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Abstract: In this paper, we define a mixed-base number system over a Weyl group Dn , the group of even-signed
permutations. We introduce one-to-one correspondence between the positive integers of the set {1, · · · , 2n−1n!} and
elements of this group, after constructing the subexceedant function associated with the group. Thus, the integer
representations of all the classical Weyl groups are now completed. Furthermore, we present an inversion statistic on
the group Dn by using a decomposition of a positive root system of this reflection group. This inversion statistic is
compatible with the length function on the group Dn . Then we derive some combinatorial properties for the inversion
statistic. In addition, we prove that the D-major index is equi-distributed with this inversion statistic on Dn . Finally,
we propose a public-key cryptosystem based on both the generalized hidden discrete logarithm problem and the integer
representation over the group Dn .

Key words: Even-signed permutation group, permutation statistic, inversion number, public-key cryptography, hidden
discrete logarithm problem

1. Introduction
Integer representation of any element of a classical Weyl group W is a crucial tool to understand the structure
of the group and to use efficiently the elements of the group in the encryption-decryption process. Throughout
this paper, for any two m and n integers such that m ≤ n , we assume that [m,n] := {m,m+ 1, · · · , n} . Let
Sn be the symmetric group of order n! , which is a Weyl group of type An−1 . In the case of the symmetric
group, first of all, Laisant established factoriadic number system in [8], and then Doliskani et al. [5] introduced
a bijective map between positive integers and elements of symmetric group. Using this map, they proposed
a Generalized El-Gamal cryptosystem over Sn . Due to the algebraic properties of Sn , the proposed system
resists attacks by algorithms like Pohlig-Hellman on the discrete logarithm problem.

When W is a hyperoctahedral group, Raharinirina described the hyperoctahedral base system and studied
the integer representations of the elements of this group [13]. Subsequently, some robust cryptosystems resistant
to Silver-Pohlig-Helman’s attacks were developed in [13].

The group Dn is a group of even-signed permutations acting on the set In = {−n, · · · ,−1, 1, · · · , n}
such that any element of Dn has an even number of negative entries in its image, where the group operation is
the composition of the bijections. As a convention, when multiplying permutations, the rightmost permutation
acts first, as usual. Let Rn be the Euclidean space with {e1, · · · , en} the set of standard basis vectors. In fact,
∗Correspondence: hasanarslan@erciyes.edu.tr
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a finite real reflection group Dn ⊂ GLn(R) is generated by the canonical reflections s0, s1, · · · , sn−1 of order 2

associated with the roots e2 + e1, e2 − e1 · · · , en − en−1 , respectively. It is well-known that Dn is a semidirect
product of the form Dn = Sn ⋊ T ′

n , where Sn is the symmetric group generated by {s1, · · · , sn−1} and T ′
n is

a reflection subgroup of Dn generated by {t1ti : 2 ≤ i ≤ n} , ti+1 := sitisi for each 1 ≤ i ≤ n− 1 . Moreover,
each ti, 1 ≤ i ≤ n is a reflection of order 2 associated with the root ei . Note that s0 = t1s1t1 . Therefore, the
cardinality of the group Dn is 2n−1n! and each element w ∈ Dn can be uniquely written in the form

w =
(

1 2 ··· n
(−1)r1β1 (−1)r2β2 ··· (−1)rnβn

)
= β

n∏
k=1

trkk ,

where ri ∈ {0, 1} , the sum
∑n

i=1 ri is even, β =
(

1 2 ··· n
β1 β2 ··· βn

)
= β1 · · ·βn ∈ Sn , and βi = β(i) for all

i = 1, · · · , n . Along this paper, we will represent any element w of the group Dn in the window notation as:

w = [k1β1, · · · , knβn],

where ki ∈ {−1, 1} for all i ∈ {1, · · · , n} . If we consider the group Dn as a real reflection group with the
following root system

Ψ = {±ej ± ei : 1 ≤ i 6= j ≤ n},

then we have the sets of positive and negative roots regarding with Ψ , which are, respectively, defined as follows:

Ψ+ = {ej − ei, ej + ei : 1 ≤ i < j ≤ n},

and Ψ− = −Ψ+ . From [7], the root system Ψ can be decomposed as Ψ = Ψ+
⊔

Ψ− . The length function l on
Dn associated with the root system Ψ is defined as

l : Dn → N0, l(w) =| w(Ψ+) ∩Ψ− | . (1.1)

Moreover, the length l(w) of w is also equal to the length of the minimal expression for w in terms of
elements of {s0, s1, · · · , sn−1} . Note here that the length of any reduced expression in Dn is at most n2 − n .
For further information about the classical Weyl groups, one can see [7].

