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Abstract: The purpose of this article is to study the geometry of gradient almost Yamabe solitons immersed in warped
product manifolds I ×f Mn whose potential is given by the height function from the immersion. First, we present some
geometric rigidity on compact solitons due to a curvature condition on the warped product manifold. In the sequel, we
investigate conditions for the existence of totally geodesic, totally umbilical, and minimal solitons. Furthermore, in the
scope of constant angle immersions, a classification of rotational gradient almost Yamabe solitons immersed in R×f Rn

is also made.

Key words: Yamabe solitons, almost Yamabe solitons, totally geodesic hypersurface, warped product, totally umbilical
hypersurface, rotational gradient Yamabe solitons

1. Introduction
The concept of almost Yamabe soliton, introduced in the celebrated work [3], corresponds to a natural gener-
alization of Yamabe solitons∗ [17] and Yamabe metrics [25]. We recall that a Riemannian manifold (Σn, g) is
an almost Yamabe soliton if it admits a vector field X ∈ X(Σ) and a smooth function λ : Σ → R satisfying the
equation

1

2
LXg = (scalg − λ)g, (1.1)

where LXg and scalg stand, respectively, for the Lie derivative of g in the direction of X and the scalar
curvature of g . The quadruple (Σn, g,X, λ) is classified into three types according to the sign of λ : expanding
if λ < 0 , steady if λ = 0 , and shrinking if λ > 0 . If λ occurs as a constant, the soliton is usually referred to as
a Yamabe soliton. It may happen that X = ∇h is the gradient vector field of a smooth function h : M → R ,
called potential, in which case the soliton (Σn, g, h, λ) is referred to as a gradient almost Yamabe soliton.
Equation (1.1) then becomes

∇2h = (scalg − λ)g, (1.2)
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where ∇2h is the Hessian of h . We pointed out that almost Yamabe solitons, gradient or not, are regarded as
trivial if their defining equation vanishes identically.

The geometry of almost Yamabe solitons isometrically immersed in space forms has recently received
much attention [2, 7, 16, 20, 21]. Chen and Deshmukh [7] study Yamabe solitons whose soliton vector field is
the tangent component of the position vector on Euclidean space, and as a result, they established some rigidity
results. Under a concurrent vector field assumption on the soliton vector field, Seko and Maeta [21] showed that
any almost Yamabe soliton has a gradient almost Yamabe soliton structure. Furthermore, for almost Yamabe
solitons on ambient spaces furnished with a concurrent vector field, the authors give a classification of such
solitons. On the other hand, Aquino et al. [2] present the study of gradient almost Ricci solitons immersed
in the space of constant sectional curvature Mn+1 ⊂ Rn+2 with potential given by the height function of the
soliton associated to a fixed direction on Rn+2 .

The above works bring to light that important geometric results can be obtained by choosing an appro-
priate soliton vector field. In this sense, a vector field that has already proven to be a rich source for producing
examples of soliton fields is the one generated by the gradient of the height function from immersion. Examples
of solitons in which the height function is taken as the potential function are given in [2–5, 10, 22].

From the previous works, gradient almost Yamabe solitons, in which the height function is chosen as the
potential, might be interesting for further investigation. Moreover, to extend the above works to a larger class
of ambient spaces, it appears convenient to consider the immersions in a sufficiently large family of manifolds,
including the spaces of constant sectional curvature. A natural metric, which includes the spaces of constant
sectional curvature in its range, is described by warped product metrics [19]. Warped product manifolds have
already proven themselves to be a profitable ambient space to obtain a wide range of distinct geometrical
proprieties for immersions (cf. [1, 6, 8, 12, 13]). In this context, as in [1], we can extend the concept of height
function using the projection onto the base of the warped product (see Section 2).

The purpose of this manuscript is to study the geometry of gradient almost Yamabe solitons (Σn, g, h, λ)

immersed in warped product manifold I ×f Mn whose potential h is given by the height function from the
immersion. In this setting, we derive a necessary and sufficient condition for the immersion to be a gradient
almost Yamabe soliton. We use this result to investigate conditions for the existence of totally geodesic, totally
umbilical, minimal, and trivial solitons. Furthermore, when the ambient space is taken as R×f Rn , we provide
the classification of rotational gradient almost Yamabe solitons with a constant angle.

This manuscript is organized in the following way: In Section 2, we recall some basic facts and notations
that will appear throughout the paper. Afterward, in Section 3, we exhibit some examples of immersions
satisfying the gradient almost Yamabe soliton equation (1.2), and we establish our first main results concerning
the geometry of these geometric objects. Finally, in Section 4, we provide the classification of rotationally
symmetric gradient almost Yamabe solitons.

