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Abstract: In this paper, we define the ruled surface in terms of the Darboux vector field of an isotropic curve in a
complex 3-space, and we study the ruled surface as an elastic strip along the isotropic curve. First of all, we show that
elastic strips along isotropic curves that serve critical points of the modified Sadowsky functional are characterized by
three Euler-Lagrange equations. As a result, we give two conservation laws to characterize elastic strips of isotropic
curves in complex 3-space and explain an isotropic helix in terms of the force vector. Finally, we give some examples to
illustrate elastic strips with isotropic curves in a complex 3-space.
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1. Introduction
An elastic curve is a solution to the variation problem of minimizing the bending energy

∫
κ(s)2ds along a curve

of a given length, where κ is the curvature of the curve. The problem of describing all planar elastic curves
was proposed by Bernoulli and Euler in 1744. Euler studied the problem and showed that there are exactly
two closed elastica: the circle and the Euler figure eight. Elastic curves play an important role in areas such as
geometry, mathematical physics, differential equations, and complex analysis: for instance, the study of slender
biological systems, like DNA, knotted or unknotted proteins [3, 4] or the construction of engineering structures,
like cables or pipelines [9].

On the other hand, Sadowsky [8] studied the equilibria of a developable Möbius strip by minimizing the
bending energy. He showed that if the developable Möbius strip shrinks to its centerline, the bending energy is
reduced to a functional

S(γ) =

∫
κ2

(
1 +

τ2

κ2

)2

ds,

where κ and τ are the curvature and the torsion of the centerline γ , which is called the Sadowsky energy
functional. It is well-known that a strip defined by a curve with constant curvature and torsion is evidently
elastic. Hangan [5] discussed elastic strips generated by curves with nonconstant curvature and torsion.
Chubelaschwili and Pinkall [2] gave two conservation laws to describe the equilibrium equations of elastic
strips, and they funded new classes of integrable elastic strips which correspond to spherical elastic curves.
In the Lorentz version, Tükel and Yücesan [10–12] studied elastic strips with spacelike, timelike, null, and
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pseudo-null curves in Minkowski 3-space, and Yüzbasi and Anco [15] studied elastic strips with null curves in
terms of gauge transformation that belongs to the group contained in the Lorentz special orthogonal group in
Minkowski 3-space. Wunderlich [13] argued that the Willmore functional

∫
H2dA of an infinitely narrow strip

is proportional to the Sadowsky functional.
On the other hand, Langer and Singer [6] considered an energy functional which penalized both the

curvature and the torsion of the centerline of an elastic rod. In particular, they showed that the centerline
of the Kirchhoff elastic rod is an equilibrium for a linear combination of the conserved Hamiltonians in the
localized induction equation hierarchy. As a generalization of [6], Bevilacqua et. al [1] studied an energy density
functional depending both on the curvature κ and the torsion τ of the curve γ(s) , that is, they deal with the
following type of an elastic energy functional

∫
γ
f(s, κ, τ)dl .

In this paper, we consider elastic strips with an isotropic curve in a complex 3-space. In particular, we
study elastic strips as critical points of the modified Sadowsky functional in terms of Euler-Lagrange equations.
Also, we provide the first and second conservation laws to characterize elastic strips and give some examples of
elastic strips along isotropic helices as isotropic curves in a complex 3-space.

2. Preliminaries
It is well known that the simplest model of a holomorphic Riemannian manifold is a complex space. Let C3 be
a 3-dimensional complex space with the standard holomorphic metric

⟨u,v⟩ = u1v1 + u2v2 + u3v3 (2.1)

for u = (u1, u2, u3) , v = (v1, v2, v3) ∈ C3 . The norm of a vector u ∈ C3 is defined by ||u|| =
√
|⟨u,u⟩| .

