
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 48 Number 3 Article 8 

5-1-2024 

Topogenous orders and closure operators on posets Topogenous orders and closure operators on posets 

JOSEF SLAPAL 
qmslapal@vutbr.cz 

TOM RICHMOND 
tom.richmond@wku.edu 

MINANI IRAGI 
84miragi2016@gmail.com 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

Recommended Citation Recommended Citation 
SLAPAL, JOSEF; RICHMOND, TOM; and IRAGI, MINANI (2024) "Topogenous orders and closure operators 
on posets," Turkish Journal of Mathematics: Vol. 48: No. 3, Article 8. https://doi.org/10.55730/
1300-0098.3519 
Available at: https://journals.tubitak.gov.tr/math/vol48/iss3/8 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact pinar.dundar@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/
https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol48
https://journals.tubitak.gov.tr/math/vol48/iss3
https://journals.tubitak.gov.tr/math/vol48/iss3/8
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0098.3519
https://doi.org/10.55730/1300-0098.3519
https://journals.tubitak.gov.tr/math/vol48/iss3/8?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol48%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pinar.dundar@tubitak.gov.tr


Turk J Math
(2024) 48: 469 – 476
© TÜBİTAK
doi:10.55730/1300-0098.3519

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Topogenous orders and closure operators on posets

Josef ŠLAPAL1,∗, Tom RICHMOND2, Minani IRAGI1
1Institute of Mathematics, Brno University of Technology, Brno, Czech Republic

2Department of Mathematics, Western Kentucky University, Bowling Green, KY, USA

Received: 19.07.2023 • Accepted/Published Online: 28.02.2024 • Final Version: 10.05.2024

Abstract: We introduce the notion of topogenous orders on a poset X to be certain endomaps on X . We build on
a Galois connection between endomaps and binary relations on X and study relationships between endomap properties
and corresponding relational properties. In particular, we determine the topogenous orders that are in a one-to-one
correspondence with (idempotent) closure operators. Extending our considerations to the categorical level, we find a
cartesian closed category of topogenous systems.
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1. Introduction
Correspondences between topologies and binary relations were studied by many authors. Such a natural
correspondence is obtained by assigning, to every topology τ on a set X , the binary relation ρ on the power
set of X given by AρB ⇔ B = uA where u is the Kuratowski closure operator associated with τ . However,
such a correspondence is inefficient because it just provides relational equivalents to topological properties of
Kuratowski closure operators (it is easy to formulate axioms on ρ equivalent to the Kuratowsky axioms so that
we obtain an isomorphism between the lattice of the relations ρ on the power set of X satisfying these axioms
and the lattice all topologies on X ). To obtain a more efficient correspondence, Császár [3, 4] employed the
one given by AρB ⇔ A ⊆ iB where i denotes the interior operator associated with τ . This correspondence
is, under some natural conditions on ρ , equivalent to the correspondence associating with every topology τ

on a set X the relation σ on the power set of X given by AσB ⇔ uA ⊆ B . Császár called his relation ρ ,
subject to certain axioms, a topogenous order and showed that it may be used as a common tool for the study
of topological, uniform, and proximity spaces. In his paper [13], Šlapal studied the correspondence based on
the relation σ given by AσB ⇔ B ⊆ uA , hence a correspondence ”dual” to the previous one. He investigated
such a correspondence extended to closure operators u that are more general than the Kuratowski ones. And
such closure operators are dealt with in the present note. However, while the usual closure operators on a set
X are certain endomaps on the power set of X , we will define closure operators to be endomaps on posets (i.e.,
partially ordered sets). For such endomaps u , we study the correspondence xσy ⇔ u(x) ≤ y . We show that this
correspondence gives rise to a Galois connection between naturally ordered sets of binary relations and endomaps
on a meet-complete semilattice (i.e., a poset with meets of all nonempty subsets). We determine corresponding
pairs of topogenous and closure axioms (after extending them to relations and endomaps, respectively, on meet-
∗Correspondence: slapal@fme.vutbr.cz
2010 AMS Mathematics Subject Classification: 54A05, 54B30.