2. Preliminaries
Let (Mn, gM ) be a connected, n -dimensional oriented Riemannian manifold, I ⊂ R an interval and f : I →

(0,∞) a positive smooth function. In the product differentiable manifold M
n+1

= I × Mn , consider the
projections πI and πM onto the spaces I and Mn , respectively. A particular class of Riemannian manifold is

the one obtained by furnishing M
n+1 with the metric

〈 , 〉 = π∗
I (dt

2) + f2(πI)π
∗
M (gM ),
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such a space is called a warped product manifold with base I , fiber Mn and warping function f . In this

setting, for a fixed t0 ∈ R , we say that Σnt0 := {t0} ×Mn is a slice of Mn+1 .

Let ∇ and ∇ the Levi-Civita connection in I×fMn and Σn , respectively. Then, the Gauss-Weingarten
formulas for an isometric immersion ψ : Σn → I ×f Mn are given by

∇XY = ∇XY + 〈AX, Y 〉N, AX = −∇XN, (2.1)

for any X ∈ X(Σn) , where A : TΣn → TΣn denotes the Weingarten operator of Σn with respect to its
Gauss map N . We consider two particular functions naturally attached to Σn , namely, the height function
h := (πI)|Σ and the angle function θ = 〈N, ∂t〉 , where ∂t is the standard unit vector field tangent to I . By a
straightforward computation, we obtain that the gradient of πI on I ×f Mn is given by

∇πI = 〈∇πI , ∂t〉∂t = ∂t,

so that the gradient of h on Σn is

∇h = (∇πI)⊤ = ∂⊤t = ∂t − θN, (2.2)

where ( · )⊤ denotes the tangential component of a vector field in X(M) along Σn . In particular, we get

|∇h|2 = 1− θ2,

where | · | denotes the norm of a vector field on Σn .

Let R and R be the curvature tensors of I ×f Mn and Σn , respectively. Therefore, for any X , Y ,
Z ∈ X(Σn) , we have the following Gauss equation:

R(X,Y )Z = (R(X,Y )Z)⊤ + 〈AX,Z〉AY − 〈AY,Z〉AX. (2.3)

Denote by Ric the Ricci tensor of Σn and consider a local orthonormal frame {Ei}ni=1 of X(Σn) , as well
as X ∈ X(Σn) . Then, it follows from the Gauss equation (2.3) that

Ric(X,X) =

n∑
i=1

〈R(X,Ei)X,Ei〉+ nH〈AX,X〉 − 〈AX,AX〉. (2.4)

where H is the mean curvature of Σn .
Taking into account the properties of the Riemannian tensor R of a warped product (see, for instance,

Proposition 7.42 in [19]), we deduce

R(X,Y )Z = RM (X∗, Y ∗)Z∗ − [(log f)′(h)]2 [〈X,Z〉Y − 〈Y, Z〉X]

+ (log f)′′(h)〈Z, ∂t〉 [〈Y, ∂t〉X − 〈X, ∂t〉Y ]

− (log f)′′(h) [〈Y, ∂t〉〈X,Z〉 − 〈X, ∂t〉〈Y, Z〉] ∂t,

where RM is the curvature tensor of the fiber and X∗ = X − 〈X, ∂t〉∂t , E∗
i = Ei − 〈Ei, ∂t〉∂t are, respectively,
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the projections of the tangent vector fields X and Ei onto Mn . Then we arrive at

n∑
i=1

〈R(X,Ei)X,Ei〉 =f(h)−2
n∑
i=1

KM (X∗, E∗
i )
[
|X|2 − 〈X,∇h〉2 − |X|2〈∇h,Ei〉2

− 〈X,Ei〉2 + 2〈X,∇h〉〈X,Ei〉〈∇h,Ei〉
]
+ [(log f)′(h)]2

(
|∇h|2

− (n− 1)
)
|X|2 − (n− 2)(log f)′′(h)〈X,∇h〉2 − f ′′

f
|∇h|2|X|2,

(2.5)

where KM is the sectional curvature of Mn . Combining equations (2.4) and (2.5), we deduce the following
expression for the scalar curvature of Σn :

scalg = f(h)−2
n∑

i,j=1

KM (E∗
j , E

∗
i )
[
1− 〈Ej ,∇h〉2 − 〈∇h,Ei〉2 − 〈Ej , Ei〉2

+ 2〈Ej ,∇h〉〈Ej , Ei〉〈∇h,Ei〉
]
+ n[(log f)′(h)]2

[
|∇h|2 − (n− 1)

]
− (n− 2)(log f)′′(h)|∇h|2 − n

f ′′

f
|∇h|2 + n2H2 − |A|2.