Now for complex vectors u = (u1, u2, u3) = a+ ib and v = (v1, v2, v3) = c+ id , where a, b, c, d ∈ R3 , we define
the cross product of u and v by

u× v = (a× c− b× d) + i(a× d+ b× c)

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).
(2.2)

The cross product admits the following properties for u,v,w ∈ C3 as:

⟨u× v,w⟩ = ⟨u,v ×w⟩, u× v = −v × u,

u× (v ×w) = ⟨u,w⟩v − ⟨u,v⟩w.
(2.3)

A nonzero vector u ∈ C3 is called an isotropic vector if ⟨u,u⟩ = 0. If the tangent vector γ′(s) of a regular curve
γ(s) in C3 is an isotropic vector at every point along the curve γ(s) , then γ(s) is called an isotropic curve.
Because it is impossible to normalize the tangent vector of an isotropic curve, we can adopt the so-called pseudo
arc length parameter normalizing the acceleration vector γ′′(s) such that ⟨γ′′(s), γ′′(s)⟩ = −1 . Throughout this
paper, we assume that isotropic curves are parametrized by the pseudo arc length unless otherwise mentioned.
Let γ : C → C3 be an isotropic curve with an unique Cartan Frenet frame {e1, e2, e3} such that the Frenet
formula is as follows (cf. [7, 14]):

e′1(s) = −ie2(s),

e′2(s) = iκ(s)e1(s) + ie3(s),

e′3(s) = −iκ(s)e2(s),

(2.4)
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where
⟨e1, e1⟩ = ⟨e3, e3⟩ = ⟨e1, e2⟩ = ⟨e2, e3⟩ = 0, ⟨e2, e2⟩ = ⟨e1, e3⟩ = 1,

e1 × e2 = ie1, e2 × e3 = ie3, e3 × e1 = ie2.

Here the function

κ(s) =
1

2
⟨γ′′′(s), γ′′′(s)⟩ (2.5)

is called the pseudo curvature of the isotropic curve γ(s) .
For an isotropic curve γ(s) in C3 with the Frenet frame {e1, e2, e3} , there is a vector field D satisfying

the conditions:
e′1(s) = D × e1(s),

e′2(s) = D × e2(s),

e′3(s) = D × e3(s).

By using (2.4), the vector field D is given by

D = D(s) = κ(s)e1(s)− e3(s)

which is called the Darboux vector field of an isotropic curve γ(s) .

Definition 2.1 Let γ = γ(s) be an isotropic curve in complex 3-space with Frenet frame {e1, e2, e3} . If there
exists a nonzero constant vector u in complex 3-space such that ⟨e1,u⟩ is a (complex) constant, it is called an
isotropic helix, and u is called the axis of γ .

3. Elastic strips

The classical curve known as the elastic strip is the solution to a variational problem that of minimizing the
bending energy of a thin inextensible wire. For a detailed description of elastic strips in complex 3-space C3 ,
we first introduce a developable ruled surface.

Let γ : [0, L] → C3 be an isotropic curve with length L in C3 . Then we consider the ruled surface
parametrized as follows:

Γγ : [0, L]× (−ε, ε) → C3

(s, t) → Γγ(s, t) = γ(s) + tD(s),
(3.1)

where D is the Darboux vector field of γ(s) .
On the other hand, we know that infinitely narrow strips are critical points of the Willmore functional

E(Γγ) =
∫
M

H2dA among all space curves with fixed endpoints in Euclidean 3-space, where H is the mean
curvature of Γγ . In [13] Wunderlich showed that limϵ−>0

∫
M

H2dA is proportional to the Sadowsky functional

S(γ) =

∫ L

0

κ2(1 + λ2)2ds, (3.2)

where λ = τ
κ .
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Now we discuss elastic strips along an isotropic curve corresponding to the Sadowsky functional (3.2)
and the condition

δL :=
∂

∂t
|t=0L(γs) = 0. (3.3)

Therefore we can define elastic strips with an isotropic curve as follows:

Definition 3.1 A strip Γγ is elastic if an isotropic curve γ in complex 3-space is a critical point of the modified
Sadowsky functional

Sµ(γ) =

∫ L

0

(κ2(1 + ρ2)2 − µ)κ
1
2 ds, (3.4)

where µ is a Lagrange multiplier standing for the length constraint and ρ = 1
κ .