This work is licensed under a Creative Commons Attribution 4.0 International License.
469

https://orcid.org/0000-0001-8843-6842
https://orcid.org/0000-0003-1883-8146
https://orcid.org/0009-0003-0251-9527


ŠLAPAL et al./Turk J Math

complete semilattices). It follows that (idempotent) closure operators correspond to (interpolative) topogenous
orders. This fact is then used to introduce a cartesian closed category of topogenous systems.

Categorical closure operators (see [5] and the references there) and categorical topogenous orders (cf. [9])
are defined on certain complete lattices, namely the subobject lattices of the objects (subject to an axiom of
functoriality). Our approach may be considered to be a generalization of the categorical one because we define
closure operators and topogenous orders on posets.

2. Preliminaries
For the lattice-theoretic concepts used see [8] and for the the topological ones see [6] or [11]. If X, Y are
posets and a map f : X → Y is a left adjoint, then the corresponding right adjoint is denoted by f−1 , hence
f−1 : Y → X . By a meet-complete semilattice, we understand a poset X = (X,≤) such that each of its
nonempty subsets has a meet. If a meet-complete semilattice is a lattice, then we call it a meet-complete lattice.
The smallest element of a poset X (provided it exists) is denoted by 0 . A subset A of a poset X = (X,≤) is
called a stack if, for all x, y ∈ X , x ∈ A and x ≤ y imply y ∈ A . A principal filter in a poset X is any set
{y ∈ X; x ≤ y} , where x ∈ X .

Recall that a Galois connection between partially ordered sets (G,≤) and (H,≤′) is a pair (g, h) of
order-reversing maps g : G → H and h : H → G such that x ≤ h(g(x)) for every x ∈ G and y ≤′ g(h(y)) for
every y ∈ H . Of the properties of a Galois connection (g, h) between (G,≤) and (H,≤′) , let us mention that
the restrictions ḡ : h(H) → g(G) and h̄ : g(G) → h(H) of g and h , respectively, are dual order isomorphisms
inverse to each other.

Definition 1 Let X be a poset and c be an endomap on X , i.e., a map c : X → X . Then c is called:

(1) extensive if m ≤ c(m) for every m ∈ X ,

(2) monotonic if m ≤ n ⇒ c(m) ≤ c(n) for all m,n ∈ X ,

(3) idempotent if c(c(m)) = c(m) for all m ∈ X ,

(4) additive if X is a join-semilattice and c(m ∨ n) = c(m) ∨ c(n) for all m,n ∈ X ,

(5) grounded if X has a smallest element 0 and c(0) = 0 .

An endomap c on a poset X is called a closure operator on X if it is extensive and monotonic. A grounded,
idempotent, and additive closure operator is called a Kuratowski closure operator. If c is a closure operator on
a poset X , then the fixed points of c (i.e., elements of x ∈ X with c(x) = x) are called the closed elements.

Definition 2 Let c and d be endomaps on posets X and Y , respectively. A left adjoint f : X → Y is called
continuous if f−1(d(n)) ≥ c(f−1(n)) for all n ∈ Y .

Note that, for monotonic endomaps c and d on X and Y , respectively, a left adjoint f : X → Y is continuous
if and only if f(c(m)) ≤ d(f(m)) for all m ∈ X .
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3. Realization of endomaps on a poset by binary relations
Definition 3 Let X be a poset and ρ be a binary relation on X , i.e., ρ ⊆ X ×X . Then ρ is called

(1) weakly reflexive if xρx whenever x is the smallest or greatest element of X (provided such an element
exists),

(2) minor if mρn ⇒ m ≤ n for all m,n ∈ X ,

(3) extendable if m′ ≤ m , mρn , and n ≤ n′ imply m′ρn′ for all m,m′, n, n′ ∈ X ,

(4)
∧

-stable if X is a meet-complete semilattice (i.e., has meets of all nonempty subsets) and, whenever
mρni for every i ∈ I ̸= ∅ (m ∈ X and ni ∈ X for all i ∈ I ), mρ

∧
i∈I ni ,

(5) interpolative if, for all m,n ∈ X , mρn implies that there is p ∈ X such that mρp and pρn ,

(6) join-preserving if X is a join-semilattice and, for all m,m′, n, n′ ∈ X , mρm′ and nρn′ imply (m ∨
n)ρ(m′ ∨ n′) .

