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Abstract: A different solution from the one already known for sequential fractional differential equations with recur-
rence relation is proposed. This solution involves a Mittag-Leffler type function, which satisfies a recurrence property
compatible with the behavior of sequential fractional differential equations with recurrence relation.
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1. Introduction
The role of the exponential function in the solution of linear differential equations with constant coefficients
has an analogy with the role of the Mittag-Leffler function and its generalizations in the solution of noninteger
order differential equations. The exponential function has the important property of being invariant, except for
constant, by the operations of differentiation and integration. In fractional calculus, the function that has this
property is called α -exponential and it is defined in terms of the two-parameter Mittag-Leffler function. It is
not possible to generalize the α -exponential function through generalizations of the Mittag-Leffler function with
three or more parameters and to preserve its invariance under the operations of differentiation and fractional
integration, for example, see [2, 3, 14]. This prompted us to introduce a Mittag-Leffler type function, the γ -α -
n -exponential function, which has a similar property to the α−exponential function but it involves recurrence
relations when applying Miller-Ross sequential differentiation operators (see [9, 11]). The particular behavior of
sequential derivatives makes a sequential differential equation an intuitive generalization of ordinary differential
equations. In [10, 12] we introduced the bases for a new theory of fractional differential equations with a
recurrence relation. In this article, we give an alternative solution to the linear differential equations with
recurrence relationship homogeneous using both the γ -α -n -exponential function and the generalized fractional
trigonometric functions defined in [9].

2. Preliminaries
The Mittag-Leffler function Eα,β(x) is defined by the following series:

Eα,β(x) =

∞∑
j=0

xj

Γ(αj + β)
(x, α, β ∈ C;Re(α) > 0), (2.1)
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where Γ(x) is the classical Gamma function; and E1,1 = eλx (λ ∈ C) (cf.[4]). Based on Eα,β(x) , the α -
Exponential Function is defined as follows:

eλxα = xα−1Eα,α (λxα) , (2.2)

with x ∈ C \ {0} , Re(α) > 0 , λ ∈ C . The α -exponential function is a generalization of the exponential
function, and eλx1 = eλx . If x > a and λ = b + ic (b, c ∈ R), then the real and imaginary parts of eλxα are
defined as the α -trigonometrics functions:

cosα(λ(x− a)) = Re
[
eiλ(x−a)
α

]
and sinα(λ(x− a)) = Im

[
eiλ(x−a)
α

]
. (2.3)

Prabhakar introduces in [13] the Mittag-Leffler type function

Eγ
α,β(x) =

∞∑
j=0

(γ)jx
j

Γ(αj + β)j!
, (2.4)

with α , β , γ ∈ C ; Re(α) > 0 , and x ∈ C ; where (γ)j is the Pochhammer symbol (cf.[4]), with x ∈ C . And it
verified E1

α,β = Eα,β .

The Riemann-Liouville fractional derivatives of order α ∈ C of a integrable function f(x) defined in
[a, b] is defined by (see [4])

(Dα
a+f)(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

f(t)

(x− t)α−n+1
dt, n = [ℜ(α)] + 1. (2.5)

In [4], it is proved that if α, β ∈ C and Re(α),Re(β) > 0 , then

(
Dα

a+(t− a)β−1
)
(x) =

Γ(β)

Γ(β − α)
(x− a)β−α−1 (Re(α) ≥ 0). (2.6)

From (2.5) and (2.6), the following relationship is obtained:(
Dα

a+e
λ(t−a)
α

)
(x) = λeλ(x−a)

α , (2.7)

when Re(α) > 0 , and λ ∈ C (see [2]). In [9], the L-Mittag-Leffler function is introduced:

Lγ,n
α,β(x) =

∞∑
j=0

(γ)j+nx
j

Γ(αj + β)(j + n)!
, (x ∈ C), (2.8)

where α, β, γ ∈ C ; Re(α) > 0 , Re(β) > 0 , Re(γ) > 0 , n ∈ N0 . The particular case Lγ,0
α,β(x) = Eγ

α,β(x) is
verified. Then the γ -α -n -Exponential is defined as follows:

eλ(x−a)
α,γ,n = (x− a)α−1Lγ,n

α,α(λ(x− a)α) (x > a), (2.9)

with λ , γ ∈ C , a ∈ R and α ∈ R+ . The special cases e
λ(x−a)
α,1,n = e

λ(x−a)
α are verified. The function (2.9) also

exhibits the following properties:
lim

n→∞
Γ(γ)eλ(x−a)