Lemma 3.2 Let γ0 be an isotropic curve in complex 3-space C3 and γt(s) = γ(s, t) be a variation of γ0 with
a variational vector field

∂

∂t
γt(s)|t=0 = p1(s)e1(s) + p2(s)e2(s) + p3(s)e3(s). (3.5)

Then we have

δκ = κ′p1 + (iκ′′ + 4iκ2)p2 + 5κκ′p3 + 6κp′1 + p′′′1 + 3iκ′p′2 + 6iκp′′2 + 6κ2p′3 + κp′′′3 ,

δρ = −ρ2κ′p1 − (iρ2κ′′ + 4i)p2 − 5ρκ′p3 − 6ρp′1 − ρ2p′′′1 − 3iρ2κ′p′2 − 6iρp′′2 − 6p′3 − ρp′′′3 .
(3.6)

Proof Let γ0 be an isotropic curve with Frenet frame {e1, e2, e3} satisfying (2.4) in complex 3-space C3 . We
put the vector field along γ0 as

W (s) :=
∂

∂t
γt(s)|t=0.

Then one finds
⟨W ′(s), e1(s)⟩ = 0.

On the other hand, the vector field W (s) can be expressed by

W (s) = p1(s)e1(s) + p2(s)e2(s) + p3(s)e3(s),

where pi(s) (i = 1, 2, 3) are smooth functions. From this, we get the third derivatives of W (s) as follows:

W ′′′(s) =
(
(p′1 + iκp2)

′′ + (κp1 + κ2p3 + iκp′2)
′ + iκ(p′2 − ip1 − iκp3)

′

+iκ(2κp2 − ip′1 − iκp′3)) e1

+ ((p′2 − ip1 − iκp3)
′′ + (2κp2 − ip′1 − iκp′3)

′ − i(p′1 + iκp2)
′

+2(κp′2 − iκp1 − iκ2p3)− iκ(p′3 + ip2)
′) e2

+ ((p′3 + ip2)
′′ + 2(p1 + κp3 + ip′2)

′ + p′1 + κp′3 + 2iκp2) e3.
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From (2.5) and the last equation, the first variations of κ and ρ become

δκ : =
∂κt

∂t
|t=0 = κ⟨W ′′′(s), e1⟩+ ⟨W ′′′(s), e3⟩,

δρ : =
∂ρt
∂t

|t=0 = −ρ⟨W ′′′(s), e1⟩ − ρ2⟨W ′′′(s), e3⟩,

where κt denotes the pseudo curvature of the curve γt(s) and ρt =
1
κt

, which imply that we can obtain (3.6).

2

Now we may compute the first variation of the modified Sadowsky functional by using the variation of γ

having the variation vector field (3.5).

Theorem 3.3 Let γ be an isotropic curve in complex 3-space and define an elastic strip. Consider a variation
of γ with the variation vector field

∂

∂t
γt(s)|t=0 = p1(s)e1(s) + p2(s)e2(s) + p3(s)e3(s),

then we have

1

2

∂

∂t

(
κ2
t (1 + ρ2t )

2 − µ
)
κ

1
2
t |t=0 = φ1p1 + φ2p2 + φ3p3 + φ′, (3.7)

where

φ1 =
1

4
κ′(5(1 + ρ2)2 − µ)− 2κ′ρ3(1 + ρ2)− 3

2
(5κ(1 + ρ2)2 − κµ)′ + 12(ρ2(1 + ρ2))′

− 5(ρρ′(1 + ρ2))′′ + 2(ρ3(1 + ρ2))′′′,

φ2 = (5(1 + ρ2)2 − µ)(
1

4
iκ′′ + iκ2)− 2ρ(1 + ρ2)(iρ2κ′′ + 4i)− 3

4
i(5κ′(1 + ρ2)2 − κ′µ)′

+ 6i(κ′ρ3 + κ′ρ5)′ +
3

2
i
(
5κ(1 + ρ2)2 − κµ

)′′ − 12i
(
ρ2(1 + ρ2)

)′′
,

φ3 =
5

4
κκ′(5(1 + ρ2)2 − µ)− 10ρ2κ′(1 + ρ2)− 3

2
(5κ2(1 + ρ2)2 − κ2µ)′

+ 12ρ′(1 + 3ρ2) + 4
(
ρρ′(1 + 2ρ2)