(2.6)

From [19], we know that M
n+1 has constant sectional curvature c if, and only if, Mn has constant

sectional curvature k and the warping function f satisfy the following ODE:

(f ′)2 − k

f2
= −c = f ′′

f
. (2.7)

The next example provides warped product manifolds with constant sectional curvature, i.e., satisfying
(2.7).

Example 2.1 We remark that a Riemannian manifold of constant sectional curvature c ∈ {−1, 0, 1} can be
expressed as a warped product manifold I ×f Mn , namely

a) Rn+1 \ {0} = (0,+∞)×f Sn with f(t) = t ,

b) Rn+1 = R×f Rn with f(t) = 1 ,

c) Sn+1 \ {±p} = (0, π)×f Sn with f(t) = sin t ,

d) Hn+1 = R×f Rn with f(t) = et ,

e) Hn+1 \ {p} = (0,+∞)×f Sn with f(t) = sinh t ,

Proceeding, in order to establish our main results, we will need the following key lemma, which provides
a necessary and sufficient condition for a hypersurface to be a gradient almost Yamabe soliton with a height
function as the potential.
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Lemma 2.2 Let ψ : Σn → I ×f Mn be an isometric immersion. Then (Σn, g) is a gradient almost Yamabe
soliton with potential h = (πI)|Σ if, and only if,

(scalg − λ)g(X,Y ) = (log f)′(h) [g(X,Y )− dh⊗ dh(X,Y )] + θg(AX, Y ) (2.8)

for all X , Y ∈ X(Σn) .

Proof Taking into account the properties of the Levi-Civita connection of a warped product (see, for instance,
Proposition 7.35 in [19]), it easily follows that

∇X∂t =
f ′

f
(X − 〈X, ∂t〉∂t), ∀X ∈ X(Σn).

Thus, from equations (2.1) and (2.2), we deduce the following expression for the Hessian of h

∇2h(X) = ∇X∇h =
f ′(h)

f(h)
(X − 〈X,∇h〉∇h) + 〈N, ∂t〉AX.

Therefore,

∇2h(X,Y ) = g(∇X∇h, Y ) =
f ′(h)

f(h)
[g(X,Y )− dh⊗ dh(X,Y )] + θg(AX, Y ). (2.9)

The result follows by the fundamental equation (1.2). 2

We finalize this section by quoting the generalized Hopf’s maximum principle due to S.T. Yau. In the
following, L1(Σn) stands for the space of the Lebesgue integrable functions on Σn .

Lemma 2.3 ([24]) Let (Σn, g) be a complete, noncompact Riemannian manifold. If h : Σn → R is a smooth
subharmonic function such that |∇h| ∈ L1(Σn) , then h must be actually harmonic.

3. Examples and main results
Before presenting the main results, we will exhibit some examples of immersions satisfying the gradient almost
Yamabe soliton equation (1.2).

Example 3.1 Let (Sn, g1) denote the standard sphere immersed in Euclidean space (Rn+1, g0) . According to
[3], if we take the height function from the sphere given by

h : Sn → R, x 7→ g1(x, η1),

where η1 = (1, 0, . . . , 0) ∈ Rn+1 and x = (x1, . . . , xn+1) ∈ Sn is the position vector, then (Sn, g1) is a
gradient almost Yamabe soliton with the height function as the potential and the soliton function given by
λ = 1

n (∆h− scalg1) .

Example 3.2 Let Pnϵ := {(x1, x2, x3, . . . , xϵ, . . . , xn+1) ∈ Rn+1 | xϵ = 0} be the hyperplane isometrically
immersed in Euclidean space (Rn+1, g0) . Hence, taking the height function from the hyperplane given by

h : Pnϵ → R, x 7→ g0(x, η1),

where η1 = (1, 0, . . . , 0) ∈ Rn+1 and x ∈ Pn , we deduce that (Pn, g0) is a steady gradient almost Yamabe soliton
with the height function as the potential function.
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Examples 3.1 and 3.2 are totally umbilical hypersurfaces and provide particular instances of the classifi-
cation of Corollary 3.9.

Example 3.3 Consider the hyperbolic space R ×et Rn furnished with the warped product structure. It is well
known that the horospheres of the hyperbolic space are totally umbilical hypersurfaces isometric to Rn and
correspond to slices {t0} × Rn , t0 ∈ R . Hence, taking the inclusion i : {t0} × Rn → R × Rn , we deduce that
the height function satisfies h(x) = t0 , and then the standard Euclidean space {t0} × Rn is a trivial gradient
almost Yamabe soliton with potential h(x) = t0 .

The above example allows us to conclude, in a broad sense, that for each fixed number t0 ∈ I , the
inclusion i : {t0}×Mn → I×Mn produces a constant height function h(x) = t0 . Hence, {t0}×Mn is a trivial
gradient almost Yamabe soliton with potential h(x) = t0 . This observation allows us to produce infinitely many
examples of gradient almost Yamabe solitons. More precisely, we have the following example.

