k, j).

Note that from the normality, for all p ∈ P , t ∈ T and k ∈ K , (p . t)t−1 ∈ V and also p . t ∈ T and t−1 ∈ T

gives (p . t)t−1 ∈ T ∩V = {1} which implies p . t = t and similarly p . k = k . So P acts on T and K trivially.
On the other side, N acts on V and J trivially. Hence,

α
(
(n, p) . (t, v)

)
= α(n . t, p . v) = (n . t)(p . v) =

(
n . (p . t)

)(
n . (p . v)

)
= (np . t)(np . v) = np . tv = γ(n, p) . α(t, v).

β
(
(n, p) . (k, j)

)
= α(n . k, p . j) = (n . k)(p . j) =

(
n . (p . k)

)(
n . (p . j)

)
= (np . k)(np . j) = np . kj = γ(n, p) . β(k, j).

Let k1, k2 ∈ K and j1, j2 ∈ J . Observe that

{k1j1, k2j2} = {k1j1, k2}
((

k1j1k2(k1j1)
−1

)
. {k1j1, j2}

)
Now, K acts on V trivially since for k ∈ K and v ∈ V , k . v = {∂2v, k}v and k ∈ K , ∂2v ∈ J together
implies that {∂2v, k} ∈ T ∩ V = {1} so that k . v = v . Here we have (k1j1)k2(k1j1)

−1 ∈ K and by j2 ∈ J ,
{k1j1, j2} ∈ V . Thus

{k1j1, k2j2} = {k1j1, k2}{k1j1, j2}

=
(
∂1k1 . {j1, k2}

)
{k1, j1k2j−1

1 }
(
∂1k1 . {j1, j2}

)
{k1, j1j2j−1

1 }.
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Note that since j1 ∈ J and k2 ∈ K , {j1, k2} ∈ V ∩T = {1} and similarly {k1, j1j2j−1
1 } = 1 . Also, ∂1k1 ∈ N and

{j1, j2} ∈ V gives ∂1k1 . {j1, j2} = {j1, j2} from the triviality of the action. Lastly, j1k2j
−1
1 k−1

2 ∈ J ∩K = {1}
so that j1k2j

−1
1 = k2 . So we have

{k1j1, k2j2} = {k1, k2}{j1, j2}

which means that {
β(k1, j1), β(k2, j2)

}
= α

(
{k1, k2}, {j1, j2}

)
.

2

Definition 16 If a 2−crossed module (S,L,M, ∂2, ∂1) and its given two normal 2−subcrossed modules
(T,K,N) and (V, J, P ) satisfies the conditions

i) (T,K,N)(V, J, P ) = (S,L,M) ,

ii) (T,K,N) ∩ (V, J, P ) = (1, 1, 1) ,

then (S,L,M) is said to be internal direct product of (T,K,N) and (V, J, P ) .

Theorem 4 Let (S,L,M, ∂2, ∂1) be a 2−crossed module, (T,K,N) be a normal 2−subcrossed module of
(S,L,M) and (V, J, P ) be a 2−subcrossed module of (S,L,M) . Then,

(V, J, P )

(T,K,N) ∩ (V, J, P )
∼=

(T,K,N)(V, J, P )

(T,K,N)
.

Proof We shall show that ( V

T ∩ V
,

J

K ∩ J
,

P

N ∩ P

)
∼=

(TV
T

,
KJ

K
,
NP

N

)
.

Consider the functions

α :
V

T ∩ V
−→ TV

T
, α

(
v(T ∩ V )

)
= vT

β :
J

K ∩ J
−→ KJ

K
, β

(
j(K ∩ J)

)
= jK

γ :
P

N ∩ P
−→ NP

N
, γ

(
p(N ∩ P )

)
= pN.

It is well-known that α , β , and γ are group isomorphisms. We want to show that Φ = (α, β, γ) is a 2−crossed
module homomorphism.

Consider first the diagram

V
T∩V

α

��

∂2 // J
K∩J

β

��

∂1 // P
N∩P

γ

��
TV
T

∂̃2 // KJ
K

∂̃1 // NP
N
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For all v ∈ V , k ∈ K , and p ∈ P ,

β∂2
(
v(T ∩ V )

)
= β

(
∂2v(K ∩ J)

)
= ∂2vK = ∂̃2(vT ) = ∂̃2α

(
v(T ∩ V )

)
.

and

γ∂1
(
j(K ∩ J)

)
= γ

(
∂1j(N ∩ P )

)
= ∂1jN = ∂̃1(jK) = ∂̃1β

(
j(K ∩ J)

)
.