)′′ − 1

4

(
5κ(1 + ρ2)2 − κµ

)′′′
,
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φ′ =

((
3

2
κ(5(1 + ρ2)2 − µ)− 12ρ2(1 + ρ2) + 5(ρρ′(1 + ρ2))′ − 2(ρ3(1 + ρ2))′′

)
p1

)′

+
(
(−5ρρ′(1 + ρ2) + 2(ρ3(1 + ρ2))′)p′1

)′
+

((
1

4
(5(1 + ρ2)2 − µ)− 2ρ3(1 + ρ2)

)
p′′1

)′

+

((
3

4
iκ′(5(1 + ρ2)2 − µ)− 6iκ′ρ3(1 + ρ2)− 3

2
i
(
5κ(1 + ρ2)2 − κµ

)′
+ 12i

(
ρ2(1 + ρ2)

)′)
p2

)′

+

((
3

2
iκ(5(1 + ρ2)2 − µ)− 12iρ2(1 + ρ2)

)
p′2

)′

+

((
3

2
κ2(5(1 + ρ2)2 − µ)− 12ρ(1 + ρ2) +

1

4

(
5κ(1 + ρ2)2 − κµ

)′′ − 4
(
ρρ′(1 + 2ρ2)

)′)
p3

)′

+

((
−1

4

(
5κ(1 + ρ2)2 − κµ

)′
+ 4ρρ′(1 + 2ρ2)

)
p′3

)′

+

((
1

4
κ(5(1 + ρ2)2 − µ)− 2ρ2(1 + ρ2)

)
p′′3

)′

.

(3.8)

Proof If an isotropic curve γ defines an elastic strip, then we have

1

2

∂

∂t

(
κ2
t (1 + ρ2t )

2 − µ
)
κ

1
2
t |t=0

=
1

4
((1 + ρ2)2 − µ)(δκ) + (1 + ρ2)2(δκ) + 2ρ(1 + ρ2)(δρ).

(3.9)

Now we want to express (3.9) in terms of the functions pi(i = 1, 2, 3) and its derivatives. By using (3.6) and
long computing, the right hand side of equation (3.9) can be written as follows:

(
1

4
κ′(5(1 + ρ2)2 − µ)− 2κ′ρ3(1 + ρ2)

)
p1 +

(
3

2
κ(5(1 + ρ2)2 − µ)− 12ρ2(1 + ρ2)

)
p′1

+

(
1

4
(5(1 + ρ2)2 − µ)− 2ρ3(1 + ρ2)

)
p′′′1

+

(
(5(1 + ρ2)2 − µ)(

1

4
iκ′′ + iκ2)− 2ρ(1 + ρ2)(iρ2κ′′ + 4i)

)
p2

+

(
3

4
iκ′(5(1 + ρ2)2 − µ)− 6iκ′ρ3(1 + ρ2)

)
p′2 +

(
3

2
iκ(5(1 + ρ2)2 − µ)− 12iρ2(1 + ρ2)

)
p′′2

+

(
5

4
κκ′(5(1 + ρ2)2 − µ)− 10ρ2κ′(1 + ρ2)

)
p3 +

(
3

2
κ2(5(1 + ρ2)2 − µ)− 12ρ(1 + ρ2)

)
p′3

+

(
1

4
κ(5(1 + ρ2)2 − µ)− 2ρ2(1 + ρ2)

)
p′′′3 .

(3.10)
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We put

A : = φ1p1 + (f1p1)
′ + (g1p

′
1)

′ +

((
1

4
(5(1 + ρ2)2 − µ)− 2ρ3(1 + ρ2)

)
p′′1

)′

= (f ′
1 + φ1)p1 + (f1 + g′1)p

′
1 +

(
g1 +

(
1

4
(5(1 + ρ2)2 − µ)− 2ρ3(1 + ρ2)

)′
)
p′′1

+

(
1

4
(5(1 + ρ2)2 − µ)− 2ρ3(1 + ρ2)