α,γ,n = eλ(x−a)
α . (2.10)
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When x ∈ A ⊂ (a,∞) , where A is a compact set; and(
DNα

a+ eλ(t−a)
α,γ,n

)
(x) = λNe

λ(x−a)
α,γ,n+N , (2.11)

where λ ∈ C , N ∈ N , 0 < α ≤ 1 , and y(kα =
(
Dkα

a+y(x)
)
(x) (k = 1, 2, ..., N ) represent a sequential fractional

derivative, introduced by Miller and Ross in [11]:

Dα
a+ = Dα

a+ (0 < α ≤ 1)

Dkα
a+ = Dα

a+D
(k−1)α
a+ , (2.12)

where Dα
a+ is the Riemann-Liouville fractional derivative: Dα

a+ = Dα
a+ .

The above generalized exponential function can be used to extend the ordinary trigonometric functions
to the called γ -α -n -Cosine and γ -α -n -Sine functions, denoted as

cosα,γn (λ(x− a)) = Re
[
eiλ(x−a)
α,γ,n

]
and sinα,γn (λ(x− a)) = Im

[
eiλ(x−a)
α,γ,n

]
(x > a), (2.13)

respectively, where λ ∈ C . In addition, since the relationship e
iλ(x−a)
α,1,n = e

iλ(x−a)
α is verified, we obtain:

cosα,1n (λ(x− a)) = cosα(λ(x− a)), (2.14)

sinα,1n (λ(x− a)) = sinα(λ(x− a)), (2.15)

where sinα and cosα are given in (2.3), respectively. They also have the following properties:

(
DNα

a+ cosα,γn [λ(x− a)]
)
(x) =


λN cosα,γn+N (λ(x− a)) if r=0,

−λN sinα,γn+N (λ(x− a)) if r=1,
−λN cosα,γn+N (λ(x− a)) if r=2,
λN sinα,γn+N (λ(x− a)) if r=3,

(2.16)

and

(
DNα

a+ sinα,γn [λ(x− a)]
)
(x) =


λN sinα,γn+N (λ(x− a)) if r=0,
λN cosα,γn+N (λ(x− a)) if r=1,

−λN sinα,γn+N (λ(x− a)) if r=2,
−λN cosα,γn+N (λ(x− a)) if r=3,

(2.17)

where N = 4q + r , with q ∈ N0 and 0 ≤ r < 4 .
In [8] the basic general theory for the Linear Sequential Fractional Differential Equation which includes

a recurrence relationship is introduced.

Definition 2.1 Let N ∈ N and 0 < α ≤ 1 . It is called Linear Sequential Fractional Differential Equations
with Recurrence Relationship (LFDERR) of order Nα to an equation of the type:

[RNα(yn(t))
∞
n=0] (x) =

(
DNα

a+ yn
)
(x) +

N∑
j=1

aN−j(x)
(
D(N−j)α

a+ yn+j

)
(x) = fn(x), (2.18)

(n ∈ N0 , x > a) where Dkα
a+ is defined by (2.12), {aj(x)}N−1

j=0 are real functions defined in (a, b] ⊂ R , a0 ̸= 0 ,

and fn(x) ∈ C((a, b]) , for each n ∈ N0 . When fn ≡ 0 , the equation (2.18) is called homogeneous LFDERR
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(LFDERRH) associated with (2.18). If a0, a1, ..., aN−1 are constants, the equation (2.18) will be called an
equation with constant coefficients

(
DNα

a+ yn
)
(x) +

N∑
j=1

aN−j

(
D(N−j)α

a+ yn+j

)
(x) = fn(x); (2.19)

and its corresponding homogeneous equation will be:

(
DNα

a+ yn
)
(x) +

N∑
j=1

aN−j

(
D(N−j)α

a+ yn+j

)
(x) = 0. (2.20)

In [8], the set ∆Nα(a, b) is defined as the set of functions that have sequential derivatives DKα
a+ , with

1 ≤ K ≤ N , in (a, b) ; where it can be N = ∞ , meaning that ∆∞α(a, b) is the set of functions that have

sequential derivatives of all orders. The set
[
∆Nα(a, b)

]N is defined as the set of sequences of functions, such
that each term belongs ∆Nα(a, b) : That is:

(yn(x))
∞
n=0 ∈

[
∆Nα(a, b)

]N ⇔ ∀n ∈ N0 : yn(x) ∈ ∆Nα(a, b). (2.21)

Furthemore, in [8], it is proved that the set H = E0
N (a, b) ∩ [∆∞α(a, b)]

N is a vector space of N dimensions,
which denotes E0

N (a, b) the set of solutions to equation (2.20), with x ∈ (a, b) and the operations + and · ,
defined as follows:

(y1
n(x))

∞
n=0 + (y2

n(x))
∞
n=0 = ((y1

n + y2
n)(x))

∞
n=0 (2.22)

d(y1
n(x))

∞
n=0 = ((dy1

n)(x))
∞
n=0, (2.23)

whenever (y1
n(x))

∞
n=0 , (y2

n(x))
∞
n=0 ∈ E0

N (a, b) , and d is a scalar.