If a binary relation ρ on a poset X is minor and extendable, then we call it a topogenous order in
accordance with [9] and [10]. (This concept of a topogenous order differs from the one in [3], which is defined
to be a binary relation on a power set that is not only minor and extendable but also weakly reflexive, union-
preserving and intersection-preserving.) Note that a topogenous order is transitive but need not be reflexive or
antisymmetric, hence need not be a (partial) order.

Definition 4 Let X, Y be posets and ρ , σ be binary relations on X and Y , respectively (hence, ρ ⊆ X ×X

and σ ⊆ Y × Y ). A left adjoint f : X → Y is called compatible if, for all p, q ∈ Y , pσq ⇒ f−1(p)ρf−1(q) .

Let X be a meet-complete lattice. We denote by CX the set of all endomaps on X and by RX the set
of all binary relations on X .

Let ⪯ be the binary relation on CX defined by c ⪯ d if and only if c(m) ≤ d(m) for all m ∈ X .
Evidently, ⪯ is a partial order on CX . Further, let � be the binary relation on RX defined by ρ � σ if and
only if mρn ⇒ mσn for all m,n ∈ X . Clearly, � is a partial order on RX .

For every c ∈ CX , let ρc be the binary relation on X given by mρcn ⇔ c(m) ≤ n whenever m,n ∈ X .
We denote by H : CX → RX the map defined by H(c) = ρc for all c ∈ CX . Any restriction of H will also be
denoted by H .

For every ρ ∈ RX , let cρ be the endomap on X given by cρ(m) =
∧
{n ∈ X; mρn} for all m ∈ X . We

denote by G : RX → CX the map defined by G(ρ) = cρ for all ρ ∈ RX . Any restriction of G will also be
denoted by G .

Theorem 1 Let X be a meet-complete semilattice. Then (G,H) is a Galois connection between (RX ,�) and
(CX ,⪯) such that G ◦H = idCX

.

Proof Let ρ, σ ∈ RX , ρ � σ , and let m ∈ X . Since mρn ⇒ mσn for all n ∈ X , we have {n ∈
X; mρn} ⊆ {n ∈ X; mσn} . Consequently, cρ(m) =

∧
{n ∈ X; mρn} ≥

∧
{n ∈ X; mσn} = cσ(m) .

Hence, G(ρ) = cρ ⪯ cσ = G(σ) ; therefore, G is order reversing.
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Let c, d ∈ CX , c ⪯ d , and let m,n ∈ X . If mρdn , then c(m) ≤ d(m) ≤ n , hence mρcn . Thus,
H(d) = ρd � ρc = H(c) ; therefore, H is order reversing.

Let c ∈ CX and m ∈ X . Then cρ
c

=
∧
{n ∈ X; mρcn} =

∧
{n ∈ X; c(m) ≤ n} = c(m) . Thus,

G(H(c)) = cρ
c

= c and, consequently, G ◦H = idCX
.

Let ρ ∈ RX and m,n ∈ X . Then mρn ⇒
∧
{p ∈ X; mρp} = cρ(m) ≤ n ⇔ mρc

ρ

n . Therefore,
ρ� ρc

ρ

= H(G(ρ)) . The proof is complete.

Corollary 1 For every meet-complete semilattice X , CX is dually order isomorphic to the subset of RX whose
elements are the binary relations ρ on X that satisfy the following condition:

(⋆) For every m ∈ X , the set {n ∈ X; mρn} is a principal filter of X .

Proof Denote by R⋆
X the subset of RX whose elements are the binary relations ρ on X that satisfy the

condition (⋆). Let c ∈ CX and m ∈ X . Since {n ∈ X; mρcm} = {n ∈ X; c(m) ≤ n} , {n ∈ X; mρcn} is a
principal filter of X (with the smallest element c(m)). Hence, H(c) = ρc ∈ R⋆

X .