)
p′′′1 ,

(3.11)

where f1, g1 and φ1 are smooth functions with the variable s .
By comparing the coefficients of p′′1 in (3.10) and (3.11), we have

g1 = −5ρρ′(1 + ρ2) + 2(ρ3(1 + ρ2))′, (3.12)

it follows that we can find f1 and φ1 with the help of (3.10), (3.11), and (3.12) as follows:

f1 =
3

2
κ(5(1 + ρ2)2 − µ)− 12ρ2(1 + ρ2) + 5(ρρ′(1 + ρ2))′ − 2(ρ3(1 + ρ2))′′,

φ1 =
1

4
κ′(5(1 + ρ2)2 − µ)− 2κ′ρ3(1 + ρ2)− 3

2
(5κ(1 + ρ2)2 − κµ)′ + 12(ρ2(1 + ρ2))′

− 5(ρρ′(1 + ρ2))′′ + 2(ρ3(1 + ρ2))′′′.

(3.13)

Applying the same algebraic method as above, we also obtain

B := φ2p2 + (f2p2)
′ +

((
3

2
iκ(5(1 + ρ2)2 − µ)− 12iρ2(1 + ρ2)

)
p′2

)′

,

C := φ3p3 + (f3p3)
′ + (g3p

′
3)

′ +

((
1

4
κ(5(1 + ρ2)2 − µ)− 2ρ2(1 + ρ2)

)
p′′3

)′

,

(3.14)

where

φ2 = (5(1 + ρ2)2 − µ)(
1

4
iκ′′ + iκ2)− 2ρ(1 + ρ2)(iρ2κ′′ + 4i)− 3

4
i(5κ′(1 + ρ2)2 − κ′µ)′

+ 6i(κ′ρ3 + κ′ρ5)′ +
3

2
i
(
5κ(1 + ρ2)2 − κµ

)′′ − 12i
(
ρ2(1 + ρ2)

)′′
,

φ3 =
5

4
κκ′(5(1 + ρ2)2 − µ)− 10ρ2κ′(1 + ρ2)− 3

2
(5κ2(1 + ρ2)2 − κ2µ)′

+ 12ρ′(1 + 3ρ2) + 4
(
ρρ′(1 + 2ρ2)

)′′ − 1

4

(
5κ(1 + ρ2)2 − κµ

)′′′
,

(3.15)

f2 =
3

4
iκ′(5(1 + ρ2)2 − µ)− 6iκ′ρ3(1 + ρ2)− 3

2
i
(
5κ(1 + ρ2)2 − κµ

)′
+ 12i

(
ρ2(1 + ρ2)

)′
,

f3 =
3

2
κ2(5(1 + ρ2)2 − µ)− 12ρ(1 + ρ2) +

1

4

(
5κ(1 + ρ2)2 − κµ

)′′ − 4
(
ρρ′(1 + 2ρ2)

)′
,

g3 = −1

4

(
5κ(1 + ρ2)2 − κµ

)′
+ 4ρρ′(1 + 2ρ2).

(3.16)

Thus (3.12), (3.13), (3.15), and (3.16) imply (3.7). 2

521



YOON and KÜÇÜKARSLAN YÜZBAŞI/Turk J Math

Theorem 3.4 1. The critical points of the modified Sadowsky functional Sµ are characterized by the Euler-
Lagrange equations φ1 = φ2 = φ3 = 0.

2. If the isotropic curve γ is a critical point of Sµ , then for each variation of γ with respect to the

integrand (κ2
t (1 + ρ2t )

2 − µ)κ
1
2
t of the modified Sadowsky functional, we have φ′ = 0.

Proof 1. If γ is a critical point of the modified Sadowsky functional Sµ and it is parametrized by pseudo arc
length, then from (3.7) one finds

0 =
∂

∂t
|t=0Sµ(γt) =

∫ L

0

(p1φ1 + p2φ2 + p3φ3 + φ′)ds

=

∫ L

0

(p1φ1 + p2φ2 + p3φ3)ds+ φ(L)− φ(0).

Since φ(L) = φ(0) = 0 , we can obtain the required Euler-Lagrange equations p1 = p2 = p3 = 0.

2. Assume that the isotropic curve γ is a critical point of Sµ . Then the curve satisfies the Euler-Lagrange

equations. In this case, the invariance of (κ2
t (1 + ρ2t )

2 − µ)κ
1
2
t with respect to t leads to

0 =
1

2

∂

∂t

(
κ2
t (1 + ρ2t )

2 − µ
)
κ

1
2
t |t=0

= p1φ1 + p2φ2 + p3φ3 + φ′(s)

= φ′(s).

