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Abstract: In this work, we present a new weighted method for proving the generalized Hyers-Ulam stability for
nonlinear Volterra integral equations in modular spaces. Using the same technique, we also prove the generalized Hyers-
Ulam stability for nonlinear functional equations under ∆2 conditions. Fixed-point theorems in modular spaces form
the foundation of our main conclusions.
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1. Introduction
The theory of modular spaces has a wide range of applications, particularly in interpolation [30]. Nakano
introduced modular spaces as a generalization of metric spaces in 1950 [35]. Later, Luxemburg extended
the concept of modular spaces by equipping them with a norm [29]. The Musielak-Orlicz space was another
generalization of the modular spaces introduced in 1959 [31, 33, 34]. For more detailed information, please refer
to the book by Kannappan [37].

The concept of stability is a qualitative aspect of dynamic systems. In 1954, Ulam developed the idea of
stability by posing queries regarding the degree to which an approximate solution of an equation approaches
the exact solution [36]. A year later, Hyers investigated the stability of linear functional equations [19]. For
this reason, the acquired characteristic is now referred to as the Hyers-Ulam stability [41]. Rassias, in 1978,
investigated the stability of linear mapping in Banach space [38]. References [1, 3, 7, 13–16, 18, 23, 28, 32, 42]
provide a wealth of information regarding the stability of Ulam-Hyers and Hyres-Ulam-Rassias. In 2017, Castro
and Simões introduced a new type of stability called semi-Hyers-Ulam stability [10]. They investigated this type
of stability for a class of integrodifferential equations in a generalized metric space endowed with Bielecki metric
and fixed point theorems [11]. Moreover, stability of the Apollonius-type additive functional equation [27],
refined stability of additive and quadratic functional equations [26], fixed point approach to functional equation
stability [39], generalized Ulam-Hyers-Rassias stability for quartic functional equation [44], and generalized
Hyers-Ulam stability of Cauchy mappings [16] are noteworthy collaborations in the field of stability in modular
spaces.
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The Volterra integral equation is one of the significant equations whose stability has recently drawn
attention. In 1896, Vito Volterra started studying equations [43]. Practical fields, including fluid flow, semicon-
ductors, heat conduction, elasticity, chemical reactions, scattering theory, population dynamics, and seismology,
all make use of this equation [9]. Furthermore, Burton released a book in 2005 that delves further into the
application of this kind of integral equation in differential equations [6]. See [12, 17, 24, 40] for additional details
on this kind of integral equation. The initial section of this paper explores the generalized Hyres-Ulam stability
for a particular kind of this equation. If ℏ is a continuous function and constant a ∈ R , then the following
integral equation:

ℏ(κ) =
∫ κ

a

T (τ, ℏ(τ)) dτ (1.1)

is called a Volterra integral equation. In 2007, Jung conducted a study to analyze the stability of Hyers-Ulam and
Hyres-Ulam-Rassias concerning this equation [24].Additionally, in 2009, Castro and his colleagues investigated
the stability of the nonlinear Volterra integral equation in the Banach space of the form:

ℏ(κ) =
∫ κ

a

T (κ, τ, ℏ(τ)) dτ, −∞ < a ≤ κ ≤ b < +∞, (1.2)

such that a, b ∈ R and ℏ is a continuous function [9]. It is worth noting that Eq. (1.2) is more global than
Eq. (1.1). The stability of the nonlinear Volterra integral equation using the weighted space method has not
yet been investigated. In this work, we will first explore the generalized Hyres-Ulam stability of the following
Volterra integral equation:

ℏ(r) = f(r) + λ

∫ x

a

U(r, s, ℏ(r)), ∀r, s ∈ J = [a, b]; (1.3)

where U : J ×J ×Lφ → Lφ , ℏ : J → Lφ is a continuous, f is a real-valued function, and λ ∈ R . Subsequently,
we will investigate the generalized Hyers-Ulam stability for the following nonlinear equation:

ℏ(r) = T
(
r, ℏ(r), ℏ(η(r))

)
(1.4)

where T : S × Gm × Gm → Gm and η : S → S are given mappings and S ̸= ∅ , Gm is a complete modular
space under ∆2 -conditions by a new weighted space method in modular function spaces. Liviu Cadariu first
introduced this method [7]. For information regarding the latest contribution of this new method, please refer
to references [2], [39], and [37]. In the following, we use this new approach to check the generalized Hyers-Ulam
stability of the two mentioned integral and functional equations and present new results that generalize some
previous results.