3. Main results
In this section, we will use the α -γ -n -exponential function to find a fundamental set of solutions for equation
(2.20). The following result will be required:

Lemma 3.1 Let k ∈ R and t ∈ N be, there exist B0 , B1 , ..., Bt ∈ R such that we can write:

kt =

t∑
q=0

Bq

q∏
p=0

(k − p). (3.1)

Proof It will be done by induction. t = 1 is taken in (3.1):

k =

1∑
q=0

Bq

q∏
p=0

(k − p) = (B0 −B1)k +B1k
2, (3.2)

it is enough to take B0 = 1 and B1 = 0 . For the remainder of the proof, it will be assumed that there exist
B1 , B2 ,...,Bt ∈ R such that (3.1) holds; and it will be proved that we can always find B′

1 , B′
2 ,...,B′

t , B′
t+1 ∈ R

such that

kt+1 =

t+1∑
q=0

B′
q

q∏
p=0

(k − p). (3.3)
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The expression
∏t+1

p=0(k − p) represents a polynomial of degree t + 1 in k , which vanishes when k ∈

{0, 1, 2, ..., t, t+ 1} . Then, there exist a0 , a1 , ... , at ∈ R , such that

t+1∑
j=0

ajk
j+1 =

t+1∏
p=0

(k − p), (3.4)

The following decomposition can be considered:

t+1∑
q=0

Bq

q∏
p=0

(k − p) =

t∑
q=0

Bq

q∏
p=0

(k − p) +Bt+1

t+1∏
p=0

(k − p). (3.5)

If we assume that k ∈ {0, 1, 2, ..., t, t+ 1} , then we can deduce that (3.5) has the shape

t+1∑
q=0

Bq

q∏
p=0

(k − p) =

t∑
q=0

Bq

q∏
p=0

(k − p) + (Bt+1)(0). (3.6)

Therefore, Bt+1 can be any real number. Furthermore, assuming (3.1) holds, (3.6) can be rewritten as:

t+1∑
q=0

Bq

q∏
p=0

(k − p) = kt. (3.7)

Then, multiplying both sides of (3.7) by k we obtain:

t+1∑
q=0

kBq

q∏
p=0

(k − p) = kt+1, (3.8)

i.e. there exist B′
0 = kB0 , B′

1 = kB1 , ..., B′
t = kBt , B′

t+1 = kBt+1 ∈ R , such that

t+1∑
q=0

B′
q

q∏
p=0

(k − p) = kt+1, since k ∈ {0, 1, 2, ..., t, t+ 1} . (3.9)

On the other hand, if k /∈ {0, 1, 2, ..., t, t+ 1} is taken by (3.4), we can rewrite (3.5) in the following form

t+1∑
q=0

Bq

q∏
p=0

(k − p) =

t∑
q=0

Bq

q∏
p=0

(k − p) +Bt+1

t+1∑
j=0

ajk
j+1. (3.10)

In addition, as (3.1) is supposed to hold, (3.10) can be rewritten as follows:

t+1∑
q=0

Bq

q∏
p=0

(k − p) = kt +Bt+1

t+1∑
j=0

ajk
j+1 = kt

1 +Bt+1

t+1∑
j=0

ajk
j+1−t

 . (3.11)

Therefore, in order for (3.3) to be verified, it will suffice to write that:

1 +Bt+1

t+1∑
j=0

ajk
j+1−t = k, (3.12)
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i.e.

Bt+1 =
k − 1∑t+1

j=0 ajk
j+1−t

=
(k − 1)kt∑t+1
j=0 ajk

j+1
=

(k − 1)kt∏t+1
p=0(k − p)

. (3.13)

Then there exist

B′
0 = B0, B′

1 = B1, ... , B′
t = Bt, B′

t+1 =
(k − 1)kt∏t+1
p=0(k − p)

∈ R, (3.14)

such that
t+1∑
q=0

B′
q

q∏
p=0

(k − p) = kt+1, since k /∈ {0, 1, 2, ..., t, t+ 1} . (3.15)