2

4. Conservation laws
In this section, we study conservation laws to characterize elastic strips of isotropic curves in complex 3-space
C3 .

Consider a variation
γt(s) = γ(s) + tB

with the variation vector field
γ̇ = B = ⟨B, e3⟩e1 + ⟨B, e2⟩e2 + ⟨B, e1⟩e3

= p1e1 + p2e2 + p3e3,
(4.1)

where B is an arbitrary point in C3 .
Before dealing with the first conservation law of elastic strips for an isotropic curve, we work out the

following:
p′1 = −iκ⟨B, e2⟩,

p′′1 = κ2⟨B, e1⟩ − iκ′⟨B, e2⟩+ κ⟨B, e3⟩,

p′2 = iκ⟨B, e1⟩+ i⟨B, e3⟩,

p′3 = −i⟨B, e2⟩,

p′′3 = κ⟨B, e1⟩+ ⟨B, e3⟩.

(4.2)
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Substituting (4.2) into (3.8), we can arrange as follows:

φ = ⟨B, Q0⟩,

where

Q0 =

(
κ2

2
(5(1 + ρ2)2 − µ)− 2ρ(1 + ρ2)(κρ− 2)(κρ− 3)− 4(ρρ′(1 + ρ2))′ +

1

4
(5κ(1 + ρ2)2 − κµ)′′

)
e1,

+

(
i

2
κ′(5(1 + ρ2)2 − µ) + iρ(1 + ρ2)(5κρ′ − 4κ′ρ2 − 4ρ′)− 4iρ3ρ′ + 12i(ρ2(1 + ρ2))′

−2iκ(ρ3(1 + ρ2))′ − 5

4
i(5κ(1 + ρ2)2 − κµ)′

)
e2

+
(κ
4
(5(1 + ρ2)2 − µ)− 12κρ3(1 + ρ2) + 5(ρρ′(1 + ρ2))′ − 2(ρ3(1 + ρ2))′′

)
e3.

(4.3)

We know that if the isotropic curve γ is a critical point of the modified Sadowsky functional Sµ , φ is a
constant. Therefore, Q0 is a constant for any B ∈ C3 . Thus, we characterize elastic strips with isotropic curves
in terms of Q0 and we have the following result.

Theorem 4.1 (First conservation law of elastic strips with an isotropic curve) A strip with an isotropic curve
in complex 3-space C3 is elastic if and only if the force vector Q0 given by (4.3) is a constant.

Proof Let us set the force vector Q0 given by (4.3) as follows:

Q0 = q1e1 + q2e2 + q3e3. (4.4)

We now use the Frenet formula (2.4) to obtain

Q′
0 = (q′1 + iκq2)e1 + (q′2 − iq1 − iκq3)e2 + (q′3 + iq2)e3.

By a long computation, we can show that the coefficients of e1 , e2 , and e3 can be expressed as

q′1 + iκq2 = φ3,

q′2 − iq1 − iκq3 = φ2,

q′3 + iq2 = φ1.

We know that if the strip Γγ with the isotropic curve γ is elastic, then φ1 = φ2 = φ3 = 0 , which implies that
the force vector Q0 is a constant. If Q0 is a constant, the last equations lead to φ1 = φ2 = φ3 = 0 , it follows
that the strip Γγ is elastic, thus the proof is completed. 2

Proposition 4.2 If an isotropic curve γ defines an elastic strip such that q3 is a constant, then γ is an
isotropic helix.

Proof For an elastic strip, Q0 is a constant. Since ⟨Q0, e1⟩ = q3 is a constant, γ is an isotropic helix. 2
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By taking into account that

∂

∂t
At(γ(s))|t=0 = C × γ(s) = ⟨C × γ(s), e3⟩e1 + ⟨C × γ(s), e2⟩e2 + ⟨C × γ(s), e1⟩e3,

= p1e1 + p2e2 + p3e3.

for C ∈ C3 and At ∈ SU(3) . Using a similar method as in the first conservation law, we have

φ = ⟨C, Q1⟩,

where

Q1 =

(
−3κ

4
(5(1 + ρ2)2 − µ)− 2ρ2(1 + ρ2)(2κρ− 5)

)
e1

+ (5iρρ′(1 + ρ2)− 2i(ρ3(1 + ρ2))′)e2

+

(
1

4
(5(1 + ρ2)2 − µ)− 2ρ3(1 + ρ2)

)
e3 − γ ×Q0.