Let ρ be binary relations on X that satisfies the condition (⋆) and let m,n ∈ X . Then, mρc
ρ

n is
equivalent to cρ(m) =

∧
{p ∈ X; mρp} ≤ n , which is equivalent to mρn . Hence, H(G(ρ)) = ρc

ρ

= ρ .
Therefore, H : CX → R⋆

X is surjective. By Theorem 1, H : CX → R⋆
X is a dual order isomorphism (with the

inverse orderisomorphism being G).

Proposition 1 Let X be a meet-complete semilattice and ρ ∈ RX be an extendable element. Then ρ satisfies
the condition (⋆) in Corollary 1 if and only if ρ is

∧
-stable.

Proof Let ρ satisfy (⋆) and let mρni for all i ∈ I( ̸= ∅) . Then
∧

i∈I ni ≥
∧
{n ∈ X; mρn} and

mρ
∧
{n ∈ X; mρn} , which yields mρ

∧
i∈I ni by the extendability. Conversely, let ρ be

∧
-stable. Then,

for every m ∈ X , mρ
∧
{n ∈ X; mρn} , hence {n ∈ X; mρn} is a principal filter in X .

Remark 1 (a) Clearly, if ρ is extendable, then the condition (⋆) in Corollary 1 is equivalent also to the
following condition: For every pair m,n ∈ X ,

∧
{p ∈ X; mρp} ≤ n ⇔ mρn .

(b) Let m ∈ X . Since c(m) is the smallest element of the principal filter {n ∈ X; mρcn} , for every
element ρ ∈ RX satisfying the condition (⋆) in Corollary 1, cρ(m) is the smallest element of the principal filter
{n ∈ X; mρn} .

Proposition 2 Let X be a meet-complete semilattice. An element c ∈ CX is

(1) extensive if and only if ρc is minor,

(2) monotonic if and only if ρc is extendable,

(3) grounded if and only if 0ρc0 .

Proof (1) If c is extensive, then we have mρcn ⇒ c(m) ≤ n ⇒ m ≤ n for all m,n ∈ X . Conversely, if
mρcn ⇒ m ≤ n for all m,n ∈ X , then c(m) =

∧
{n; mρcn} ≥

∧
{n; m ≤ n} ≥ m whenever m ∈ X .
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(2) If c is monotonic and m,m′, n, n′ ∈ X are elements with m′ ≤ m , mρcn , and n ≤ n′ , then c(m′) ≤
c(m) ≤ n ≤ n′ . Therefore, c(m′) ≤ n′ , which yields m′ρcn′ . Conversely, let m′ ≤ m , mρcn , and n ≤ n′ imply
m′ρcn′ for all m,m′, n, n′ ∈ X and let m ≤ n (m,n ∈ X ). Then c(n) =

∧
{p; nρcp} ≥

∧
{p; m ≤ p} = c(m) .

(3) is clear.

Corollary 2 Let X be a meet-complete semilattice. An element c ∈ CX is a closure operator on X if and
only if ρc is a topogenous order on X .

Proposition 3 Let X be a meet-complete semilattice. A closure operator c ∈ CX is idempotent if and only if
ρc is interpolative.

Proof Suppose that c is idempotent and let m,n ∈ X , mρcn . Putting p = c(m) , we get c(m) ≤ p , so mρcp .
We have c(p) = c(c(m)) = c(m) ≤ n , so pρcn and thus ρc is interpolative.

Conversely, let ρc be interpolative and let m ∈ X . Then, for every n ∈ X with mρcn , there exists
p ∈ X such that mρcp and pρcn . Hence, c(m) ≤ pρcn ≤ n , which yields c(m)ρcn by Proposition 2(2). We
have shown that {n; mρcn} ⊆ {n; c(m)ρcn} ; therefore, c(m) =

∧
{n; mρcn} ≤

∧
{n; c(m)ρcn} = c(c(m)) .

Since c is extensive, we have c(c(m)) = c(m) .