2. Preliminaries
Definition 2.1 If ∀κ ≥ 0 and for every continuous function ℏ(κ) the following inequality holds:

∣∣∣ℏ(κ)− ∫ κ

a

T (τ, ℏ(τ)) dτ
∣∣∣ ≤ ρ(κ)

such that ρ(κ) ≥ 0 , there exists a solution ℏ∗(κ) of Eq. (1.1), and ∃A > 0 such that for all κ , we have:

|ℏ(κ)− ℏ∗(κ)| ≤ Aρ(κ)
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where A is independent of ℏ(κ) and ℏ∗(κ) , then we say that the Eq. (1.1) has the HUR stability. In addition,
if ρ(κ) is a constant function, then Eq. (1.1) has the HU stability.

Definition 2.2 [35] Assume that F is a Field (F = R ∨ C), and G is a vector space over F . Moreover, let
m : G → [0,+∞] be a function that is satisfied in the following conditions:

• m(g) = 0 , if and only if g = 0 ,

• For all ξ , s.t |ξ| = 1 , we have m(ξg) = m(g) ,

• For all g1, g2 ∈ G , where ξ, δ ≥ 0 and ξ + δ = 1 , we have m(ξg1 + δg2) ≤ m(g1) +m(g2) ,

In this case, we called m a modular. Furthermore, if the third condition is as follows:

• For all g1, g2 ∈ G , where ξ, δ ≥ 0 and ξ + δ = 1 , we have m(ξg1 + δg2) ≤ ξm(g1) + δm(g2) ,

then we call m convex modular.

Definition 2.3 The modular m itself defines a modular space, namely Gm , as follows:

Gm = {g ∈ G : m(βx) → 0 as β → 0}.

For example, if (G, ∥.∥) is a normed space, then ∥.∥ is a convex modular on G , but the converse is not necessarily
true [34].

Definition 2.4 [29] Suppose that m is a convex modular, then G equiped with the Luxemburg norm is defined
as follows:

∥g∥m = inf{σ > 0 : m(
g

σ
) ≤ 1}.

Definition 2.5 [37] For a sequence {gn} in the modular space Gm , the following are defined.

• {gn} in Gm is called m-convergent to g if m(gn − g) → 0 as n→ ∞ .

• {gn} in Gm is called m-Cauchy if m(gn − gm) → 0 as n,m→ ∞ .

• The modular space Gm is m-complete if every m-Cauchy sequence is m-convergent.

Definition 2.6 (Fatou property) The modular m has the Fatou property if for sequences {gn}, {hn} ∈ Gm ,
the following inequality holds true

m(g − h) ≤ lim infm(gn − hn),

such that m(gn − g) → 0 , m(hn − h) → 0 , as n→ ∞ .

Definition 2.7 (∆2 -condition) The modular m satisfies the ∆2 -condition if ∃k ∈ [0,∞) such that

m(2g) ≤ km(g) for all g ∈ Gm.

Definition 2.8 Let H ⊆ Gm , and {hn} be a sequence in H , then closed and bounded sets in modular space
are defined as follows:
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• If for any {hn} , where hn → h , we have h ∈ H , then H is called m-closed.

• If the m-diameter of H is infinity, namely Dm <∞ , then H is called m-bounded. Also, the m-diameter
of H is expressed as follows:

Dm(H) = sup{m(g − h) : g, h ∈ H} <∞.

Definition 2.9 Let ℏ be a real-valued and measurable function, then the Orliez modular is formulated as follows:

m(ℏ) =
∫
R
φ(|ℏ|) dµ,

such that φ : R → [0,∞) is continuous, and φ(t) = 0 iff t = 0 , also µ denotes the Lebesgue measure on R .
Moreover, the modular space induced by this modularity is called the Orlicz space.

Remark 2.10 [27] Assume that m is a convex modular, and
n∑
i=1

κi ≤ 1 where κi ≥ 0 . Then, for all gi ∈ Gm ,

the following inequality hold:

m(

n∑
i=1

κigi) ≤
n∑
i=1

κim(gi).