A function f : Sn → N is called as a permutation statistic. That is, a permutation statistic is a function
mapping Sn into the nonnegative integers. Recently, permutation statistics have played a very important
fundamental role in enumerative combinatorics. Let σ = σ1 · · ·σn ∈ Sn . As is well-known, the inversion, the
descent set and the major index of σ are respectively defined as follows (see [14]):

inv(σ) =|{(i, j) ∈ [1, n]× [1, n] : i < j and σi > σj}|

Des(σ) ={i ∈ [1, n− 1] : σi > σi+1}

maj(σ) =
∑

i∈Des(σ)

i.

MacMahon algebraically proved in [10] that the major index maj and the number of inversions inv are equi-
distributed over the symmetric group Sn , that is,∑

σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ) = [n]q! (1.2)
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where [n]q! := [1]q[2]q · · · [n − 1]q[n]q is the usual q -analogue of n! . The first bijective proof of this equi-
distribution in the equation (1.2) was given by Foata in [6]. Second bijective proof, essentially due to Carlitz
in [4]. In MacMahon’s honor, if any permutation statistic is equi-distributed with the length function, i.e. the
number of inversions, then it is said to be Mahonian.

For any w ∈ Dn , let neg(w) = |{i ∈ [n] : w(i) < 0}| and Des(w) := {i ∈ [n − 1] : w(i) > w(i + 1)} . In
[2], Biagioli introduced the D-negative descent multiset as

DDes(w) = Des(w) ∪ {−w(i)− 1 : i ∈ neg(w)}\{0}

and then defined D-major index, which is denoted by dmaj, permutation statistic in the following way:

dmaj(w) =
∑

i∈DDes(w)

i.

Biagioli proved in [2] that dmaj is Mahonian, that is,

∑
w∈Dn

qdmaj(w) =
∑

w∈Dn

ql(w) = [2]q[4]q · · · [2n− 2]q[n]q,

where l is the length function in the equation (1.1).
There are essentially two motivations for the paper. The first of these is to pave the way for using the

elements of this reflection group effectively in encryption-decryption operations. For this purpose, we construct
a one-to-one correspondence between the positive integers and the elements of this group. Any word or sentence
can be expressed as a unique element of this group after converting it to a positive integer by using ASCII codes.
Then its encryption or decryption process is performed. The second motivation of this study is to introduce an
inversion statistic which is equally distributed with dmaj over Dn .

The following definition describes the hidden discrete logarithm problem (HDLP) and the generalized
hidden discrete logarithm problem (GHDLP):

Definition 1.1 Let G be a noncommutative group. Given two elements g, h ∈ G such that h = wgxw−1 for
an integer x and an w element of G . The hidden discrete logarithm problem is to find the pair (x,w) from the
relation h = wgxw−1 [11]. Moreover, the generalized hidden discrete logarithm problem is to obtain the pair of
integers (x, y) from the relation k = (w)ygx(w)−y for g, k, w ∈ G [12].

The rest of this paper is organized as follows: In Section 2, we define a mixed-base number system
over the group Dn . In Section 3, we give a one-to-one correspondence between positive integers of the set
{1, · · · , 2n−1n!} and the elements of this group by means of subexceedant functions. In Section 4, we define the
concept of inversion statistic on the group Dn and investigate its properties. Then, we will give an inversion
table of all elements of the group D3 . Furthermore, we propose a new cryptosystem based on the generalized
hidden discrete logarithm problem (GHDLP) over the group Dn in Section 5. The algebraic properties of Dn

make the system resistant to attacks like the Pohlig-Hellman algorithm.
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2. Construction of Dn -type number system

In this section, we first define the Dn -type number system and describe its structure.

Definition 2.1 The Dn -type number system is a radix base system in which every positive integer x can be
expressed in the following form:

x =

n−1∑
i=1

diDi (2.1)

where di ∈ {0, 1, 2, · · · , 2i+ 1} and Di = 2i−1i! for all 1 ≤ i ≤ n− 1 .