(4.5)

Now, we characterize elastic strips with isotropic curves in terms of Q1 and we have the following result.

Theorem 4.3 (Second conservation law of elastic strips with an isotropic curve) A strip with an isotropic curve
in complex 3-space C3 is elastic if and only if the torque vector Q1 given by (4.5) is a constant.

Proof Let us put the torque vector Q1 given by (4.5) as follows:

Q1 = u1e1 + u2e2 + u3e3 − γ ×Q0,

it follows that from (4.4) we have

Q′
1 = (u′

1 + iκu2)e1 + (u′
2 − iu1 − iκu3)e2 + (u′

3 + iu2)e3 − e1 ×Q0 − γ ×Q′
0

= (u′
1 + iκu2 − iq2)e1 + (u′

2 − iu1 − iκu3 − iq3)e2 + (u′
3 + iu2)e3 − γ ×Q′

0.

By using (4.3) and (4.5), we show that the coefficients of e1 , e2 , and e3 are identically zero, that is, the last
equation is reduced to

Q′
1 = −γ ×Q′

0.

Thus, Q0 is a constant if and only if the isotropic curve γ defines the elastic strip. 2

5. Examples of elastic strips in C3

In this section, we give examples to indicate elastic strips along isotropic helices as isotropic curves in a complex
3-space.

Example 5.1 Let us consider an isotropic curve

γ(s) =

(
1

3
(2 cos s+

√
13s), is,

i

3
(
√
13 cos s+ 2s)

)
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in complex 3-space. Then we have the Frenet frame of the curve γ as follows:

e1 =

(
1

3
(−2 sin s+

√
13), i cos s,

i

3
(−

√
13 sin s+ 2)

)
,

e2 =

(
−2i

3
cos s, sin s,

√
13

3
cos s

)
,

e3 =

(
1

3
(sin s+

√
13

2
),− i

2
cos s,

i

3
(

√
13

2
sin s+ 1)

)
.

In particular, the curve is an isotropic helix with the pseudo curvature κ = − 1
2 and the axis u = (

√
13
3 , 0, 2i

3 ) .
Thus, the strip with the isotropic helix is given by

Γγ(s, t) =

(
1

3
(2 cos s+

√
13s−

√
13t), i sin s,

i

3
(
√
13 cos s+ 2s− 2t)

)
.

Since γ satisfies the Euler-Lagrange equation, the strip Γγ(s, t) is an elastic strip with the isotropic helix γ .
Also, the critical point of the modified Sadowsky functional corresponds to the isotropic elastic curve.

Example 5.2 Consider an isotropic curve in complex 3-space as

γ(s) = (sinh s, i cosh s, is).

In this case, Frenet frames of the isotropic curve γ are given by

e1 = (cosh s, i sinh s, i),

e2 = (i sinh s,− cosh s, 0),

e3 = (
1

2
cosh s,

i

2
sinh s,− i

2
),

it follows that the curve is an isotropic helix with the pseudo curvature κ = 1
2 and the axis u = (0, 0,−i) . Thus,

the elastic strip is parametrized by

Γγ(s, t) = (sinh s, i cosh s, i(s+ t)) .

6. Conclusion
First of all, we introduce the modified Sadowsky functional along an isotropic curve in complex 3-space
corresponding to Sadowsky functional in Euclidean and Minkowski 3-spaces. From this, we study an elastic
strip in terms of the modified Sadowsky functional and the associated variational vector field of an isotropic
curve in complex 3-space. Furthermore, we show that the critical points of the modified Sadowsky functional
are characterized by the Euler-Lagrange equations. Also, we used the force vector and the torque vector to give
the physical properties of an elastic strip and we give some applications of soliton solutions of the elastic strips
for the isotropic curves in complex 3-space.
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