By (3.9) and (3.15), (3.3) it is proved; which concludes the proof. 2

Example 3.2 If k ∈ R ; by Lemma 3.1, with t = 3 , we can always find B0 , B1 , B2 , B3 ∈ R such that the
following decomposition holds:

k3 =

3∑
q=0

Bq

q∏
p=0

(k − p) = B0

0∏
p=0

(k − p) +B1

1∏
p=0

(k − p) +B2

2∏
p=0

(k − p) +B3

3∏
p=0

(k − p) (3.16)

= B0k +B1k(k − 1) +B2k(k − 1)(k − 2) +B3k(k − 1)(k − 2)(k − 3) (3.17)

= k(B0 −B1 + 2B2 + 6B3) + k2(B1 − 3B2 − 7B3) + k3(B2 − 6B3) + k4B3. (3.18)

Taking B3 = 0 in (3.18), we have

k3 = k(B0 −B1 + 2B2) +K2(B1 − 3B2) + k3B2. (3.19)

Letting be B2 = 1 in (3.18):
0 = k(B0 −B1 + 2) + k2(B1 − 3). (3.20)

Then, if B1 = 3 in (3.20) it must be B0 = 1 . Therefore, a decomposition is

k3 = k + 3k(k − 1) + k(k − 1)(k − 2). (3.21)

If, for example, k = 5 is taken in (3.21):

53 = 5 + (3)(5)(4) + (5)(4)(3) = 125. (3.22)

From now on, we will study a fundamental set of solutions of (2.20); this set is an alternative to the
one found in [8]. The set of solutions will be directly related to the γ -α -exponential function introduce in [9].

Taking yn(x) = e
λ(x−a)
α,γ,n , on the left side of (2.20), and applying (2.11) yields that

[
RNα

(
eλ(t−a)
α,γ,n

)∞

n=0

]
(x) = λNe

λ(x−a)
α,γ,n+N +

N∑
j=1

aN−jλ
N−je

λ(x−a)
α,γ,n+N =

λN +

N∑
j=1

aN−jλ
N−j

 e
λ(x−a)
α,γ,n+N . (3.23)

Then, the expression (3.23) suggests the following definition.
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Definition 3.3 The expression between parentheses in (3.23) will be called the characteristic polynomial
associated with the equation (2.20), and will be denoted by

PN (λ) = λN +

N∑
j=1

aN−jλ
N−j . (3.24)

3.1. Alternative solution of the homogeneous LFDERR using the α-γ -n-exponential function

In [9], Corollary 2.5, a recurrence relation was established between two consecutive terms of the sequence of
functions (yn(x))

∞
n=0 , with

yn(x) = (x− a)α−1Lγ,n
α,α (λ(x− a)α) , (3.25)

n ∈ N0 , i.e. for all x > a : yn(x) is the solution of the recurrence equation:

(
Dα

a+yn
)
(x)− λyn+1(x) = 0. (3.26)

Theorem 3.4 Let λ be a root of (3.24). Then, the sequence of the general term

yn(x) = eλ(x−a)
α,γ,n (3.27)

is a solution of (2.20).

Proof It is evident from what has been stated in (3.23). 2

Theorem 3.5 Let λ be a root of (3.24) with the multiplicity ℓ . Then, for 0 < m ≤ ℓ − 1 , the sequence of
general term

yn(x) = (n−N)meλ(x−a)
α,γ,n (3.28)

is a solution of (2.20).

Proof Since λ has the multiplicity ℓ , it follows that:

PN (λ) =
dPN (λ)

dλ
= ... =

dℓ−1PN (λ)

dλℓ−1
= 0 and dℓPN (λ)

dλℓ
̸= 0. (3.29)

Whereas, proceeding as in (3.23), we derive that

[
RNα

(
(n−N)meλ(t−a)

α,γ,n

)∞

n=0

]
= e

λ(x−a)
α,γ,n+N

(n−N)mλN +

N∑
j=1

aN−j(n+ j −N)mλN−j

 . (3.30)

If aN = 1 is defined, we can write (3.30) as follows

[
RNα

(
(n−N)meλ(t−a)

α,γ,n

)∞

n=0

]
= e

λ(x−a)
α,γ,n+N

 N∑
j=0

λjaj(n− j)m

 . (3.31)
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Now we will consider the expression between parentheses in (3.31). For this, we expand the binomial (n− j)m

and apply Lemma 3.1 to jt :

N∑
j=0

λjaj(n− j)m =

N∑
j=0

λjaj

[
m∑
t=0

(−1)t
(

m
t

)
nm−tjt

]
=

=

N∑
j=0

λjaj

{
m∑
t=0

(−1)t
(

m
t

)
nm−t

[
t∑

q=1

Bq

q∏
p=0

(j − p)