Then, for any positive integer x in the Dn -type number system, we use the notation

x = (dn−1 : dn−2 : · · · : d2 : d1)Dn
.

According to the following theorem, there is a one-to-one correspondence between positive integers and
the Dn -type number system.

Theorem 2.2 Every positive integer in the set {1, · · · , 2n−1n!} is represented in a unique way in the Dn -type
base system.

In order to prove the theorem, we need the following lemmas, which concern some fundamental properties
of the Dn -type number system. In fact, these properties have a similar structure to those of the factoriadic
number system and the hyperoctahedral base system.

Lemma 2.3 For any x = (dn−1 : dn−2 : · · · : d2 : d1)Dn
, we have

0 ≤ x ≤ Dn − 1. (2.2)

Proof Due to the fact that di ∈ {0, 1, 2, · · · , 2i+ 1} and Di = 2i−1i! for all 1 ≤ i ≤ n− 1 , thus

0 ≤
n−1∑
i=1

diDi ≤
n−1∑
i=1

(2i+ 1)Di.

On the other hand, we have
(2i+ 1)Di = Di+1 −Di

for each 1 ≤ i ≤ n− 1 , hence by direct calculations we conclude that 0 ≤
∑n−1

i=1 diDi ≤ Dn − 1. 2

As a result of Lemma 2.3, we can deduce that there are exactly 2n−1n! numbers in the Dn -type number
system for any positive integer n ≥ 2 .

Lemma 2.4 Let x = (dn−1 : dn−2 : · · · : d2 : d1)Dn be a number in Dn -type number system, then we have

dn−1Dn−1 ≤ x < (dn−1 + 1)Dn−1. (2.3)
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Proof If we take y as x− dn−1Dn−1 = (dn−2 : · · · : d2 : d1)Dn , then from the equation (2.2), we can write y

in the following way:
0 ≤ y ≤ Dn−1 − 1. (2.4)

By adding dn−1Dn−1 to each side of the equation (2.4), we conclude that the proof is completed, as desired. 2

As a result of Lemma 2.3 and 2.4, we can provide the proof of Theorem 2.2.

Proof of Theorem 2.2 :
Assume that a positive integer x has two representations in the Dn -type number system as follows:

x = (dn−1 : dn−2 : · · · : d2 : d1)Dn
= (em−1 : em−2 : · · · : e2 : e1)Dn

,

where dn−1 6= 0 and em−1 6= 0 . The facts that both dn−1 and em−1 are at least 1 give rise to

Dn−1 ≤ dn−1Dn−1 ≤ x and Dm−1 ≤ em−1Dm−1 ≤ x. (2.5)

Now, suppose that n 6= m . Without loss of generality, we can assume that n < m . Then by Lemma 2.3 and
the inequality in the right hand side of equation (2.5), we obtain

x < Dn ≤ Dm−1 ≤ x,

which is a contradiction. Thus we get n = m .
Now we show that di = ei for all 1 ≤ i ≤ n−1 . In what follows, we proceed by induction on the number

of digits. From the equation (2.1), the assertion is clear for x = (d1)Dn
= (e1)Dn

. Assume that a positive
integer x with k (< n − 1) digits in the Dn -type number system has a unique representation. Suppose that
dn−1 6= en−1 . Without loss of generality, take dn−1 < en−1 . Thus, we get from Lemma 2.4

x < (dn−1 + 1)Dn−1 ≤ en−1Dn−1 ≤ x,

which leads to a contradiction and hence dn−1 = en−1 . Since dn−1 = en−1 and by the induction hypothesis,
the integer x − dn−1Dn−1 = x − en−1Dn−1 has a unique representation and so di = ei for all 1 ≤ i ≤ n − 2 .
This completes the proof.

Now, we will explain how any positive integer x can be written in the Dn -type number system:
The algorithm proceeds in a series of steps. In the first step of the algorithm, x is divided by 4 and the reminder
is set to be r1 = d1 in the division process

x = 4q1 + r1.

Then divide q1 by 6 and the remainder is assigned to be r2 = d2 in the following division process

q1 = 6q2 + r2.