Definition 2.11 [40] Let J = [a, b] and g : J → Lφ . The function g is said to be continuous at s0 ∈ J if
for sn ∈ J and sn → s0, we have

m(g(sn)− g(s0)) → 0 as n→ ∞.

Definition 2.12 [25] Let C be a subset of a modular function space Gm . A mapping K : C → C is called
m-strict contraction if there exists λ < 1 where:

m(Kg1 −Kg2) ≤ λm(g1 − g2),

for all g1, g2 ∈ C .

Theorem 2.13 [25] Assume that C is an m-bounded, m-complete subset of Lm and K : C → C is an m-strict
contraction. Then K has a unique fixed point g ∈ C . Furthermore, g is the m-limit of the iterate of any point
in C under the action of K .

3. Main results
3.1. Stability of nonlinear Volterra integral equations
In this section, we introduce some methods for proving the stability of integral equations in modular function
spaces and examine the methods for the Volterra integral equation as a common appropriate example. Let
C(J ,Lφ) be the set of all continuous mappings from J = [a, b] into Lφ where Lφ is the Musielak–Orlicz space.
Moreover, the Musielak–Orlicz space is defined as follows: Let (Ω,Σ,µ) be a measure space where µ is σ -finite
measure on Ω . Also, consider the modular m as follows:

m(ℏ) =
∫
Ω

φ(r, |ℏ(r)|) dµ(r),

where ℏ : Ω → R , φ : Ω× R → [0,∞) and the following statements hold:

501



TALIMIAN et al./Turk J Math

• For all a ∈ R , the function φ(r, d) is measurable.

• For all r ∈ Ω , the function φ(r, d) is convex.

• The function φ(r, d) is countinuous, nondecreasing for d > 0 , φ(r, 0) = 0 , φ(r, d) > 0 for d ̸= 0 and
φ(r, d) → ∞ as d→ ∞ .

It is clear that this modular with the mentioned properties is a convex. Furthermore, the corresponding modular
space is called the Musielak–Orlicz space. Also, if we consider g : , then the continuity of g : J → Lφ at s0 is
equivalent to:

(sn → s0) ⇒ ∥g(sn)− g(s0)∥m → 0 as n→ ∞.

Theorem 3.1 Let α, λ be positive constants with 0 < αλ < 1 and∫ x

a

P (r, s)ψ(s) ≤ αψ(r) for all r, s ∈ I.

Also, suppose that U : J × J × Lφ → Lφ is a continuous function such that

m
(
2
(
U(r, s, g1(s))− G(r, s, g2(s))

))
≤ P (r, s)m

(
2(g1(s)− g2(s))

)
,

for all r, s ∈ J and g1, g2 ∈ C(J ,Lφ) . If the continuous function ℏ : J → Lφ has the following property

m
(
2
(
ℏ(r)− f(r)− λ

∫ x

a

U(r, s, ℏ(s)) ds
))

≤ ψ(r) for all r ∈ J .

Then, there exists a unique solution ℏ0 ∈ C(J ,Lφ) , where

ℏ0(r) = f(r) + λ

∫ x

a

U(r, s, ℏ0(r)), ∀r ∈ J ;

and the following inequality:

m(ℏ− ℏ0) ≤
ψ(r)

1− αλ
for all r ∈ J (3.1)

holds.

Proof Let g1 ∈ C(J ,Lφ) and {s0, s1, . . . , sn} be a partition of [a, x] . Now, suppose that

sup
{
|si+1 − si|, i = 0, 1, · · · , n− 1

}
→ 0 as n→ ∞.

Then, ∥∥∥ n−1∑
i=0

λ(si+1 − si)U(r, si, g1(si))−
∫ x

a

λU(r, s, g1(s))ds
∥∥∥
m

→ 0.

By using the ∆2−condition of m

m

(
2

n−1∑
i=0

λ(si+1 − si)U(r, si, g1(si))− 2

∫ x

a

λU(r, s, g1(s))ds
)

→ 0.
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According to the Fatou property, we have

m
(
2

∫ x

a

λU(r, s, g1(s))ds
)
≤ lim infm

(
2

n−1∑
i=0

λ(si+1 − si)U(r, si, g1(si)
)
. (3.2)

Let q ∈ N given. So,

n−1∑
i=0

λe
si
q (si+1 − si) ≤ λ

∫ x

a

e
s
q ds = λq(e

x
q − e

a
q ) ≤ λq(e

b
q − e

a
q ).