]}
=

=

m∑
t=0

(−1)t
(

m
t

)
nm−t


t∑

q=0

Bq

 N∑
j=0

λjaj

q∏
p=0

(j − p)

 . (3.32)

Now we will evaluate the sum between brackets in (3.32):

 N∑
j=0

ηjaj

q∏
p=0

(j − p)


η=λ

=

ηq+1
N∑
j=0

ηj−(q+1)aj

q∏
p=0

(j − p)


η=λ

=

ηq+1
N∑
j=0

aj
dqηj

dηq


η=λ

=

=

ηq+1 dq

dηq

 N∑
j=0

ajη
j


η=λ

=

[
ηq+1 d

qPN (η)

dηq

]
η=λ

. (3.33)

Then, substituting (3.33) and (3.32) into (3.31) we obtain:

RNα

[
(n−N)meλ(x−a)

α,γ,n

]
= e

λ(x−a)
α,γ,n+N

[
m∑
t=0

(−1)t
(

m
t

)
nm−t

{
t∑

q=0

Bq

[
ηq+1 d

qPN (λ)

dηq

]}]
= 0, (3.34)

for all 0 < m ≤ ℓ− 1 . 2

Theorem 3.6 Let λ1 , λ2 ∈ C\{0} , λ1 ̸= λ2 , then
(
e
λ1(x−a)
α,γ,n

)∞

n=0
and

(
e
λ2(x−a)
α,γ,n

)∞

n=0
are linearly independent.

Proof Let n ∈ N , c1 , c2 ∈ R . Let the linear combination be:

0 = c1e
λ1(x−a)
α,γ,n + c2e

λ2(x−a)
α,γ,n =

∞∑
j=0

(γ)j+n

(
c1λ

j
1 + c2λ

j
2

)
Γ(α(j + 1))(j + n)!

(x− a)α(j+1)−1. (3.35)

In order for (3.35) to vanish, for every n ∈ N0 , it implies that c1λ
j
1+c2λ

j
2 = 0 for every j ∈ N0 . Since λ1 ̸= λ2 ,

there exists d ∈ C such that dλ1 = λ2 , hence: 0 = c1λ
j
1 + c2λ

j
2 = λj

1

(
c1 + c2d

j
)

for every j ∈ N0 . Therefore
c1 = −djc2 for each j ∈ N0 , i.e. c1 = c2 = 0 ; namely, the only possible linear combination is a trivial one.

Hence there must be
(
e
λ1(x−a)
α,γ,n

)∞

n=0
and

(
e
λ2(x−a)
α,γ,n

)∞

n=0
linearly independent. 2

Theorem 3.7 If λ ∈ C \ {0} , 0 < m1 < m2 , then
(
(n−N)m1e

λ(x−a)
α,γ,n

)∞

n=0
and

(
(n−N)m2e

λ(x−a)
α,γ,n

)∞

n=0
are

linearly independent.
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Proof Let n ∈ N and c1 , c2 ∈ R . If we propose the following null linear combination, then

0 = c1(n−N)m1eλ(x−a)
α,γ,n + c2(n−N)m2eλ(x−a)

α,γ,n = (n−N)m1eλ(x−a)
α,γ,n

[
c1 + c2(n−N)m2−m1

]
. (3.36)

Therefore, it should imply that c1 + c2(n−N)m2−m1 = 0 , for every n ∈ N0 ; hence c1 = c2 = 0 . 2

Corollary 3.8 If λ1 , λ2 ∈ C \ {0} , λ1 ̸= λ2 , and 0 < m1 < m2 ; then
(
(n−N)m1e

λ1(x−a)
α,γ,n

)∞

n=0
and(

(n−N)m2e
λ2(x−a)
α,γ,n

)∞

n=0
are linearly independent.

Proof Let n0 ∈ N , c1 , c2 ∈ R . If we propose the following null linear combination, then

c1(n−N)m1eλ1(x−a)
α,γ,n + c2(n−N)m2eλ2(x−a)

α,γ,n = 0. (3.37)

Therefore, it should imply that c1(n−N)m1λj
1+ c2(n−N)m2λj

2 = 0 , for each j, n ∈ N0 . Since λ1 ̸= λ2 , hence
there exists a ∈ C such that aλ1 = λ2 . Then

0 = c1(n−N)m1λj
1 + c2(n−N)m2ajλj

1 = λj
1(n−N)m1

[
c1 + c2(n−N)m2−m1aj

]
, (3.38)

for every j, n ∈ N0 ; hence c1 = c2 = 0 . 2

Corollary 3.9 Let λ ∈ C \ {0} , m > 0 , then
(
e
λ(x−a)
α,γ,n

)∞

n=0
and

(
(n−N)me

λ(x−a)
α,γ,n

)∞

n=0
are linearly indepen-

dent.