Continue these operations by dividing qi−1 by 2(i+ 1) and taking ri = di in the expression

qi−1 = 2(i+ 1)qi + ri

until the quotient qn−1 is zero for some integer n . Thus, at the final step, we get

qn−2 = 2nqn−1 + rn−1
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and set rn−1 as dn−1 . Eventually, we write the number x as

x = (dn−1 : dn−2 : · · · : d2 : d1)Dn
(2.6)

in Dn -type base system.
Any positive integer can be written in the form (2.6) using the following Python algorithm below:

Algorithm 1:
x=int(input(’Enter a positive integer:’))
h=4
for i in range(1,x):
d = x%h

if x > 0 :

x = x//h

h=h+2
else:
break
print(d, end=’:’)

The following example illustrates how this algorithm works:

Example 2.5 We choose an integer x = 151100130419 . The expression of integer x in D12 -type base system
is x = (3 : 15 : 6 : 9 : 8 : 5 : 4 : 5 : 7 : 2 : 3)D12 .

On the other hand, given any number in the Dn -type number system, the following Python algorithm
provides facilities to turn this number into a positive integer:

Algorithm 2:
n=int(input(’Enter the index of Dn base system ’))
f=1
x=0
for i in range(1,n):
d=int(input(’Enter a number in Dn -type number system’))
f = f ∗ i
t = 2 ∗ ∗(i− 1) ∗ f
z=d*t
x +=z
print(’The decimal number is: ’,x)

Example 2.6 Let x = (4 : 8 : 9 : 1 : 2 : 3 : 4 : 1 : 1 : 2 : 0 : 3 : 3 : 1 : 2 : 2)D17
be a number in D17 -type number

system. It corresponds to the positive integer x = 2920246490038677730 .

3. Integer representations of even-signed permutations

Mantaci and Rakotondrajao [9] defined subexceedant functions for the symmetric group Sn and showed that
there was a one-to-one correspondence between permutations and the subexceedant functions. Subexceedant
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function is a fundamental tool to provide integer representations of the classical Weyl groups, see [5, 13]. We will
define the subexceedant functions for the group of even-signed permutations by inspiring [13] and depending on
the structure of the group Dn .

Definition 3.1 ([9]) A subexceedant function on the set {1, · · · , n} is a map f : {1, · · · , n} 7−→ {1, · · · , n} ,
such that

1 ≤ f(i) ≤ i for all 1 ≤ i ≤ n. (3.1)

Denote by Fn the set of all subexceedant functions on {1, · · · , n} and hence | Fn |= n! . The subexceedant
function f on {1, · · · , n} is, in general, expressed by the word f(1); · · · ; f(n) . Moreover, the map

φ : Fn 7→ Sn, φ(f) = (nf(n)) · · · (2f(2))(1f(1)) (3.2)

is a bijection and (if(i)) is a transposition for each 1 ≤ i ≤ n [9].
Now let β = [β1, · · · , βn] be an element of Sn , which is given in the window notation. In [9], Mantaci and

Rakotondrajao described the subexceedant function f corresponding to β under the map φ with the following
steps:

• Set f(n) = βn .

• Then multiply β on the left by the transposition (nβ(n)) , that is, exchange the image of β−1(n) in the
window notation of β and βn . Thus a new permutation β′ that contains n as a fixed point is obtained
and so β′ can be think of as an element of Sn−1 .

• Set f(n− 1) = β′
n−1 .

• Continue the same procedure for the permutation β′ by exchanging the image of β′−1
(n − 1) in the

window notation of β′ and β′
n−1 and then determine in this manner f(n− 2) .

• Proceed with this iteration until you find all the f(i) values for each 1 ≤ i ≤ n .

Definition 3.2 Let x = (dn−1 : dn−2 : · · · : d2 : d1)Dn be a number with the (n − 1)-digits in the Dn -type
number system. We define the subexceedant function f for the group Dn as follows:

f(1) = 1, f(i) = 1 + bdi−1

2
c for all 2 ≤ i ≤ n (3.3)

where b·c denotes the floor function.