Since limq→∞
(
λ(e

b
q − e

a
q )− 1

q

)
= 0 ; then, ∀ϵ > 0 , ∃qϵ ∈ N , where

λ(e
b
q − e

a
q )− 1

q
≤ ϵ

for all q > qϵ. That is,

λ(e
b
q − e

a
q ) ≤ 1

q
+ ϵ

for all q > qϵ . So, we get
n−1∑
i=0

λe
si
q (si+1 − si) ≤ q(

1

q
+ ϵ)

for all q > qϵ. Since ϵ > 0 is arbitrary, then

n−1∑
i=0

|λ|e
si
q (si+1 − si) ≤ 1.

Hence,

n−1∑
i=0

λe
si
q (si+1 − si) ≤ 1.

It follows from the convexity of m :

m
( n−1∑
i=0

λ(si+1 − si)2U(r, si, ℏ(si))
)
= m

( n−1∑
i=0

λe
ti
q (si+1 − si)e

− si
q 2⊓(r, si, ℏ(si))

)

≤
n−1∑
i=0

(si+1 − si)|λ|e
si
q m

(
2e−

si
q U(r, si, ℏ(si))

)

≤
∫ x

a

λe
s
q m

(
2e−

s
q U(r, s, ℏ(r))

)
ds.

As e−
s
q ≤ 1 , we have m

(
2e−

s
q U(r, s, ℏ(s))

)
≤ m

(
2U(r, s, ℏ(s))

)
. Hence, the above inequality reduces to

m
(
2

n−1∑
i=0

|λ|(si+1 − si)U(r, si, ℏ(si))
)
≤

∫ x

a

λe
s
q m

(
2U(r, s, ℏ(s)

))
ds. (3.3)
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Since e
s
q → 1 as q → ∞, putting limit on both sides of (3.3), we obtain

m
( n−1∑
i=0

λ(si+1 − si)2U(r, si, ℏ(si))
)
≤

∫ x

a

λm
(
2U(r, s, ℏ(s))

)
ds. (3.4)

Taking λ = 0 , one has

mY (Kg1 −Kg2) = sup
x∈J

m
( ∫ x

a
2λ(U(r, s, g1(s))− U(r, s, g2(r))) ds

)
ψ(r)

= 0 ≤ α|λ|mY (g1 − g2),

and, we have nothing to prove. So suppose that λ ̸= 0. Now since | λ|λ| | = 1 ; then,

m
(
2

n−1∑
i=0

λ(si+1 − si)U(r, si, ℏ(si))
)
= m

( λ
|λ|

2

n−1∑
i=0

|λ|(si+1 − si)U(r, si, ℏ(si))
)

= m
(
2

n−1∑
i=0

|λ|(si+1 − si)U(r, si, ℏ(si))
)
.

Therefore, (3.4) yields

m
(
2

n−1∑
i=0

λ(si+1 − si)U(r, si, y(si))
)
≤

∫ x

a

|λ|m
(
2U(r, s, ℏ(s))

)
ds.

Utilizing (3.2), we have

m
( ∫ x

a

2λU(r, s, g1(s)) ds
)
≤

∫ x

a

|λ|m
(
2U(r, st, g1(s)

)
ds.

Define K : C(I, Lφ) → C(I, Lφ) by

(Kg1)(r) := f(r) + λ

∫ x

a

U(r, s, g1(r)) ∀r ∈ J .
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Now, we have

mY (Kg1 −Kg2) = sup
r∈J

m
( ∫ x

a
2λ(U(r, s, g1(s))− U(r, s, g2(s))) ds

)
ψ(r)

≤ sup
r∈J

∫ x
a
|λ|m

(
2(U(r, s, g1(s))− U(r, s, g2(s)))

)
ds

ψ(r)

≤ sup
r∈I

∫ x
a
|λ|P (r, s)m

(
2(g1(s)− g2(s))

)
ds

ψ(r)

= sup
r∈J

∫ x
a
|λ|P (r, s)ψ(s)m

(
2(g1(s)−g2(s))

)
ψ(s) ds

ψ(r)

≤
(
sup
s∈J

m
(
2(g1(s)− g2(s))

)
ψ(s)

)
sup
r∈J

∫ x
a
|λ|P (r, s)ψ(s) ds

ψ(r)

≤ α|λ|mY (g1 − g2),

in which α|λ| < 1 . On the other hand (3.1), we have mY (ℏ −Kℏ) < 1. Now by Theorem 2.13, there exists a
mapping ℏ0 , where

• ℏ0 is the fixed point of K , i.e.,

ℏ0(r) = f(r) + λ

∫ x

a

U(r, s, ℏ0(r)) ∀r ∈ J .