In addition,

α
(
p(N ∩ P ) . v(T ∩ V )

)
= α

(
(p . v)(T ∩ V )

)
= (p . v)T

= pN . vT = γ
(
p(N ∩ P )

)
. α

(
v(T ∩ V )

)
and

β
(
p(N ∩ P ) . j(K ∩ J)

)
= β

(
(p . j)(K ∩ J)

)
= (p . j)K

= pN . jK = γ
(
p(N ∩ P )

)
. β

(
j(K ∩ J)

)
.

Lastly, for all j1, j2 ∈ J , we have

α
{
j1(K ∩ J), j2(K ∩ J)

}
= α

(
{j1, j2}(T ∩ V )

)
= {j1, j2}T

= {j1K, j2K} =
{
β
(
j1(K ∩ J)

)
, β

(
j2(K ∩ J)

)}
.

2

Proposition 5 Consider a normal 2−subcrossed module (T,K,N) and a 2−subcrossed module (V, J, P ) of

(S,L,M, ∂2, ∂1) such that T ⊆ V , K ⊆ J and N ⊆ P . Then, (V,J,P )
(T,K,N) is a normal 2−subcrossed module of

(S,L,M)
(T,K,N) if and only if (V, J, P ) is a normal 2−subcrossed module of (S,L,M) .

Proof It is obvious that (V,J,P )
(T,K,N) is a 2−subcrossed module of (S,L,M)

(T,K,N) .

1. For groups, it is known that J ⊴ L ⇐⇒ J
K ⊴ L

K and P ⊴ M ⇐⇒ P
N ⊴ M

N .

2. m . j ∈ J ⇐⇒ (m . j)K ∈ J
K ⇐⇒ mN . jK ∈ J

K

m . v ∈ V ⇐⇒ (m . v)T ∈ V
T ⇐⇒ mN . vT ∈ V

T .

3. (p . l)l−1 ∈ J ⇐⇒ (p . l)l−1K ∈ J
K ⇐⇒

(
pN . lK

)
(lK)−1 ∈ J

K

(p . s)s−1 ∈ V ⇐⇒ (p . s)s−1T ∈ V
T ⇐⇒

(
pN . sT

)
(sT )−1 ∈ V

T .

4. {j, l} ∈ V ⇐⇒ {j, l}T ∈ V
T ⇐⇒ {jK, lK} ∈ V

T

{l, j} ∈ V ⇐⇒ {l, j}T ∈ V
T ⇐⇒ {lK, jK} ∈ V

T .

2
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Theorem 5 Let (S,L,M, ∂2, ∂1) be a 2−crossed module, (T,K,N) and (V, J, P ) be two normal 2−subcrossed
modules of (S,L,M) , such that T ⊆ V , K ⊆ J and N ⊆ P . Then,

(S,L,M)
(T,K,N)

(V,J,P )
(T,K,N)

∼=
(S,L,M)

(V, J, P )
.

Proof Define α , β , and γ as

α :
S/T

V/T
−→ S

V
, α

(
sT (V/T )

)
= sV

β :
L/K

J/K
−→ L

J
, β

(
lK(J/K)

)
= lJ

γ :
M/N

P/N
−→ M

P
, γ

(
mN(P/N)

)
= mP.

which are known to be group isomorphisms.
Consider the diagram:

S/T
V/T

α

��

∂2 // L/K
J/K

β

��

∂1 // M/N
P/N

γ

��
S
V

∂2

// L
J

∂1

// M
P

For all s ∈ S , l, l1, l2 ∈ L and m ∈ M ,

β∂2
(
sT (V/T )

)
= β

(
∂̃2(sT )J/K

)
= β

(
∂2sK(J/K)

)
= ∂2sJ = ∂2(sV ) = ∂2α

(
sT (V/T )

)
,

γ∂1
(
lK(J/K)

)
= γ

(
∂̃1(lK)P/N

)
= γ

(
∂1lN(P/N)

)
= ∂1lP = ∂1(lJ) = ∂1β

(
lK(J/K)

)
,

and

α
(
mN(P/N) . sT (V/T )

)
= α

(
(mN . sT )V/T

)
= α

(
(m . s)T (V/T )

)
= (m . s)V = mP . sV

= γ
(
mN(P/N)

)
. α

(
sT (V/T )

)
,

β
(
mN(P/N) . lK(J/K)

)
= β

(
(mN . lK)J/K

)
= β

(
(m . l)K(J/K)

)
= (m . l)J = mP . lJ
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= γ
(
mN(P/N)

)
. β

(
lK(J/K)

)
.