Proof This proof is similar to that of the Theorem 3.7. 2

Corollary 3.10 Let λ1 , λ2 ∈ C \ {0} , λ1 ̸= λ2 , m > 0 , then
(
e
λ1(x−a)
α,γ,n

)∞

n=0
and

(
(n−N)me

λ2(x−a)
α,γ,n

)∞

n=0

are linearly independent.

Proof The proof of this Corollary is similar to that of the Corollary 3.8. 2

Theorem 3.11 If PN (λ) = (λ − λ1)
ℓ1(λ − λ2)

ℓ2 ...(λ − λM )ℓM , i.e., λ1 , λ2 , ...,λM are the different roots of
PN (λ) , of multiplicity ℓ1 , ℓ2 , ..., ℓM , respectively; where ℓj ≥ 1 (j = 1, 2, ...,M ), and ℓ1 + ℓ2 + ...+ ℓM = N .
Then, an expression for the general solution of (2.20), is given by (yn(x))

∞
n=0 , x ∈ (a, b) , where

yn(x) =

M∑
q=1

ℓq−1∑
j=1

cj,q(n−N)jeλq(x−a)
α,γ,n + c0,qe

λq(x−a)
α,γ,n

 , (3.39)

and cj,q ’s are arbitrary constants.

Proof For each q , such that 1 ≤ q ≤ M , by the Theorems 3.4 and 3.5 we can obtain ℓq solutions of (2.20):

ℓq−1∪
j=1

{(
(n−N)jeλq(x−a)

α,γ,n

)∞

n=0

}
;

(
eλq(x−a)
α,γ,n

)∞

n=0
(3.40)
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which also, by the Theorem 3.7 and Corollary 3.9 are linearly independent. If we also take into account Theorem
3.6 and Corollaries 3.8 and 3.10, hence

A =


ℓq−1∪
j=1

{(
(n−N)jeλq(x−a)

α,γ,n

)∞

n=0

}
;

(
eλq(x−a)
α,γ,n

)∞

n=0


M

q=1

(3.41)

is a fundamental set of solutions of (2.20). Then, by [10], Lemma 3, every solution (yn(x))
∞
n=0 of the equation

(2.20), in (a, b) , can be written as

yn(x) =

M∑
q=1

ℓq−1∑
j=1

cj,q(n−N)jeλq(x−a)
α,γ,n + c0,qe

λq(x−a)
α,γ,n

 (3.42)

where cj,q ’s are arbitrary constants. 2

Corollary 3.12 If PN (λ) = (λ − λ1)(λ − λ2)...(λ − λN ) , with λ1 , λ2 , ...,λN ∈ C . Then, an expression for
the general solution of (2.20), is given by (y(x))∞n=0 , x ∈ (a, b) , with

yn(z) =

N∑
j=1

cje
λj(x−a)
α,γ,n (3.43)

where cj ∈ C , i = 1 ,2 ,...,N .

Proof It follows as a particular case of the Theorem 3.11 taking ℓi = 1 for i = 1, 2, ...,M = N . 2

Example 3.13 Consider the following LFDERRH of order 2α :(
D2α

0+yn
)
(x)− 4yn+2(x) = 0, (3.44)

with x ∈ (0,+∞) , and n ∈ N0 . The characteristic polynomial associated with this equation is P2(λ) =

(λ−2)(λ+2) . By applying Theorems 3.4 and 3.6 we can certify that
(
e2xα,γ,n

)∞
n=0

and
(
e−2x
α,γ,n

)∞
n=0

represent two
linearly independent solutions of (3.44). Therefore, according to Corollary 3.12, the general solution of (3.44)
is given by (yn(x))

∞
n=0 with

yn(x) = Ae2xα,γ,n +Be−2x
α,γ,n, (3.45)

where A and B are arbitrary constants. Furthermore, by (2.10) it is known that, if n → ∞ :

Ae2xα,γ,n +Be−2x
α,γ,n →

(
A

Γ(γ)

)
e2xα +

(
B

Γ(γ)

)
e−2x
α , (3.46)

uniformly in any compact set contained in (0,+∞) . Finally, by [4], Chapter 7-7.2, the function

y(x) =

(
A

Γ(γ)

)
e2xα +

(
B

Γ(γ)

)
e−2x
α , (3.47)
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is an expression of the general solution of the following LFDE:(
D2α

0+y
)
(x)− 4y(x) = 0. (3.48)

In conclusion, we were able to find an expression for the general solution of (3.44) that converges uniformly to
the solution to the equation (3.48) on compact sets.