Example 3.4 Every manifold Σn ⊂ Mn isometrically included in the warped product manifold I ×f Mn is a
trivial gradient almost Yamabe soliton with potential h = (πI)|Σ = const. and scalar curvature scalg = λ .

The next example deals with a rotationally symmetric gradient almost Yamabe soliton with a constant
angle (see Figure 1).

Example 3.5 Let ψ : Σ2 = (0,∞)× (0, 2π) → R×et R2 be an isometric immersion given by:

ψ(u, v) = (u
√
1− θ2,− θ√

1− θ2
e−u

√
1−θ2 cos v,− θ√

1− θ2
e−u

√
1−θ2 sin v), θ ∈ (0, 1),

then, Σ2 is a gradient almost Yamabe soliton with potential h(u, v) = u
√
1− θ2 and soliton function λ = scalg

(see Section 4).

Figure 1. Rotational soliton immersed in hyperbolic space with θ =
√
2

2
.

Initially, we focus our attention on compact gradient almost Yamabe soliton immersions ψ : Σn →
I×fMn . It has been known that every compact gradient Yamabe soliton is of constant scalar curvature, hence
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trivial since h is harmonic (cf. [11, 18, 23]). For gradient almost Yamabe solitons, the previous result was
generalized by Barbosa and Ribeiro [3], where the authors proved that any compact gradient almost Yamabe
soliton (Mn, g, h, λ) satisfying ∫

M

g(∇λ,∇h)dvg ≥ 0, (3.1)

is trivial. Our first result drops the condition (3.1) in favor of a hypothesis about the geometry of I×fMn and
produces the following result.

Theorem 3.6 Let (Σn, g, h = (πI)|Σ, λ) be a compact gradient almost Yamabe soliton immersed in I ×f Mn .
If the mean curvature of Σn satisfies |H| ≤ (log f)′(h) , then Σn is trivial.

Proof Taking the trace in (2.9), we deduce

∆h =
f ′(h)

f(h)

(
n− |∇h|2

)
+ nθH.

Hence,

∆h+ 〈∇ log f(h),∇h〉 = n

(
f ′(h)

f(h)
+ θH

)
≥ n

(
f ′(h)

f(h)
− |θ||H|

)
≥ n

(
f ′(h)

f(h)
− |H|

)
≥ 0. (3.2)

It follows from the maximum principle (see page 35 of [15]) that h is constant. Therefore, Σn is a trivial
gradient almost Yamabe soliton. 2

We pointed out that each leaf Σt = {t} ×Mn of the foliation t → Σt of Mn+1 is a totally umbilical
hypersurface with constant mean curvature

H = (log f)′(h),

with respect to −∂t . From Example 3.4, each Σt is a trivial almost Yamabe soliton. This implies that the
inequality in Theorem 3.6 is optimal.

In the particular case in which the ambient space is a space form, we obtain the following corollary.

Corollary 3.7 Let (Σn, g, h = (πI)|Σ, λ) be a compact gradient almost Yamabe soliton immersed in I ×f Mn .
Then, the following statements hold:

(a) If I ×f Mn is the Euclidean sphere (0, π)×sin t Sn and the mean curvature of Σn satisfies:

|H| ≤ cot (h),

then Σn is trivial.

(b) If I ×f Mn is the hyperbolic space (0,+∞)×sinh t Sn and the mean curvature of Σn satisfies:

|H| ≤ coth (h),

then Σn is trivial.
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(c) If I ×f Mn is the Euclidean space (0,+∞)×t Sn and the mean curvature of Σn satisfies:

|H| ≤ h−1,

then Σn is trivial.

Recently, Chen and Deshmukh [7] studied Yamabe solitons immersed in the Euclidean space Rn , whose
soliton vector field is the tangent component from the position vector field and proved that Yamabe soliton
hypersurfaces are totally umbilical. Seko and Maeta [21] improved on this result by showing that it may be
extended to the class of almost Yamabe solitons. In our context, we give the following result for hypersurfaces
immersed in Riemann product manifolds.

Theorem 3.8 Let (Σn, g, h = (πI)|Σ, λ) be a gradient almost Yamabe soliton immersed into a Riemannian
product manifold I × Mn . If the angle function θ does not change sign, then Σn is a totally umbilical
hypersurface.

Proof First, let us consider a local orthonormal frame {Ei}ni=1 of X(Σn) associated with the Weingarten
operator, i.e., A(Ei) = λiEi , where {λi}ni=1 are the principal curvatures of Σn . Since the warping function f

is constant, we deduce from Lemma 2.2 that

g(AEi, Ej) = λig(Ei, Ej) = θ−1(scalg − λ)g(Ei, Ej), i, j = 1, . . . , n,

which implies that
λi = θ−1(scalg − λ), i = 1, . . . , n.