In addition,

α
{
l1K(J/K), l2K(J/K)

}
= α

(
{l1K, l2K}(V/T )

)
= α

(
{l1, l2}T (V/T )

)
= {l1, l2}V = {l1J, l2J}

=
{
β
(
l1K(J/K)

)
, β

(
l2K(J/K)

)}
.

2

Lemma 3 Let (S,L,M, ∂2, ∂1) be a 2−crossed module, (T,K,N) and (V, J, P ) be 2−subcrossed modules of
(S,L,M) , (Y,H,Q) be a normal 2−subcrossed module of (T,K,N) , and (Z,G,R) be a normal 2−subcrossed
module of (V, J, P ) . Then

(Y,H,Q)
(
(T,K,N) ∩ (Z,G,R)

)
is a normal 2−subcrossed module of

(Y,H,Q)
(
(T,K,N) ∩ (V, J, P )

)
and

(Z,G,R)
(
(Y,H,Q) ∩ (V, J, P )

)
is a normal 2−subcrossed module of

(Z,G,R)
(
(T,K,N) ∩ (V, J, P )

)
and also,

(Y,H,Q)
(
(T,K,N) ∩ (V, J, P )

)
(Y,H,Q)

(
(T,K,N) ∩ (Z,G,R)

) ∼=
(Z,G,R)

(
(T,K,N) ∩ (V, J, P )

)
(Z,G,R)

(
(Y,H,Q) ∩ (V, J, P )

) .
Note that the elements of the lattice of 2−subcrossed modules of (S,L,M), which also includes some 2−subcrossed
modules in this lemma, can be represented in the diagram below. This is why the group-theoretical analogue
of this lemma is sometimes called the butterfly lemma. For a more economical use of space in the diagram, we
represent each 2−subcrossed module with a calligraphic version of the first letter involved.
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T ∩ Z

(Y ∩ V)(T ∩ Z)

Y ∩ V

V T

Y
Y(T ∩ Z)Z(Y ∩ V)

Z

T ∩ V

Z(T ∩ V) Y(T ∩ V)

Proof We consider the 2−crossed module

(T,K,N)∩(V,J,P )(
(Y,H,Q)∩(V,J,P )

)(
(T,K,N)∩(Z,G,R)

) ∼=
(

T∩V
(Y ∩V )(T∩Z) ,

K∩J
(H∩J)(K∩G) ,

N∩P
(Q∩P )(N∩R)

)
.

From the group theory, it is known that

α :
Y (T ∩ V )

Y (T ∩ Z)
−→ T ∩ V

(Y ∩ V )(T ∩ Z)
, α

(
ysY (T ∩ Z)

)
= s(Y ∩ V )(T ∩ Z)

β :
H(K ∩ J)

H(K ∩G)
−→ K ∩ J

(H ∩ J)(K ∩G)
, β

(
hlH(K ∩G)

)
= l(H ∩ J)(K ∩G)

γ :
Q(N ∩ P )

Q(N ∩R)
−→ N ∩ P

(Q ∩ P )(N ∩R)
, γ

(
qmQ(N ∩R)

)
= m(Q ∩ P )(N ∩R).

are group isomorphisms [21]. Then for ysY (T ∩ Z) ∈ Y (T∩V )
Y (T∩Z)

β∂2
(
ysY (T ∩ Z)

)
= β

(
∂2(ys)H(K ∩G)

)
= ∂2s(H ∩ J)(K ∩G)

= ∂̃2
(
s(Y ∩ V )(T ∩ Z)

)
= ∂̃2α

(
ysY (T ∩ Z)

)
and for hlH(K ∩G) ∈ H(K∩J)

H(K∩G)

γ∂1
(
hlH(K ∩G)

)
= γ

(
∂1(hl)Q(N ∩R)

)
= ∂1l(Q ∩ P )(N ∩R)

= ∂̃1
(
l(H ∩ J)(K ∩G)

)
= ∂̃1β

(
hlH(K ∩G)

)
.