It is clear here that 1 ≤ f(i) ≤ i for all 1 ≤ i ≤ n . We define τ(x) := the number of odd integer components
appearing in the expression x = (dn−1 : dn−2 : · · · : d2 : d1)Dn

. Having defined the sign ki = (−1)di−1 for
all 2 ≤ i ≤ n and taken the sign k1 = (−1)τ(x) , we associate each x = (dn−1 : dn−2 : · · · : d2 : d1)Dn

in the
Dn -type number system with a unique even-signed permutation

αx = [k1β1, · · · , knβn],

where βf = [β1, · · · , βn] is the image φ(f) of the subexceedant function f under φ given in equation (3.2).
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Thus, we map each positive integer x given in the Dn -type number system to an element of the group
of even-signed permutations. Conversely, we will now show how to associate any element of this group with a
positive integer. For this purpose, we take any even-signed permutation π = [k1γ1, · · · , knγn] , where γ ∈ Sn .
First of all, we determine the subexceedant function f in relation to π in the following manner:

1. Let f = φ−1(γ) ∈ Fn

2. For all 1 ≤ i ≤ n− 1 , define ri =

{
0 ki+1 > 0
1 ki+1 < 0

3. Set di = 2(f(i+ 1)− 1) + ri, for all 1 ≤ i ≤ n− 1

4. Establish x = (dn−1 : dn−2 : · · · : d2 : d1)Dn .

By checking the sign k1 in the even-signed permutation π , it can be verified that the number of odd integer
components contained in the expression of x in Dn -type base system is odd or even. As a result of the above
facts, we can state the following theorem without proof.

Theorem 3.3 There is a one-to-one correspondence between positive integers and elements of the group of
even-signed permutations.

Since f(1) = 1 , the following algorithm is helpful to find all f(i) values of the subexceedant function
corresponding to any given positive integer, where 2 ≤ i ≤ n .

Algorithm 3:
from math import floor
x = int(input(’Enter a positive integer:’))
m = 4
for i in range(2, x):
d = x%m

f = 1 + floor(d/2)

if x > 0 :

x = x//m

m=m+2
else:
break
print(f , end=’;’)

Example 3.4 Let x = 151100130419 = (3 : 15 : 6 : 9 : 8 : 5 : 4 : 5 : 7 : 2 : 3)D12 . Determine the subexceedant
function by applying algorithm 3 as f = f(1); f(2); f(3); f(4); f(5); f(6); f(7); f(8); f(9); f(10); f(11); f(12) =

1; 2; 2; 4; 3; 3; 3; 5; 5; 4; 8; 2 . Since τ(x) = 7 , hence we get αx = [−1,−11,−12, 10,−6, 7,−3, 9,−5,−4, 8,−2] ∈
D12.

Example 3.5 Let π = [4, 3, 8, 12,−9,−7,−10,−11, 1, 5,−2,−6] ∈ D12 . We obtain the subexceedant function
associated with π as f = f(1); f(2); f(3); f(4); f(5); f(6); f(7); f(8); f(9); f(10); f(11); f(12) = 1; 2; 2; 1; 1; 5; 5; 2; 1; 5; 2; 6 .
Thus, the integer representation of π is

455941042762 = (11 : 3 : 8 : 0 : 3 : 9 : 9 : 1 : 0 : 2 : 2)D12
.
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The longest element w0 of the Weyl group of type Dn can be expressed in the window notation as follows:

w0 =

{
[−1,−2, · · · ,−n], n is even,
[1,−2, · · · ,−n], n is odd.

Furthermore, we conclude that the subexceedant function f corresponding to w0 is f(1); f(2); · · · ; f(n) =

1; 2; · · · ;n .

Corollary 3.6 Let w0 be the longest element of the Weyl group of type Dn . Then the integer representation
of w0 is

w0 = (dn−1 : dn−2 : · · · : d2 : d1)Dn
= (2n− 1 : 2n− 3 : · · · : 7 : 5 : 3)Dn

.

Therefore, it is clear that the order of group Dn is

| Dn |=
n−1∏
i=1

(di + 1) = 2n−1n!.

4. Inversion statistic on the Group Dn

Many researchers have studied to define and discover an appropriate analogue of inversion number and major
index for these kinds of reflection groups, for example, [1–3]. Now we define

Ψi = {en+1−i ± ej : j < n+ 1− i ≤ n} and invi(w) =| w(Ψi) ∩Ψ− |

for each i = 1, · · · , n − 1 . The sequence I(w) = (inv1(w) : · · · : invn−1(w)) is called the inversion table of an
element w ∈ Dn . It must also be noticed that, in opposition to the integer representation, we will not use Dn

as a subscript in order to denote the inversion table of w . Now let inv(w) denote the sum of i -inversions of
the permutation w ∈ Dn . It is obvious that l(w) = inv(w) . One can practically obtain the inversion table of
w ∈ Dn without using the root system structure with the help of the following theorem.