Remark 3.14 Regarding the parameter γ , it was only required that Re(γ) > 0 ; and in [9] it was observed that

e
λ(x−a)
α,1,n = e

λ(x−a)
α , then the sequence of general term:

yn(x) = Ae2xα +Be−2x
α , (3.49)

with A and B arbitrary constants, is a solution of (3.44), that is: the sequence of functions whose terms are
all equal to a solution (in this case the general solution) of the equation (3.48), is a solution of the recurrence
equation (3.44).

3.2. Solution of the LFDERR using Generalized Fractional Trigonometric Functions

There are many generalizations of the trigonometric functions; some of thereferences for this section are found
in [1, 5]. Recently, fractional trigonometry has attracted great interest, for example, in [5] they are used to
model different phenomena that respond to the behavior of spirals. Generalized trigonometric functions are
also used to solve fractional differential equations, as seen, for example, in [6, 7]. In this section, we will show
that the trigonometric functions (2.13) introduced in [9] are useful for studying the solutions of the LFDERR.

Example 3.15 We look for the possible solutions of the LFDERRH of order 2α , and a = 0 :(
D2α

0+yn
)
(x) + a1

(
Dα

0+yn+1

)
(x) + a0yn+2(x) = 0, (x > 0). (3.50)

Taking yn(x) = eλxα,γ,n in (3.50), the following is verified:

0 =
(
D2α

0+e
λt
α,γ,n

)
(x) + a1

(
Dα

0+e
λt
α,γ,n+1

)
(x) + a0e

λx
α,γ,n+2 = (λ2 + a1λ+ a0)e

λx
α,γ,n+2 = P2(λ)e

λx
α,γ,n+2. (3.51)

Therefore, the roots of the characteristic polynomial P2(λ) in (3.51), determine the values of λ which
(
eλxα,γ,n

)∞
n=0

is a solution of (3.50). There are three possible cases:

1) If λ1, λ2 ∈ R \ {0} , λ1 ̸= λ2 :
(
eλ1x
α,γ,n

)∞
n=0

and
(
eλ2x
α,γ,n

)∞
n=0

are solutions to (3.50), linearly independent
(Theorem 3.6 ); then the general term of the solution to (3.50) can be written, by Corollary 3.12, as
follows:

yn(x) = c1e
λ1x
α,γ,n + c2e

λ2x
α,γ,n, (3.52)

with c1 and c2 arbitrary constants.

2) When λ1 and λ2 ∈ C \ {0} , that is, λ1 = λ2 ; then
(
eλ1x
α,γ,n

)∞
n=0

and
(
eλ1x
α,γ,n

)∞

n=0
are linearly independent

solutions to equation (3.50) (Theorem 3.6), which are sequences of complex functions of real variables, but
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it is possible to obtain real solutions from them. Therefore, since there exists w ∈ C such that λ1 = iω

(λ2 = −iω ), solving the equation (3.50) is equivalent to finding the solution to

(
D2α

0+yn
)
(x) + ω2yn+2(x) = 0, (3.53)

Furthermore, since
(
eλ1x
α,γ,n

)∞
n=0

and
(
eλ1x
α,γ,n

)∞

n=0
are solutions of (3.50), it follows that

1

2
eλ1x
α,γ,n +

1

2
eλ1x
α,γ,n = cosα,γn (ωx) ;

1

2i
eλ1x
α,γ,n − 1

2i
eλ1x
α,γ,n = sinα,γn (ωx), (3.54)

by Theorem 3.11, the sequences of functions (cosα,γn (ωx))∞n=0 and (sinα,γn (ωx))∞n=0 are linearly independent
solutions to equation (3.50). Then, by Corollary 3.12, it will be possible to write the solution to (3.50) as

(yn(x))
∞
n=0 = (c1 cos

α,γ
n (ωz) + c2 sin

α,γ
n (ωx))∞n=0, (3.55)

with c1 , c2 arbitrary constants.

3) Finally, if λ1 = λ2 , then (y1
n(x))

∞
n=0 =

(
eλ1x
α,γ,n

)∞
n=0

is a solution to (3.50), and from this we can obtain
another linearly independent with respect to it ( Theorems 3.7 and 3.5) defining, for example:

y2
n(x) = (n− 2)y1

n(x). (3.56)

Then, by Corallary 3.12, the following general solution is obtained

(yn(x))
∞
n=0 =

(
c1e

λ1x
α,γ,n + c2(n− 2)eλ1x

α,γ,n

)∞
n=0

, (3.57)

with c1 , c2 arbitrary constants.