For ysY (T ∩ Z) ∈ Y (T∩V )
Y (T∩Z) , qmQ(N ∩R) ∈ Q(N∩P )

Q(N∩R)

α
(
qmQ(N ∩R) . ysY (T ∩ Z)

)
= α

(
(qm . ys)Y (T ∩ Z)

)
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= α
(
(qm . ys)(m . s)−1(m . s)Y (T ∩ Z)

)
= α

(
(qm . y)

(
q . (m . s)

)
(m . s)−1(m . s)Y (T ∩ Z)

)
= α

(
y′(m . s)Y (T ∩ Z)

)
= (m . s)(Y ∩ V )(T ∩ Z)

= m(Q ∩ P )(N ∩R) . s(Y ∩ V )(T ∩ Z)

= γ
(
qmQ(N ∩R)

)
. α

(
ysY (T ∩ Z)

)
.

where y′ = (qm . y)
(
q . (m . s)

)
(m . s)−1 . For hlH(K ∩G) ∈ H(K∩J)

H(K∩G) , qmQ(N ∩R) ∈ Q(N∩P )
Q(N∩R)

β
(
qmQ(N ∩R) . hlH(K ∩G)

)
= β

(
(qm . hl)H(K ∩G)

)
= β

(
(qm . hl)(m . l)−1(m . l)H(K ∩G)

)
= β

(
(qm . h)

(
q . (m . l)

)
(m . l)−1(m . l)H(K ∩G)

)
= β

(
h′(m . l)H(K ∩G)

)
= (m . l)(H ∩ J)(K ∩G)

= m(Q ∩ P )(N ∩R) . l(H ∩ J)(K ∩G)

= γ
(
qmQ(N ∩R)

)
. β

(
hlH(K ∩G)

)
,

where h′ = (qm . h)
(
q . (m . l)

)
(m . l)−1 .

For h1l1H(K ∩G), h2l2H(K ∩G) ∈ H(K∩J)
H(K∩G) noting that

(hili)(lihi)
−1 = hilih

−1
i l−1

i ∈ H ⊆ H(K ∩G)

we have

hiliH(K ∩G) = lihiH(K ∩G) = liH(K ∩G)

and

α
{
h1l1H(K ∩G), h2l2H(K ∩G)

}
= α

{
l1H(K ∩G), l2H(K ∩G)

}
= α

(
{l1, l2}Y (T ∩ Z)

)
= α

(
1{l1, l2}Y (T ∩ Z)

)
= {l1, l2}(Y ∩ V )(T ∩ Z)

=
{
l1(H ∩ J)(K ∩G), l2(H ∩ J)(K ∩G)

}
=

{
β
(
h1l1H(K ∩G)

)
, β

(
h2l2H(K ∩G)

)}
.

2

Definition 17 A normal series (of length n) of a 2−crossed module (S,L,M, ∂2, ∂1) consists of 2−subcrossed
modules (Si, Li,Mi) , i = 0, ..., n , of (S,L,M) such that for each i = 1, ..., n , (Si, Li,Mi) is a normal
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2−subcrossed module of (Si−1, Li−1,Mi−1) , (Sn, Ln,Mn) = (1, 1, 1) and (S0, L0,M0) = (S,L,M) .

1 = Sn

��

// Sn−1

��

// · · · // S1

��

// S0 = S

∂2

��
1 = Ln

��

// Ln−1

��

// · · · // L1

��

// L0 = L

∂1

��
1 = Mn

// Mn−1
// · · · // M1

// M0 = M

If (Si, Li,Mi) is a normal series of (S,L,M) , then the quotients

(S0, L0,M0)

(S1, L1,M1)
,
(S1, L1,M1)

(S2, L2,M2)
, · · · , (Sn−1, Ln−1,Mn−1)

(Sn, Ln,Mn)

are called factor 2−crossed modules of (S,L,M) . If a normal series (Si, Li,Mi) of (S,L,M) can be obtained
by eleminating some 2−crossed modules in a normal series (S′

i, L
′
i,M

′
i) of (S,L,M) , then (S′

i, L
′
i,M

′
i) is called

a refinement of (Si, Li,Mi) .