• mY (K
nℏ−Kℏ0) → 0 as n→ ∞ , which implies that ℏ0(r) = limn→∞(Knℏ)(r) for all J .

• mY (ℏ− ℏ0) ≤ 1
1−ℓmY (ℏ−Kℏ) , which implies the inequality

mY (ℏ− ℏ0) ≤
1

1− ℓ
.

So, the estimate relation (3.1) is true. 2

3.2. The generalized Hyers-Ulam stability of a nonlinear equation
In this section, we introduce a generalization of the Hyers-Ulam stability result for the following nonlinear
equation

ℏ(r) = T
(
r, ℏ(r), ℏ(η(r))

)
,

in a modular function space via a new weighted space method. In the rest of this paper, the function ℏ : S → Gm

is a mapping by a specific property, S ̸= ∅ , Gm is a complete modular space, T : S × Gm × Gm → Gm and
η : S → S are given mappings.
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Theorem 3.2 Let the modular m satisfies ∆2 -condition, there exist ℓ ∈ [0, 1) and mappings θ, ϑ : S → [0,∞)

such that
θ(r)ψ(r) + ϑ(r)ψ(η(r)) ≤ ℓψ(r), ∀r ∈ S, (3.5)

for a given function ψ : S → (0,∞) . Also, there is a mapping T : S × Gm × Gm → Gm for all r ∈ S and for
all g1, g2 ∈ Gm that satisfies

m
(
2
(
T (r, g1(r), g1(η(r)))− T (r, g2(r), g2(η(r))

))
≤ θ(r)m(2(g1(r)− g2(r)))

+ ϑ(r)m
(
2(g1(η(r))− g2(η(r)))

)
. (3.6)

If ℏ : S → Gm is a fixed mapping with the property

m(2(ℏ(r)− T (r, ℏ(r), ℏ(η(r))))) ≤ ψ(r), ∀r ∈ S. (3.7)

Then there exists a unique ℏ0 : S → Gm such that

ℏ0(r) = T
(
r, ℏ0(r), ℏ0(η(r))

)
, ∀r ∈ S,

and the inequality

m(ℏ(r)− ℏ0(r)) ≤
ψ(r)

1− ℓ
(3.8)

holds for all r ∈ S .

Proof Let

Y :=
{
g1 : S → Gm | sup

p∈S

m(g1(r)− ℏ(r))
ψ(r)

<∞
}
,

which implies that Y is a complete modular space with the modular

mY (g1−g2) = sup
r∈S

m(2(g1(r) − g2(r)))

ψ(r)
.

Since (Gm,m) is modular space and ψ > 0 , then mY (g1) ≥ 0 for every g1 ∈ Y . Let mY (g1−g2) = 0 . Then,

0 ≤ m(2(g1(r)− g2(r)))

ψ(r)
≤ sup

r∈S

m(2(g1(r)− g2(r)))

ψ(r)
= mY (g1−g2) = 0.

Therefore,
m
(
2(g1(r)− g2(r))

)
ψ(r)

= 0 for all r ∈ S.

Since ψ > 0 , then m(2(g1(r) − g2(r))) = 0 for all r ∈ S . Hence, 2(g1(r) − g2(r)) = 0 for all r ∈ S . Thus,
r1 = r2 . Now, let g1, g2 ∈ Y and ξ, δ ≥ 0 such that ξ + δ = 1 . Then,

mY (ξg1+δg2) = sup
r∈S

m
(
2(ξg1 + δg2)(r)

)
ψ(r)

= sup
r∈S

m
(
ξ(2g1(r)) + δ(2g2(r))

)
ψ(r)

.
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We have
m
(
ξ(2g1(r)) + δ(2g2(r))

)
ψ(r)

≤ m(2g1(r))

ψ(r)
+

m(2g2(r))

ψ(r)
≤ mY (g1) +mY (g2).