Theorem 4.1 For w = β
∏n

k=1 t
rk
k ∈ Dn , we have

invi(w) = 2. | {(j, n+ 1− i) : j < n+ 1− i ≤ n, βj < βn+1−i, rn+1−i = 1} | +invi(β) (4.1)

for all i = 1, · · · , n − 1 , where invi(β) =| {(j, n + 1 − i) : j < n + 1 − i ≤ n, βj > βn+1−i} | in Sn . More
precisely, we write invi(w) = invi(β) when rn+1−i = 0 . For all i = 1, · · · , n−1 , we get invi(w) ∈ [0, 2(n− i)] .

Proof Let en+1−i ± ej ∈ Ψi . We denote en+1−i ± ej by en+1−i − (−1)kej , where k is 0 or 1 . Then we
have w(en+1−i ± ej) = (−1)rn+1−ieβn+1−i

− (−1)k+rjeβj
, which lies in Ψ− if and only if either βj < βn+1−i

and rn+1−i = 1 (where k takes exactly one of the values 0 or 1) or βj > βn+1−i and k + rj = 2 . Therefore,
we get the desired formula as follows:

invi(w) = 2. | {(j, n+ 1− i) : j < n+ 1− i ≤ n, βj < βn+1−i, rn+1−i = 1} | +invi(β).

In particular, if rn+1−i is equal to 0 , then we clearly obtain invi(w) = invi(β) . This completes the proof. 2
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Example 4.2 Let w =
(
1 2 3 4 5 6 7 8
2 4 1 −3 6 7 −5 8

)
∈ D8. Taking into account the equation (4.1) we obtain

the inversion table of w as I(w) = (0 : 10 : 0 : 0 : 5 : 2 : 0) , and so we conclude that the length of w is
l(w) = 17 . At the same time, the reduced expression of w is s2s0s1s2s4s3s2s0s1s2s3s4s1s3s2s5s6 with respect
to the generating set S = {s0, s1, · · · , s7} , and also l(w) = 17 from another perspective.

Let π = [π1, · · · , πn−1] ∈ Dn−1 . We want to observe how the insertion of n (resp. −n) into the
permutation π affects the inversion statistic. There are clearly n places where we can put n (resp. −n) into
the permutation [π1, · · · , πn−1] . More precisely, for each i = 1, · · · , n− 1 there is one place immediately after
πi which is called space i and there is one more place immediately before π1 which we call space 0 . We denote
by πn,i (resp. π−n,i ) the permutation in Dn obtained by inserting n (resp. −n) into the place i in π .

Lemma 4.3 Suppose that π = [π1, · · · , πn−1] is a permutation in Dn−1 . Then we have

1. invπn,i = n− i− 1 + invπ

2. invπ−n,i = n+ i− 1 + invπ.

Proof Assume that the inversion table of w is I(π) = (a1 : a2 : · · · : an−1−i : an−i : an−i+1 : · · · : an−2) . If
we insert n into the place i in π , then we conclude from the equation (4.1) that I(πn,i) = (a1 + 1 : a2 + 1 :

· · · : an−1−i + 1 : 0 : an−i : an−i+1 : · · · : an−2) . Thus we obtain invπn,i = n− i− 1 + invπ . If we put −n into
the place i in π , then we get by using the equation (4.1) that I(π−n,i) = (a1 +1 : a2 +1 : · · · : an−1−i +1 : 2i :

an−i : an−i+1 : · · · : an−2) . Hence, we find that invπ−n,i = n+ i− 1 + invπ . 2

Example 4.4 We consider π = [2, 4, 1,−3, 6, 7,−5, 8] ∈ D8 . Then the inversion table of π is I(π) = (0 : 10 :

0 : 0 : 5 : 2 : 0)and invπ = 17 . If π9,3 = [2, 4, 1, 9,−3, 6, 7,−5, 8] , then Invπ9,3 = (1 : 11 : 1 : 1 : 6 : 0 : 2 : 0)

and invπ9,3 = 22 . If π−9,3 = [2, 4, 1,−9,−3, 6, 7,−5, 8] , then Invπ−9,3 = (1 : 11 : 1 : 1 : 6 : 6 : 2 : 0) and
invπ−6,2 = 28 .