Proposition 4 Let X be a meet-complete lattice. A monotonic element c ∈ CX is additive if and only if ρc

is join-preserving.

Proof Let c ∈ CX be a monotonic element and suppose that it is additive. Let m,n, p, q ∈ X be elements
with mρcn, pρcq . Then c(m) ≤ n, c(p) ≤ q , so c(m ∨ p) = c(m) ∨ c(p) ≤ n ∨ q , hence (m ∨ p)ρc(n ∨ q) .
Therefore, ρc is join-preserving.

Conversely, let ρc be join-preserving and suppose that c is not additive. Then there exist m, p ∈ X

such that c(m ∨ p) ̸= s = c(m) ∨ c(p) . Monotonicity implies c(m) ∨ c(p) = s ≤ c(m ∨ p) , so c(m ∨ p) > s .
Now c(m) ≤ s and c(p) ≤ s imply mρcs and pρcs , hence (m ∨ p)ρcs . Therefore, c(m ∨ p) ≤ s , which is a
contradiction with s < c(m ∨ p) . Therefore, c is additive.

Proposition 5 Let X be a coatomic complete lattice and c ∈ CX . Then c is additive if and only if, for all
m,n ∈ X and every coatom a ∈ X , (m ∨ n)ρca ⇔ (mρca and nρca).

Proof Let m,n ∈ X . Then, for every co-atom a ∈ X , c(m ∨ n) = c(m) ∨ c(n) is equivalent to c(m ∨ y) ≤
a ⇔ (c(m) ∨ c(n)) ≤ a , which is equivalent to (m ∨ n)ρca ⇔ (c(m) ≤ a and c(n) ≤ a) . Since the right side of
the last equivalence is equivalent to the conjunction of mρca and nρca , the proof is complete.

Proposition 6 Let X,Y be meet-complete semilattices. If c ∈ CX , d ∈ CY , and f : (X, c) → (Y, d)

is a continuous map, then f : (X, ρc) → (Y, ρd) is compatible. Conversely, if ρ ∈ RX , σ ∈ RY , and
f : (X, ρ) → (Y, σ) is a compatible map, then f : (X, cρ) → (Y, cσ) is continuous.

Proof Let f : (X, c) → (Y, d) be continuous and let m,n ∈ Y , mρdn . Then d(m) ≤ n , hence c(f−1(m)) ≤
f−1(d(m)) ≤ f−1(n) . This yields f−1(m)ρcf−1(n) , hence f : (X, ρc) → (Y, ρd) is compatible.
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Conversely, let f : (X, ρ) → (Y, σ) be a compatible map and let n ∈ Y . Then f−1(cσ(n)) = f−1(
∧
{p ∈

Y ; nσp}) =
∧
{f−1(p) ∈ X; nσp} ≥

∧
{f−1(p) ∈ X;

f−1(n)ρf−1(p)} ≥
∧
{m ∈ X; f−1(n)ρm} = cρ(f−1(n)) . Hence, f is continuous.

By Theorem 1, we have c = cρ
c for every c ∈ CX where X is a meet-complete semilattice. Therefore,

Proposition 6 results in

Corollary 3 If X is a meet-complete semilattice, c ∈ CX , and d ∈ CY , then a map f : (X, c) → (Y, d) is
continuous if and only if f : (X, ρc) → (Y, ρd) is compatible.

Proposition 7 Let X be a meet-complete semilattice, ρ ∈ RX be a binary relation on X satisfying condition
(⋆) in Corollary 1, and let m ∈ X . If m is a fixed point of cρ , then mρm . Conversely, if ρ is minor and
mρm , then m is a fixed point of cρ .

Proof Let m be a fixed point of cρ . Then cρ(m) =
∧
{n ∈ X; mρn} = m , thus mρm because, by ρ satisfies

the condition (⋆).
Conversely, let ρ be minor and let mρm . Then cρ(m) =

∧
{n ∈ X; mρn} ≤ m ; hence, m is a fixed

point of cρ because cρ is extensive by Proposition 2(1) and Corollary 1 (which yields ρc
ρ

= ρ).