Therefore, Σn is totally umbilical with mean curvature H = θ−1(scalg − λ) . 2

In the particular case in which I ×Mn = R× Rn = Rn+1 , we obtain the following classification.

Corollary 3.9 Let (Σn, g, h = (πI)|Σ, λ) be a gradient almost Yamabe soliton immersed in the Euclidean space
Rn+1 . If θ does not change sign, then Σn is contained in a hypersphere or a hyperplane.

In order to investigate minimal gradient almost Yamabe solitons, we prove the following.

Theorem 3.10 Let (Σn, g, h = (πI)|Σ, λ) be a minimal gradient almost Yamabe soliton immersed in I ×f Mn

with f ′(h) ≥ 0 , then the scalar curvature of Σn satisfies scalg ≥ λ . Moreover, if h reaches the maximum, then
scalg ≡ λ , f ′(h) = 0 and Σn is a slice of I ×Mn .

Proof Since (Σn, g, h, λ) is a minimal gradient almost Yamabe soliton, we deduce from the trace of (2.8) in
Lemma 2.2 that

(scalg − λ)n =
f ′(h)

f(h)

(
n− |∇h|2

)
.

From |∇h|2 = 1− θ2 and by the hypothesis f ′(h) ≥ 0 , we derive

(scalg − λ)n =
f ′(h)

f(h)

(
n− |∇h|2

)
=
f ′(h)

f(h)

(
n− 1 + θ2

)
≥ 0, (3.3)
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which proves that scalg ≥ λ . On the other hand, it follows from equation (1.2) that

∆h = n(scalg − λ) ≥ 0. (3.4)

Now, assume that h attains its maximum h0 in the point x0 ∈ Σn and define

Ω0 := {x ∈ Σn ; h(x) = h0}.

since x0 ∈ Ω0 , it must be closed and nonempty. Let now y ∈ Ω0 , then applying the maximum principle (see
[15] p. 35 ) to (3.4) we obtain that, h(x) = h0 in a neighborhood of y so that Ω0 is open. The connectedness
of Σn yields Ω0 = Σ . Hence h is constant, which implies that Σn is a slice, scalg = λ and f ′(h) = 0 . 2

As a consequence of Theorem 3.10, we derive a condition for the nonexistence of minimal immersion of
gradient almost Yamabe solitons in the hyperbolic space R×et Rn or the Euclidean space (0,∞)×t Sn . More
precisely, we derive the following corollary.

Corollary 3.11 Let (Σn, g, h = (πI)|Σ, λ) be a gradient almost Yamabe soliton immersed in I ×f Mn . Then
the following statements hold.

(a) If I ×f Mn = R×et Rn and λ > −n(n− 1)− |A|2 , then ψ cannot be minimal.

(b) If I ×f Mn = (0,∞)×t Sn and λ > −|A|2 , then ψ cannot be minimal.

As another application of Theorem 3.10, we also get

Corollary 3.12 Let (Σn, g, h = (πI)|Σ, λ) be a minimal gradient almost Yamabe soliton immersed in the
Riemannian product manifold I ×Mn . If h reaches its maximum, then (Σn, g) is isometric to Mn .

Remark 3.13 Corollary 3.12 reveals that there does not exist a compact minimal gradient almost Yamabe
soliton Σn immersed in the Riemannian product manifold I ×Mn with noncompact Mn .

The next result extends the one proven by Barros et al. [4] for gradient almost Yamabe solitons (see
Theorem 1.5).

Theorem 3.14 Let (Σn, g, h, λ) be a gradient almost Yamabe soliton immersed in I ×f Mn whose fiber Mn

has sectional curvature kM ≤ infI(f
′2 − ff ′′) .

(a) If |∇h| ∈ L1(Σn) and the soliton function satisfies

λ ≥ −n(n− 1)
f ′′(h)

f(h)
+ n2H2,

then Σn is totally geodesic, with scalar curvature scalg = −n(n− 1) f
′′

f and kM = f ′2 − ff ′′ .

(b) If |∇h| ∈ L1(Σn) and the soliton function satisfies

λ ≥ n(n− 1)

(
H2 − f ′′(h)

f(h)

)
,

then Σn is totally umbilical, with scalar curvature scalg = n(n− 1)(H2 − f ′′

f ) and kM = f ′2 − ff ′′ .
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Remark 3.15 The curvature assumption kM ≤ infI(f
′2 − ff ′′) in Theorem 3.14 is motivated by the ODE

(2.7). As may be seen, kM ≤ infI(f
′2 − ff ′′) naturally holds on ambient manifolds I ×f Mn with constant

sectional curvature (see Example 2.1).