As a result of Lemma 4.3, we immediately obtain the next lemma.

Lemma 4.5 Let π = [π1, · · · , πn−1] ∈ Dn−1 . Then we have

1.
∑n−1

i=0 qinvπn,i = [n]qq
invπ ,

2.
∑n−1

i=0 qinvπ−n,i = qn−1[n]qq
invπ .

We are now in a position to give the following theorem.

Theorem 4.6 Let inv(w) be the sum of i-inversions of w ∈ Dn . Then

∑
w∈Dn

qinv(w) = [2]q[4]q · · · [2n− 2]q[n]q

where q is an indeterminate and [i]q stands for 1−qi

1−q for any positive integer i .
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Proof For any π ∈ Dn−1 , we can write from Lemma 4.3 and 4.5
n−1∑
i=0

(qinvπn,i + qinvπ−n,i) = ([n]q + qn−1[n]q)q
invπ

= ([n− 1]q + qn−1 + qn−1[n− 1]q + q2n−2)qinvπ

= ([2n− 2]q + qn−1 + q2n−2)qinvπ.

Since we have (qn−1 + q2n−2)[n− 1]q = [2n− 2]qq
n−1 , then it is easy to prove by induction that∑

wi∈Dn

qinvw = ([2n− 2]q + qn−1 + q2n−2)
∑

π∈Dn−1

qinvπ = [2]q[4]q · · · [2n− 2]q[n]q.

2

Thus, according to Theorem 4.6, the following result holds.

Corollary 4.7 The inversion statistic and dmaj index are equi-distributed on the even signed permutation group
Dn .

The inversion statistic that we defined is compatible with the length function on Dn , just as the inversion
statistic in the symmetric group Sn is compatible with the length function on Sn .

Example 4.8 In Table 1, one can respectively see all 1-inversions and 2-inversions, the lengths and dmaj
indexes of the twenty-four elements of D3 using the formula (4.1). In the following table, we will denote any
permutation w in D3 in one-line notation by w1w2w3 .

Table 1. Inversion table of the group D3 .

w1 w2 w3 Inv(w) l(w) dmaj(w) w1 w2 w3 Inv(w) l(w) dmaj(w)
1 2 3 (0:0) 0 0 -2 3 -1 (2:0) 2 3
2 1 3 (0:1) 1 1 -3 2 -1 (2:1) 3 4
-2 -1 3 (0:1) 1 1 3 -2 -1 (2:1) 3 2
-1 -2 3 (0:2) 2 2 2 -3 -1 (2:2) 4 3
1 3 2 (1:0) 1 2 -1 3 -2 (3:0) 3 3
3 1 2 (1:1) 2 1 -3 1 -2 (3:1) 4 5
-3 -1 2 (1:1) 2 2 3 -1 -2 (3:1) 4 4
-1 -3 2 (1:2) 3 3 1 -3 -2 (3:2) 5 4
2 3 1 (2:0) 2 2 -1 2 -3 (4:0) 4 4
3 2 1 (2:1) 3 3 -2 1 -3 (4:1) 5 5
-3 -2 1 (2:1) 3 3 2 -1 -3 (4:1) 5 5
-2 -3 1 (2:2) 4 4 1 -2 -3 (4:2) 6 6

One can see from the above table that inv and dmaj staistics are equi-distributed over D3 , that is, they
have the same number of 0s, 1s, 2s, 3s, 4s, 5s and 6s. Therefore, the Poincaré polynomial for D3 is in the
following form: ∑

w∈D3

qdmaj(w) =
∑

w∈D3

qinv(w) =
∑

w∈D3

ql(w) = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6.
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5. Cryptography on the Group Dn

In this section, we use cryptography as an application for the group of even-signed permutations. For this
purpose, we propose a cryptosystem based on the difficulty of the generalized hidden discrete logarithm problem
over the group Dn .

5.1. Description of the proposed cryptosystem

Assume that Alice and Bob want to communicate with each other over a public channel. Thus, the key selection,
encryption, and decryption processes are figured out as follows:
Key selection:

• Bob selects a large n for Dn.

• Generate σ, γ ∈ Dn .

• Select a random integers 1 ≤ x, y ≤ |Dn| − 1 and compute PB = γyσxγ−y .

• Publish (σ, γ, PB) , and keep (x, y) as private keys.