Example 3.16 We analyze the following nonhomogeneous equation whose independent term is a linear combi-
nation of α-γ -n-trigonometric functions:

[R2α(yn(t))
∞
n=0] (x) = A0 sin

γ,α
n+2[λ0(x− a)] +B0 cos

γ,α
n+2[λ0(x− a)], (3.58)

where A0 and B0 are constants. To solve this equation, a solution (ypn(x))
∞
n=2 is proposed, with

yp
n(x) = r sinγ,αn [λ0(x− a)] + s cosγ,αn [λ0(x− a)]. (3.59)

Hence,

A0 sin
γ,α
n+2[λ0(x− a)] +B0 cos

γ,α
n+2[λ0(x− a)] =

= [R2α (r sinγ,αn [λ0(t− a)] + s cosγ,αn [λ0(t− a)])
∞
n=2] (x) =

= r [R2α (sinγ,αn [λ0(t− a)])
∞
n=0] (x) + s [R2α (cosγ,αn [λ0(t− a)])

∞
n=0] (x). (3.60)

Applying (2.16) and (2.17):
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[R2α (sinγ,αn [λ0(t− a)])
∞
n=0] (x) =

=
(
D2α

a+ sinγ,αn [λ0(t− a)]
)
(x) + a1

(
Dα

a+ sinγ,αn+1[λ0(t− a)]
)
(x) + a0 sin

γ,α
n+2[λ0(t− a)](x)

= −λ2
0 sin

γ,α
n+2[λ0(x− a)] + a1λ0 cos

γ,α
n+2[λ0(x− a)] + a0 sin

γ,α
n+2[λ0(x− a)]

=
(
a0 − λ2

0

)
sinγ,αn+2[λ0(x− a)] + a1λ0 cos

γ,α
n+2[λ0(x− a)], (3.61)

and
[R2α (cosγ,αn [λ0(t− a)])

∞
n=0] (x) =

=
(
D2α

a+ cosγ,αn [λ0(t− a)]
)
(x) + a1

(
Dα

a+ cosγ,αn+1[λ0(t− a)]
)
(x) + a0 cos

γ,α
n+2[λ0(t− a)](x)

= −λ2
0 cos

γ,α
n+2[λ0(x− a)]− a1λ0 sin

γ,α
n+2[λ0(x− a)] + a0 cos

γ,α
n+2[λ0(x− a)]

= (a0 − λ2
0) cos

γ,α
n+2[λ0(x− a)]− a1λ0 sin

γ,α
n+2[λ0(x− a)]. (3.62)

Substituting (3.61) and (3.62) in (3.60), and grouping the terms accordingly, the following is obtained:

A0 sin
γ,α
n+2[λ0(x− a)] +B0 cos

γ,α
n+2[λ0(x− a)] =

=
[
r(a0 − λ2

0) + s(−a1)λ
]
sinγ,αn+2[λ(x− a)] +

[
r(λa1) + s(a0 − λ2)

]
cosγ,αn+2[λ(x− a)]. (3.63)

Then, for ypn(x) to be solution, it will suffice to take r and s such that{
r(a0 − λ2

0) + s(−a1)λ0 = A0

r(λ0a1) + s(a0 − λ2
0) = B0.

(3.64)

In particular, this procedure can be applied to the equation below:(
D2α

0+yn
)
(x) + 3

(
Dα

0+yn+1

)
(x) + 2yn+2(x) = 17 cosγ,αn+2(x)− 11 sinγ,αn+2(x), (3.65)

n ∈ N0 , 0 < α ≤ 1 .
Equation (3.65) is a particular case of equation (3.58), where a = 0 , λ0 = 1 , a0 = 2 , a1 =3, A0 = −11

and B0 =17. Therefore, taking into account (3.59) and (3.64), the solution to equation (3.65), will be given by
a sequence of general terms

yn(x) = r sinγ,αn (x) + s cosγ,αn (x), (3.66)

where r and s are such that {
r − 3s = −11
3r + s = 17,

(3.67)

that is, r = 4 and s = 5 . Therefore

yn(x) = 4 sinγ,αn (x) + 5 cosγ,αn (x), (n ∈ N0). (3.68)

4. Conclusion
We studied the solution of LFDERR in a different way from what is presented in [9], and we showed that we can
solve these equations by means of the γ -α -n -Exponential Function. We also established relationships between
LFDERR and LFDE through this solution, as shown in Example 3.13. This approach allows us to rethink the
already known problems, and study them using LFDERR.
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