Proof First, note that our hypothesis under the sectional curvature kM jointly with (2.6) implies that

scalg ≤
infI(f

′2 − ff ′′)

f2
(n− 1)

(
n− 2|∇h|2

)
+ n[(log f)′(h)]2

(
|∇h|2 − (n− 1)

)
− (n− 2)(log f)′′(h)|∇h|2 − n

f ′′

f
|∇h|2 + n2H2 − |A|2

≤ −(n− 1)(log f)′′(h)
(
n− 2|∇h|2

)
+ n[(log f)′(h)]2

(
|∇h|2 − (n− 1)

)
− (n− 2)(log f)′′(h)|∇h|2 − n

f ′′

f
|∇h|2 + n2H2 − |A|2

≤ −n(n− 1)
f ′′(h)

f(h)
+ n2H2 − |A|2.

(3.5)

Hence, combining our assumption on the soliton function λ with the inequality (3.5), we arrive at

∆h = n(scalg − λ) = n

(
−n(n− 1)

f ′′(h)

f(h)
+ n2H2 − λ− |A|2

)
≤ 0. (3.6)

Now, from Lemma 2.3, we derive that h is harmonic, and then from (3.6), Σn must be totally geodesic

with scalg = λ = −n(n− 1) f
′′

f . On the other hand, from scalg = λ , we get that kM = f ′2 − ff ′′ .

For the second assertion, note that the traceless second fundamental form of Σn , namely, Φ = A−HI ,
satisfies |Φ|2 = tr(Φ2) = |A|2 −nH2 ≥ 0 and equality holds if and only if, Σn is totally umbilical. So, from the
hypothesis on λ and equation (3.6), we obtain

∆h = n(scalg − λ) = n

[
n(n− 1)

(
−f

′′(h)

f(h)
+H2

)
− λ− |Φ|2

]
≤ 0. (3.7)

Hence, again from Lemma 2.3, we deduce that scalg = λ = n(n−1)
(
H2 − f ′′

f

)
and |Φ|2 = 0 , which gives that

Σn is totally umbilical. On the other hand, from scalg = λ , we get that kM = f ′2 − ff ′′ . 2

Proceeding, it is a well-known fact that any compact gradient almost Yamabe soliton with constant scalar
curvature is isometric to the Euclidean sphere Sn (see [3]). From this fact, we derive the following rigidity result.

Theorem 3.16 Let (Σn, g, h, λ) be a compact gradient almost Yamabe soliton immersed into a space form

M
n+1

(c) of curvature c . If λ ≥ n(n− 1)c+2 |H|2 , then (Σn, g) is isometric to the Euclidean sphere (Sn, g1) .

Proof Since a warped product I ×f Mn of constant curvature c trivially fulfills the condition kM =

infI(f
′2 − ff ′′) , we obtain in a similar way as in the demonstration of Theorem 3.14 that

∆h = n(scalg − λ) = n
(
n(n− 1)c+ n2H2 − λ− |A|2

)
≤ 0, (3.8)

which implies that −h is subharmonic, and from the maximum principle, h must be constant. Hence, from
(3.8), we derive that |A|2 = 0 and scalg = n(n− 1)c , so the result follows from Theorem 1.5 of [3]. 2
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A result similar to Theorem 3.16 appears in [9] (Theorem 3 (ii)); however, Theorem 3.16 shows us that
we can remove the assumption |∇h| ∈ L1(Σn) to get the same conclusion.

Remark 3.17 We remark that Theorem 3.14 and Theorem 3.16 are obtained in the general case without the
assumption h = (πI)|Σ . However, upon assuming this condition, we obtain from item (a) of Theorem 3.14
jointly with Lemma 2.2 that either Σn is a slice, or f is a constant and Σn is a totally geodesic hypersurface
into a product manifold of zero sectional curvature.

For item (b) of Theorem 3.14, we deduce ∇2h = (scalg − λ)g = 0 , then either h is constant, which
implies that Σn is trivial, or |∇h| 6= 0 and Σn splits along the gradient of h . In the last case, from Lemma
2.2, we get

f ′(h)

f(h)
dh⊗ dh =

(
f ′(h)

f(h)
+ θH

)
g.

Hence, from Lemma 1 of [5], we obtain log f(h)′|∇h|2 = 0 , which implies that f is a constant. So, Σn is a
totally umbilical hypersurface into a Riemannian product manifold of zero sectional curvature. Finally, Theorem
3.16 in the particular case h = (πI)|Σ remains the same.