Definition 18 A 2−crossed module (S,L,M, ∂2, ∂1) is called simple, if its only normal 2−subcrossed modules
are (1, 1, 1) and (S,L,M) .

Definition 19 A normal series of a 2−crossed module is said to be a composition series, if all nontrivial factor
2−crossed modules are simple.

Definition 20 Two normal series of a 2−crossed module are said to be equivalent if for each factor 2−crossed
module corresponding to one of the normal series is isomorphic to some factor 2−crossed modules in the other
normal series.

Theorem 6 (Scherier refinement theorem for 2−crossed modules) Let

1 = Tn

��

// Tn−1

��

// · · · // T1

��

// T0 = S

∂2

��
1 = Kn

��

// Kn−1

��

// · · · // K1

��

// K0 = L

∂1

��
1 = Nn

// Nn−1
// · · · // N1

// N0 = M
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and
1 = Vm

��

// Vm−1

��

// · · · // V1

��

// V0 = S

∂2

��
1 = Jm

��

// Jm−1

��

// · · · // J1

��

// J0 = L

∂1

��
1 = Pm

// Pm−1
// · · · // P1

// P0 = M

be two normal series of a 2−crossed module (S,L,M, ∂2, ∂1) . Then (Ti,Ki, Ni) and (Vi, Ji,Mi) have equivalent
refinements.

Proof Define Sij = Ti+1(Ti ∩ Vj) , Lij = Ki+1(Ki ∩ Jj) and Mij = Ni+1(Ni ∩ Pj) for 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ m . Note that each (Sij , Lij ,Mij) is a 2−subcrossed module of (S,L,M, ∂2, ∂1) since (Ti+1,Ki+1, Ni+1)

is normal in (Ti,Ki, Ni) . Moreover,

Si0 = Ti+1(Ti ∩ V0) = Ti+1(Ti ∩ S) = Ti+1Ti = Ti

and
Sim = Ti+1(Ti ∩ Vm) = Ti+1(Ti ∩ 1) = Ti+11 = Ti+1

and similarly Li0 = Ki , Mi0 = Ni , Lim = Ki+1 , Mim = Ni+1 . Thus, we obtain a refinement of the normal
series (Ti,Ki, Ni) , namely

1 = Tn = S(n−1)m

��

// · · · // S(n−1)0 = Tn−1 = S(n−2)m

��

// · · · // S10 = T1 = S0m

��

// · · · // S00 = T0 = S

∂2

��
1 = Kn = L(n−1)m

��

// · · · // L(n−1)0 = Kn−1 = L(n−2)m

��

// · · · // L10 = K1 = L0m

��

// · · · // L00 = K0 = L

∂1

��
1 = Nn = M(n−1)m

// · · · // M(n−1)0 = Nn−1 = M(n−2)m
// · · · // M10 = N1 = M0m

// · · · // M00 = N0 = M.

In the same way, we can construct a refinement of the normal series (Vi, Ji,Mi) by defining S′
ij =

Vj+1(Vj ∩ Ti) , L′
ij = Jj+1(Jj ∩Ki) and M ′

ij = Pj+1(Pj ∩Ni) . Then by Lemmma 3, we have isomorphisms

(Ti+1,Ki+1,Ni+1)
(
(Ti,Ki,Ni)∩(Vj ,Jj ,Pj)

)
(Ti+1,Ki+1,Ni+1)

(
(Ti,Ki,Ni)∩(Vj+1,Jj+1,Pj+1)

) ∼=
(Vj+1,Jj+1,Pj+1)

(
(Vj ,Jj ,Pj)∩(Ti,Ki,Ni)

)
(Vj+1,Jj+1,Pj+1)

(
(Vj ,Jj ,Pj)∩(Ti+1,Ki+1,Ni+1)

)
which completes the proof. 2

Considering Definition 19, the following theorem is a direct consequence of the Scherier refinement theorem for
2−crossed modules.

Theorem 7 (Jordan-Hölder Theorem for 2−crossed modules) All composition series of a 2−crossed
module are equivalent and have the same minimal length.
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