Thus, by Proposition 1 and Corollary 2, if ρ is a
∧

-stable topogenous order on a meet-complete
semilattice X , then an element m ∈ X is cρ -closed if and only if mρm . Moreover, Proposition 7 results
in

Corollary 4 If ρ is a
∧

-stable topogenous order on a meet-complete semilattice X and m ∈ X , then
cρ(m) =

∧
{n ∈ X; m ≤ n and nρn} .

Example 1 In [9], categorical neighborhood operators are studied in relationship to categorical topogenous
orders. An analogous definition of a neighborhood operator in our poset-theoretic setting is as follows:

A neighborhood operator on a poset X is a map ν : X →expX such that

(i) ν(m) is a stack for every m ∈ X ,

(ii) n ∈ ν(m) ⇒ m ≤ n for all m,n ∈ X ,

(iii) m ≤ n ⇒ ν(n) ⊆ ν(m) for all m,n ∈ X .

The elements of ν(m) are called neighborhoods of m . Analogously to [9], it may easily be shown that, on an
arbitrary poset X , there is a one-to-one correspondence between the set of all topogenous orders on X and
that of all neighborhood operators on X (and the correspondence is even an order isomorphism between the
two sets provided with naturally defined partial orders). Such a correspondence is obtained by assigning to
a topogenous order ρ on X the neighborhood structure νρ on X in the following way: for every m ∈ X ,
νρ(m) = {n ∈ X; mρn} . The inverse correspondence is obtained by assigning to a neighborhood structure ν

on X the topogenous order ρν on X in the following way: for every m,n ∈ X , mρνn ⇔ n ∈ ν(m) .
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4. A cartesian closed category of topogenous systems

Recall [1] that a category C with finite products is cartesian closed if it possesses a well-behaved binary
operation of exponentiation on the class of objects. This means that, for every pair of objects A,B ∈ C ,
there is an object BA ∈ C and a morphism ev : A × BA → B (the so-called evaluation map) having the
property that, for every morphism f : A × C → B in C , there exists a unique morphism f∗ : C → BA such
that ev ◦ (idA × f∗) = f . The well-behaved operation of exponentiation of objects makes cartesian closed
categories useful for numerous applications. They play a particularly important role in mathematical logic (cf.
[12]) and the theory of programming where they serve as models of typed lambda-calculi, which are important
foundational programming languages (cf. [2]). Since the category of topological spaces and continuous maps
is not cartesian closed, it has to be often replaced by a category of topological structures more general than
topological spaces, e.g., certain closure spaces.

If c is a closure operator on a meet-complete semilattice X , then the pair (X, c) is called a closure
system (to distinguish it from a closure space (X, c) , which usually means that c is an endomap on the power
set of X ). And (X, c) is said to be idempotent if c is idempotent. Similarly, if ρ is a topogenous order on
a meet-complete semilattice X , then the pair (X, ρ) is called a topogenous system (to distinguish it from a
topogenous space (X, ρ) , which means [3] that ρ is a binary relation on the power set of X ). And (X, ρ) is
said to be

∧
-stable or interpolative if ρ is

∧
-stable or interpolative, respectively.

Given two closure systems (X, c) and (Y, d) , a map f : (X, c) → (Y, d) is called closed if, for every closed
element m ∈ X , the element f(m) is closed. And, given two topogenous systems (X, ρ) and (Y, σ) , a map
f : (X, ρ) → (Y, σ) is called loop-preserving if, for every element m ∈ X , mρm ⇒ f(m)σf(m) .

As a consequence of the results of the previous section, particularly Proposition 7, we get:

Proposition 8 Let (X, c) and (Y, d) be closure systems. Then a map f : (X, c) → (Y, d) is closed if and only
if f : (X, ρc) → (Y, ρd) is loop-preserving.

Theorem 2 The category of
∧

-stable interpolative topogenous systems and loop-preserving maps is cartesian
closed.