4. Classification of rotational gradient almost Yamabe solitons
In this section, we present a classification of rotational gradient almost Yamabe solitons immersed in R×f Rn

with potential h := (πI)|Σ and constant angle θ ∈ (0, 1) . Following Dajczer and do Carmo [14], we shall use the
terminology of rotational hypersurface in R ×f Rn as a hypersurface invariant by the orthogonal group O(n)

seen as a subgroup of the isometries group of R×f Rn .
Initially, consider the coordinates (t, x1, . . . , xn) , as well as the standard orthonormal basis {η1, . . . , ηn+1}

of R×fRn . Then, up to isometry, we can assume the rotation axis to be η1 . Consider an arc length parametrized
curve in the txn plane given by

γ : (t0, t1) −→ R×f Rn (4.1)

u 7−−→ (α(u), 0, . . . , 0, β(u)). (4.2)

Rotating this curve around the t -axis, we obtain a rotational hypersurface in R×f Rn . Now, in order to obtain
a parametrization of a rotational hypersurface, consider the unit sphere Sn−1 ⊂ Rn = span{η2, . . . , ηn+1} with
orthogonal parametrization given by

X1 = cos v1, X2 = sin v1 cos v2, X3 = sin v1 sin v2 cos v3, . . .

Xn−1 = sin v1 sin v2. . . . sin vn−2 cos vn−1, Xn = sin v1 sin v2 . . . sin vn−2 sin vn−1.

Therefore, a parametrization of a rotational hypersurface Σn with radial axis η1 into R×f Rn is given by

ψ : (t0, t1)× (0, 2π)n−1 → R×f Rn

(u, v1, . . . , vn−1) 7−→ α(u)η1 + β(u)X(v1, . . . , vn−1),
(4.3)

where
X(v1, . . . , vn−1) = (0, X1(v1, . . . , vn−1), . . . , Xn(v1, . . . , vn−1)).

In this setting, we provide the following classification.
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Theorem 4.1 Let ψ : Σn → R×fRn be a rotational gradient almost Yamabe soliton hypersurface with constant
angle θ ∈ (0, 1) . Then, up to constants, ψ takes the following form:

ψ(u, v1, . . . , vn−1) = u
√
1− θ2η1 +

(
θ

1− θ2

∫ u
√
1−θ2 ds

f(s)

)
X(v1, . . . , vn−1), f(t) = et,

where η1 = (1, 0, . . . , 0) ∈ Rn+1 , −∞ < u <∞ , 0 < v1, . . . , vn−1 < 2π and X is a sphere parametrization.

Proof Since ψ : Σn → R×f Rn is a rotational hypersurface, we deduce from (4.3) that

ψu = α′(u)η1 + β′(u)X,

ψvi = β(u)Xvi , 1 ≤ i ≤ n− 1,
(4.4)

and then, the first fundamental form of Σn takes the form

I =


1 0 . . . 0

0 f(α(u))2β(u)2 . . . 0

...
... . . . ...

0 0 . . . f(α(u))2β(u)2

 . (4.5)

The first fundamental equation (4.5) reveals that the induced metric on Σn can be expressed by the warped
product metric g = du2 + σ(u)2dv2 where σ(u) = f(α(u))β(u) . In this case, it follows from the Levi-Civita
connection on the warped product metric that

∇ψu
ψu = 0,

∇ψu
ψvi = ∇ψvi

ψu =
σu
σ
ψvi ,

∇ψvi
ψvj = ψvivj − σσuδijψu.

(4.6)

From the tangent components (4.4), we easily derive the following unit normal vector field for Σn

N = f(α(u))β′(u)η1 −
α′(u)

f(α(u))
X(v1, . . . , vn−1).

Hence, the hypersurface Σn determines a constant angle hypersurface with constant angle θ if, and only if,

θ = 〈∂t, N〉 = f(α(u))β′(u) = constant. (4.7)

Combining the unit condition for the rotational curve γ(u) = (α(u), 0, . . . , 0, β(u)) , i.e.,

α′(u)2 + f(α(u))2β′(u)2 = 1,

and (4.7), we deduce α′(u) =
√
1− θ2 , whose general solution is given by

α(u) = u
√
1− θ2 + c1, c1 ∈ R. (4.8)
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Then, replacing equation (4.8) into (4.7) and solving in u , we derive the following expression:

β(u) =

∫ u θ

f(s
√
1− θ2 + c1)

ds+ c2 =
θ√

1− θ2

∫ u
√
1−θ2+c1 ds

f(s)
+ c2, c2 ∈ R. (4.9)

Therefore, the rotational hypersurface takes the following form:

ψ = (u
√

1− θ2 + c1)η1 +

(
θ√

1− θ2

∫ u
√
1−θ2+c1 ds

f(s)
+ c2

)
X(v1, . . . , vn−1). (4.10)