Therefore,
mY (ξg1 + δg2) ≤ mY (g1) +mY (g2).

Now, we claim that mY (ξg1) = mY (g1) for g1 ∈ Y , and |ξ| = 1 . We can write

mY (ξg1) = sup
r∈S

m(2ξg1(r))

ψ(r)
= sup

r∈S

m(ξ(2g1(r)))

ψ(r)
= sup

r∈S

m(2g1(r))

ψ(r)
= mY (g1).

Now, we prove that Y is mY -complete modular space. Suppose that (g1n) be a mY -Cauchy sequence in Y ,
then

mY (g1n − g1m) = sup
r∈S

m
(
2(g1n − g1m)(r)

)
ψ(r)

→ 0,

as m,n→ ∞ . Thus,
m
(
2g1n(r)− 2g1m(r)

)
−−−−−→
m,n→∞

0 for every r ∈ S.

Therefore, (2g1n(r)) is m -Cauchy sequence for every p ∈ S . Since Gm is m -complete modular space, then
there exist g10 : S → X such that 2g1n(r) → g10(r) as n→ ∞ . Hence,

mY (g1n − 1

2
g10) = sup

r∈S

m
(
2(g1n − 1

2
g10)(r)

)
ψ(r)

= sup
r∈S

m
(
2(g1n(r)− g10(r)

)
ψ(r)

−−−−−→
m,n→∞

0.

Then, g1n
mY→ 1

2
g10 as n→ ∞ . Now, we define the mapping

(Kg1)(r) := T (r, g1(r), g1(η(r))).

Applying (3.6) and (3.5) for all g1, g2 ∈ Y , we have

m
(
2Tg1(r)− 2Tg2(r)

)
ψ(r)

=
m
(
2T

(
r, g1(r), g1(η(r))

)
− 2T

(
r, g2(r), g2(η(r))

))
ψ(r)

≤
θ(r)m

(
2(g1(r)− g2(r))

)
+ ϑ(r)m

(
2(g1(η(r))− g2(η(r))

)
ψ(r)

= θ(r)
m
(
2(g1(r)− g2(r))

)
ψ(r)

+ ϑ(r)
ψ(η(r))

ψ(r)

×
m
(
2(g1(η(r))− g2(η(r))

)
ψ(η(r))

≤
(
θ(r) + ϑ(r)× ψ(η(r))

ψ(r)

)
mY (g1 − g2)

≤ ℓmY (g1 − g2).
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On the other hand, considering (3.7), we obtain

m(Kg1(r)− ℏ(r))
ψ(r)

=
m

1

2
(2(Kg1(r)−KY (r))) +

1

2
(2(Kℏ(r)− ℏ(r))))

ψ(r)

≤ m(2(Kg1(r)−Kℏ(r)))
ψ(r)

+
m(2(Kℏ(r)− ℏ(r)))

ψ(r)

≤ ℓmY (g1 − ℏ) +
ψ(r)

ψ(r)
= ℓmY (g1 − ℏ) + 1 <∞.

If g1 ∈ Y , then Kg1 ∈ Y . Hence, the map K : Y → Y is well-defined. Also, we obtain that

mY (Kg1 −Kg2) = sup
p∈S

m
(
2(Kg1(r)−Kg2(r))

)
ψ(p)

≤ ℓmY (g1 − g2).

Thus, K is strictly contractive self-mapping on Y , with the constant ℓ < 1 .

Now, we have to prove that Y is mY -closed and mY -bounded. Let {ℏn}n∈N be a sequence in Y such that

ℏn
m→ ℏ0 as n → ∞ . Since m satisfies the ∆2 -condition, then there exists k > 0 such that m(2g) ≤ km(g) ,

for any g ∈ Gm . Therefore,

m(ℏ0(r)− ℏ(r))
ψ(r)

=
m
(
ℏ0(r)− ℏn(r) + ℏn(r)− ℏ(r)

)
ψ(r)

=
m
(1
2

(
2(ℏ0(r)− ℏn(r))

)
+

1

2

(
2(ℏn(r)− ℏ(r))

))
ψ(r)

≤
m
(
2(ℏ0(r)− ℏn(r))

)
ψ(r)

+
m
(
2(ℏn(r)− ℏ(r))

)
ψ(r)

≤ k
m(ℏ0(r)− ℏn(r))