Proof In [14], Theorem 3.2, it is proved that the category C of idempotent closure systems with closed maps
as morphisms is cartesian closed, but the closure systems dealt with in [14] differ from those introduced in this
note. Namely, in the definition of a closure systems (X, c) in [14], X is a poset with every principal filter
being a meet-complete semilattice. Thus, every closure system in our sense is a closure system in the sense of
[14]. Therefore, the category D of closure systems in the sense of this note with closed maps as morphisms is
a full subcategory of C . It may easily be seen in the proof of Theorem 3.2 in [14] that D inherits cartesian
closedness from C , i.e., that D is closed under the formation of cartesian products and power objects in C . By
Proposition 8 and the results of the previous section, the category of

∧
-stable interpolative topogenous systems

and loop-preserving maps is isomorphic to D , hence cartesian closed, too.

5. Conclusion
In [9], correspondences between topogenous structures and closure operators on categories are investigated, but
these categorical topogenous structures and categorical closure opertors are nothing but certain binary relations
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and closure operators, respectively, on the (complete) subobject lattices of the given category. In this note, we
have defined and discussed closure operators in a more general setting – not only on complete lattices but on
arbitrary posets. Thus, the results obtained may be used, among others, when studying topogenous structures
and closure operators on categories. Based on a Galois connection between binary relations and endomaps on
a poset, we have specified the relational axioms that correspond to certain closure axioms in the connection. In
particular, a condition is found under which topogenous orders correspond to closure operators. This result is
then used to find a cartesian closed subcategory of the category of topogenous orders and compatible maps.

Acknowledgments
The first author was supported by Brno University of Technology from the Specific Research project no. FSI-
S-23-8161.The second and third authors were supported by Brno University of Technology from the project
MeMoV II no. CZ.02.2.69/0.0/0.0/18-053/0016962.

References

[1] Adámek J, Herrlich H, Strecker GE. Abstract and Concrete Categories. New York, USA: Wiley & Sons, 1990.

[2] Barendregt HP. The Lambda Calculus. Amsterdam, New York, and Oxford: North-Holland, 1984.

[3] Császár Á. Foundations of General Topology. Oxford, New York: Pergamon Press, 1963.

[4] Császár Á. Finite extensions of topogenities. Acta Mathematica Hungarica 2000; 89 (1-2): 55-69.
https://doi.org/10.1023/A:1026725424906

[5] Dikranjan D, Tholen W. Categorical Structure of Closure Operators. Dordrecht, Netherlands: Kluwer Acadeic
Publishers, 1995.

[6] Engelking R. General Topology. Berlin, Germany: Heldermann Verlag, 1989.

[7] Fletcher P, Lindgren WF. Quasi-Uniform Spaces. Lecture Notes in Pure and Applied Mathematics 77, New York,
USA: Marcel Dekker, 1982.

[8] Grätzer G. General Lattice Theory. Basel, Switzerland: Birkhäuser Verlag, 1978.

[9] Holgate D, Iragi M, Razafindrakoto A. Topogenous and nearness structures on categories. Applied Categorical
Structures 2016; 24 (5): 447-455. https://doi.org/10.1007/s10485-016-9455-x

[10] Holgate D, Iragi M. Quasi-uniform and syntopogenous structures on categories. Topology and its Applications 2019;
263: 16-25. https://doi.org/10.1016/j.topol.2019.05.024

[11] Richmond T. Genereal Topology: An Introduction. Berlin, Germany: De Gruyter, 2020.

[12] Lambek J, Scott PJ. Introduction to Higher Order Categorical Logic. Cambridge, UK: Cambridge University Press,
1988.

[13] Šlapal J. A note on F -topologies. Mathematische Nachrichten 1989; 141 (1): 283-287.
https://doi.org/10.1002/mana.19891410126

[14] Šlapal J. On categories of ordered sets with a closure operator. Publicationes Mathematicae Debrecen 2011; 78 (1):
61-69. https://doi.org/10.5486/PMD.2011.4442

476


	Topogenous orders and closure operators on posets
	Recommended Citation

	Introduction
	Preliminaries
	Realization of endomaps on a poset by binary relations
	A cartesian closed category of topogenous systems
	Conclusion