Now, in order to compute the Weingarten operator AN , let us consider the following decomposition

∂t =
√

1− θ2ψu + θN. (4.11)

Taking the covariant derivative of (4.11) with respect to ψvi and considering that the angle θ is constant, as
well as the properties of the Levi-Civita connection of R×f Rn (Proposition 7.35 in [19]), we deduce that

∇ψvi
ψu =

θ√
1− θ2

ANψvi +
1√

1− θ2
f ′(α(u))

f(α(u))
ψvi , ∀i ∈ {1, . . . , n− 1}. (4.12)

Combining (4.6) and (4.12) yields

√
1− θ2

σu
σ
ψvi = θANψvi +

f ′(α(u))

f(α(u))
ψvi , (4.13)

and therefore, from the expression of σ , we obtain that ψvi is an eigenvector for AN and satisfies

ANψvi =

(√
1− θ2

σ
− f ′(α(u))

f(α(u))
θ

)
ψvi . (4.14)

On the other hand, taking the covariant derivative of (4.11) with respect to X ∈ X(Σn) and using the Gauss-
Weingarten formulas (2.1), we deduce the following implications

∇X∂t =
√
1− θ2∇Xψu + θ∇XN

=
√
1− θ2∇Xψu +

√
1− θ2g(ANψu, X)N − θANX,

and, again from the properties of the Levi-Civita connection of R×f Rn [19], it follows

f ′(α(u))

f(α(u))

(
X −

√
1− θ2g(X,ψu)∂t

)
=
√

1− θ2∇Xψu +
√
1− θ2g(ANψu, X)N − θANX. (4.15)

Comparing the tangent and the normal parts of (4.15), one gets that ψu is an eigenvector for AN and satisfies

ANψu = −f
′(α(u))

f(α(u))
θψu. (4.16)
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Therefore, from (4.14) and (4.16), we conclude that {ψu, ψv1 , . . . , ψvn−1} form an orthogonal basis of AN and
its expression on that basis takes the form

AN =



−f
′(α(u))

f(α(u))
θ 0 . . . 0

0

√
1− θ2

σ
− f ′(α(u))

f(α(u))
θ . . . 0

...
... . . . ...

0 0 . . .

√
1− θ2

σ
− f ′(α(u))

f(α(u))
θ


. (4.17)

Now, since we are assuming that (Σn, g, h, λ) is a gradient almost Yamabe soliton, we obtain from Lemma
2.2 that

(scalg − λ)g(X,Y ) =
f ′(h)

f(h)
[g(X,Y )− dh⊗ dh(X,Y )] + θg(AX, Y ), ∀X,Y ∈ X(Σn). (4.18)

Notice that, in particular cases X = ψu , Y = ψvi and X = ψvi , Y = ψvj , i 6= j , the orthogonality of
X , Y and the expression for the height function

h(u, v1, . . . , vn) = (πR)|Σn(u, v1, . . . , vn) = u
√
1− θ2 + c1, c1 ∈ R, (4.19)

implies that equation (4.18) is trivially satisfied. Hence, we need to look at equation (4.18) for a pair of fields
X = Y = ψu and X = Y = ψvi .

For X = Y = ψu , we obtain

(scalg − λ)g(ψu, ψu) =
f ′(h)

f(h)
[g(ψu, ψu)− dh⊗ dh(ψu, ψu)] + θg(ANψu, ψu)

=
f ′(h)

f(h)

[
1− (1− θ2)

]
− f ′(h)

f(h)
θ2

= 0.

which implies that scalg = λ .
Now, for X = Y = ψvi , with 1 ≤ i ≤ n− 1 , we get

(scalg − λ)g(ψvi , ψvi) =
f ′(h)

f(h)
[g(ψvi , ψvi)− dh⊗ dh(ψvi , ψvi)] + θg(ANψvi , ψvi)

=

(
f ′(h)

f(h)
(1− θ2) +

θ
√
1− θ2

σ

)
g(ψvi , ψvi).

Hence, since scalg = λ , we obtain from above that

f ′(h)

f(h)
(1− θ2) +

θ
√
1− θ2

σ
= 0, (4.20)

and then, taking into account equations (4.13) and (4.20), it easily follows
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σu
σ
ψvi =

1√
1− θ2

[
θANψvi +

f ′(h)

f(h)
ψvi

]
= 0, (4.21)

which implies that σ is constant. Therefore, from

f ′(h)

f(h)
(1− θ2) +

θ
√
1− θ2

σ
= 0,

we deduce that
f ′(h)

f(h)
= constant.

And thus, f(t) = c3e
c5t , c3 , c4 ∈ R . Bringing together the equations (4.10), (4.19) and the expression for f ,

we obtain the desired result. 2
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