ψ(r)
+ k

m(ℏn(r)− ℏ(r))
ψ(r)

≤ k sup
m(ℏn(r)− ℏ(r))

ψ(r)
<∞.
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Thus, sup
p∈S

m(ℏ0(p)− ℏ(p))
ψ(p)

<∞ . Hence, ℏ0 ∈ Y . Let g1, g2 ∈ Y . Then,

m(2(g1(r)− g2(r))

ψ(r)
=

m(2(g1(r)− ℏ(r))) + 2(ℏ(r)− g2(r)))

ψ(r)

=
m(

1

2
(4(g1(r)− ℏ(r))) +

1

2
(4(ℏ(r)− g2(r))))

ψ(r)

≤ m(4(g1(r)− ℏ(r))) +m(4(ℏ(r)− g2(r)))

ψ(r)

≤ km(2(g1(r)− ℏ(r))
ψ(r)

+
km(2(ℏ(r)− g2(r))

ψ(r)

≤ k2m(g1(r)− ℏ(r))
ψ(r)

+
k2m(ℏ(r)− g2(r))

ψ(r)

≤ k2(sup
r∈S

m(g1(r)− ℏ(r))
ψ(r)

+ sup
r∈S

m(ℏ(r)− g2(r))

ψ(r)
) =M <∞

for every r ∈ S . Therefore,

mY (g1 − g2) = sup
r∈S

m(2(g1(r)− g2(r)))

ψ(r)
) ≤M,

for every g1, g2 ∈ Y . Then

diammY
Y = sup{mY (g1 − g2); g1, g2 ∈ Y } <∞.

Thus, Y is mY -bounded. In view of Theorem 2.13, there exists a mapping ℏ0 : S → Gm , where

• ℏ0 is the unique fixed point of K , i.e.,

ℏ0(r) = (Kℏ0)(r) = T (r, ℏ0(r), ℏ0(η(r))), r ∈ S;

• mY (K
n
ℏ − ℏ0) −−−−−→

m,n→∞
0 , which implies that

ℏ0(r) = lim
n→∞

(knℏ)(r), ∀r ∈ S;

• Since
m(Kg1(r)− ℏ(r))

ψ(r)
≤ ℓmY (g1 − ℏ) + 1,

for every g1 ∈ Y , then

m(Kℏ0(r)− ℏ(r))
ψ(r)

=
m(ℏ0(r)− ℏ(r))

ψ(r)
≤ ℓmY (ℏ0 − ℏ) + 1,
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for every r ∈ S . Therefore, mY (ℏ0 − ℏ) ≤ ℓmY (ℏ0 − ℏ) + 1 . So, we have

(1− ℓ)mY (ℏ0 − ℏ) ≤ 1.

Thus, mY (y0 − y) ≤ 1

1− ℓ
. It means that the estimation relation (3.8) holds.

2

Remark 3.3 As an explanation, it is notable that Theorem 3.2 is the modular version of the Theorem 2.2 of
[8].

Corollary 3.4 Let S ̸= ∅ and (Gm,m) be a complete modular space where m satisfies the ∆2 -condition.
Moreover, let η : S → S and U : Gm×Gm → Gm be given mappings. Additionally, λ, µ ∈ R+ and the following
condition holds:

m
(
2(U(s, g1)− U(t, g2))

)
≤ λm(2(s− t)) + µ

(
m(2(g1 − g2))

)
, ∀s, t, g1, g2 ∈ Gm.

Let ℏ : S → Gm be ψ -solution, for some given function ψ : S → (0,∞) , in which

m
(
2
(
ℏ(r)− G(ℏ(r), ℏ(η(r)))

))
≤ ψ(r), ∀r ∈ S.

Also, for some ℓ ∈ [0, 1) ,
µ× ψ(η(r)) + λ× ψ(r) ≤ ℓ× ψ(r), ∀r ∈ S.

Then, there exists a unique function ℏ0 : S → Gm such that

ℏ0(r) = U(ℏ0(r), ℏ0(η(r))), ∀r ∈ S

and

m(ℏ(r)− ℏ0(r)) ≤
ψ(r)

1− ℓ
, ∀r ∈ S.