Encryption:
Alice wants to send a message m to Bob, so she encrypts the message as follows:

• First, Alice translates m to m′ ∈ Dn .

• Select a random integers 1 ≤ r, s ≤ |Dn| − 1 .

• Select an integer t ≤ |Dn| − 1 and compute τ = γt .

• Compute the elements c1 = τ sσrτ−s and c2 = m′(τ sP r
Bτ

−s) of Dn .

• Calculate a and b , which are respectively the corresponding positive integers to c1 and c2 , by using
integer representation.

• Send the pair (a, b) of positive integers to Bob.

Decryption: Bob decrypts the message as follows:

• Determine the elements c1 and c2 of the group, corresponding to a and b positive integers, respectively,
with the help of integer representation.

• Compute m′ = c2(γ
ycx1γ

−y)−1 .

• Covert m′ to m by using integer representation.

The following python algorithm is used to convert any text message into its numerical value using ASCII
code:

Algorithm 4:
print(”Enter a string: ”, end=””)
text = input()
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for char in text:
ASCII = ord(char)
print(ASCII, end=”,”)

5.2. A toy example of the proposed cryptosystem
Key selection:

• Bob’s private key: Bob chooses x = 2 and y = 3 .

• Bob’s public key:
Bob generates σ = [1,−11,−12, 10,−6, 7,−3, 9,−5,−4, 8, 2], γ = [4, 3, 8, 12,−9,−7,−10,−11, 1, 5,−2,−6] ∈
D12 and computes PB = γyσxγ−y = [1,−11, 4, 9,−2, 6, 7,−12,−10, 8, 3, 5] .

Encryption:

• Alice wants to send a message m=PLANET to Bob. So, she converts m into its numerical represen-
tation 807665786984 = (19 : 16 : 14 : 3 : 4 : 2 : 8 : 0 : 4 : 2 : 0)D12

by using Algorithm 1 and
Algorithm 4. After that, she computes the subexceedant function depending on the equation (3.3)
as f = f(1); f(2); f(3); f(4); f(5); f(6); f(7); f(8); f(9); f(10); f(11); f(12) = 1; 1; 2; 3; 1; 5; 2; 3; 2; 8; 9; 10 .
Since τ(x) = 2 , hence m′ = [4, 6, 7, 12, 1, 5, 11, 3,−2, 8, 9,−10] ∈ D12 .

• Alice chooses r = 2, s = 3, t = 2 and computes τ = γ2 = [12, 8,−11,−6,−1, 10,−5, 2, 4,−9,−3, 7] .

• Alice computes c1 = τ3σ2τ−3 = [−5, 8, 11, 6,−2, 3, 9,−1,−4, 10, 7, 12] and c2 = m′(τ3P 2
Bτ

−3)

= [−1, 8,−12, 4, 9,−3, 5, 10,−6, 2, 11, 7] .

• Alice determines the positive integers a = 923249764528 and b = 527899955494 corresponding to c1 and
c2 , respectively, and sends the pair (a, b) to Bob.

Decryption:

• Bob converts a and b to the elements c1 and c2 of D12 , respectively.

• Bob computes m′ = c2(γ
ycx1γ

−y)−1 .

• Bob finds the subexceedant function

f = f(1); f(2); f(3); f(4); f(5); f(6); f(7); f(8); f(9); f(10); f(11); f(12)

= 1; 1; 2; 3; 1; 5; 2; 3; 2; 8; 9; 10.

Hence, the integer representation of m′ is 807665786984 = (19 : 16 : 14 : 3 : 4 : 2 : 8 : 0 : 4 : 2 : 0)D12 .
After that, he uses the ASCII code to convert the integer representation of m′ into the message m .

6. Conclusion
In this paper, a mixed-base number system over the group Dn has been defined. A one-to-one correspondence
between the elements of Dn and positive integers in the set {1, · · · , 2n−1n!} has been established after con-
structing subexceedant functions. In other words, any positive integer can be represented uniquely as an element
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of Dn . In addition, we constructed an inversion statistic for Dn and showed that it is equally distributed with
dmaj statistic on Dn . Furthermore, a public-key cryptosystem based on the group of even signed permutations
has been proposed. The scheme has some important properties, such as its noncommutativity, flexibility in key
selection, and fast and easy implementation. A relatively large memory requirement is the only disadvantage
of the cryptosystem.
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