It is not hard to check that the generalized Hyers-Ulam stability discussed in [14] can be derived from
Theorem 3.2, as a direct consequence, for the following nonlinear equation:

ℏ(r) = T
(
r, ℏ(η(r))

)
, (3.9)

which is expressed in the following corollary.

Corollary 3.5 Let ∃ℓ ∈ [0, 1) such that

ψ(η(r))×m
(
2
(
T (r, g1(η(r)))− T (r, g2(η(r)))

))
≤ ℓ× ψ(r)×m

(
2(g1(η(r))− g2(η(r)))

)
,

holds for all r ∈ S and for all g1, g2 ∈ Gm . In addition, assume that for the function ℏ : S → Gm , the following
inequality holds

m
(
2(ℏ(r)− T (r, ℏ(η(r))))

)
≤ ψ(r), ∀r ∈ S.
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Then, there exists a unique solution ℏ0 : S → Gm such that

ℏ0(r) = T (r, ℏ0(η(r))), ∀r ∈ S,

and

m(ℏ(r)− ℏ0(r)) ≤
ψ(r)

1− ℓ
,

holds for all r ∈ S .

Proof Put λ(r) = 0 and µ(r) =
ℓ.ψ(r)

ψ(η(r))
. Then,

λ(r)ψ(r) + µ(r)ψ(η(r)) = 0.ψ(r) +
ℓ.ψ(r)

ψ(η(r))
× ψ(η(r)) = ℓ× ψ(r) ≤ ℓ× ψ(0).

Also, we have

m(2(T (r, g1(η(r))− T (r, g2(η(r))))) ≤ λ(r)m(2(g1(r)− g2(r)))

+ µ(r)m(2(g1(η(r))− g2(η(r))))

= 0×m(2(g1(r)− g2(r)))

+
ℓ.ψ(r)

ψ(η(r))
m(2(g1(η(r))− g2(η(r))))

=
ℓ.ψ(r)

ψ(η(r))
m(2(g1(η(r))− g2(η(r))))

for all r ∈ S and for all g1, g2 ∈ Gm . Therefore,

ψ(η(r))m(2(T (r, g1(η(r))))− T (r, g2(η(r))))) ≤ ℓ.ψ(r)m(2(g1(η(r))− g2(η(r)))),

for all r ∈ S and for all g1, g2 ∈ Gm . 2

Remark 3.6 Taking ψ(r) = γ > 0 in Corollary 3.5, we get the following result which is the modular version
of ( [5, Theorem 2]) and ([2, Theorem 13]) for the nonlinear equation (3.9).

Corollary 3.7 Assume that S ̸= ∅ and (Gm,m) is a complete modular space where m satisfies the ∆2 -
condition. Moreover, η : S → S and T : S × Gm → Gm are some given mappings and ℓ ∈ [0, 1) . Let

m
(
2(T (r, g1)− T (r, g2))

)
≤ ℓm

(
2(g1 − g2)

)
, ∀r ∈ S, ∀g1, g2 ∈ Gm.

If the function ℏ : S → Gm satisfies the following relation

m
(
2(ℏ(r)− T (r, g1(η(r))))

)
≤ γ, ∀r ∈ S,

with a positive constant γ , then there exists a unique mapping ℏ0 : S → Gm that satisfies both the equation

ℏ(r) = T (r, g1(η(r))), ∀r ∈ S
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and the inequality

m(ℏ(r)− ℏ0(r)) ≤
γ

1− ℓ
, ∀r ∈ S.

Proof Put ψ(r) = γ in Corollary 3.5. Then, we have λ(r) = 0 and

µ(r) =
ℓ.ψ(r)

ψ(η(r))
=
ℓ · γ
γ

= ℓ

2

4. Conclusion
Providing accurate models to interpret natural and physical phenomena is a current hot research topic. Inter-
preting models using differential and functional equations does not always lead to a unique solution. Therefore,
checking the stability of equations is necessary and unavoidable. Since proving the stability of most functional
equations in modular function spaces is hard, in the current research, we presented some new results about the
generalized Hyers-Ulam stability of a nonlinear functional equation and the Volterra integral equation using
weighted space methods. We have guaranteed the stability of the mentioned equations employing fixed point
techniques in theorems 3.2 and 3.1, and we have also generalized the previous works in our corollaries. We hope
that other researchers will examine the equations presented in this work about semi-Ulam-Hyers stability in the
appropriate metric space.
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