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Abstract: In this study, Young diagrams and their corresponding numerical sets are considered, and a new notion
called special subdiagrams is described. Characterizations of special subdiagrams and their corresponding numerical
sets, as well as the conditions when they are numerical semigroups, are provided. Young diagrams of symmetric, almost
symmetric and Arf numerical semigroups are also considered and properties of their special subdiagrams are given.
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1. Introduction
Let Z denote the set of integers, N denote the set of positive integers, and N0 = N ∪ {0} . A subset S

of N0 that contains zero and has finite complement in N0 is called a numerical set. Note that N0 is a
numerical set having empty complement. A numerical set S is a numerical semigroup, if it satisfies that
x, y ∈ S =⇒ x + y ∈ S . Numerical semigroups are important mathematical structures with wide-ranging
applications in combinatorics, commutative algebra, and algebraic geometry. For understanding the structural
properties of numerical semigroups, there are many tools such as the Frobenius number, the conductor, small
elements etc. The use of Young diagrams is one of the newest tool which is still being developed.

A Young diagram is a collection of left-aligned rows of boxes where each row contains at least as many
boxes as the row immediately below it. The notion of Young diagram is one of the fundamental combinatorial
structures with applications in various branches of mathematics, including but not limited to representation
theory. Particularly, they are instrumental for studying symmetric polynomials and representations of symmetric
groups. Young diagrams are also used for visualising partitions of positive integers and numerical sets. There
are bijective correspondences between the set of Young diagrams, the set of partitions and the set of numerical
sets. The connection between Young diagrams, partitions, and numerical sets is given by Keith and Nath in
[7], and Constantin, Houston-Edwards and Kaplan in [2]. As an important application of the correspondences
between Young diagrams, partitions, and numerical sets, Arf numerical semigroups are characterized and many
nice properties of them are given via their Young diagrams and corresponding partitions by Tutaş and her
collaborators in a sequel of papers [4–6, 10, 11]. Young diagrams are also used by the authors to give new
decompositions of symmetric and pseudosymmetric numerical semigroups in [9].

In this paper, for a given Young diagram Y, we define special diagrams of Y (see Definition 3.1) and show
that they are subdiagrams of Y (see Proposition 3.3). Then for a given numerical set S and its corresponding
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Young diagram YS , we find the elements and gaps of the corresponding numerical sets to special subdiagrams
of YS using the elements and gaps of S (see Propositions 3.8 and 3.9). We also give the exact conditions when
the corresponding numerical set to a special subdiagram is a numerical semigroup (see Theorem 3.10). Then we
consider symmetric, almost symmetric, and Arf numerical semigroups, and investigate the special subdiagrams
of their corresponding Young diagrams.

2. Young diagrams, numerical sets, and partitions

Consider a Young diagram denoted as Y with n columns and g rows. The count of boxes in a column (or row)
is referred to as the length of that respective column (or row).

Example 1 The picture depicted below is a Young diagram with 6 columns and 6 rows.

A numerical set S is considered proper if it is not equal to the set of nonnegative integers. Let us assume
that S is indeed a proper numerical set. We represent the complement of S within N0 as G(S). The elements
of G(S) are referred to as the gaps of S. The count of gaps in S is designated as its genus, denoted by g(S).

The largest gap present in S is termed the Frobenius number and symbolized as F(S). Furthermore, F(S) + 1

is known as the conductor of S and represented as C(S). In particular, C(S) is the smallest element of S that
satisfies the condition: for any nonnegative integer n, if n ≥ C(S), then n belongs to S. It is important to
note that F(N0) = −1 and C(N0) = 0.

The elements in a proper numerical set S that are less than C(S) are referred to as the small elements of S.
If S contains n such small elements, they are arranged in ascending order and listed as 0 = s0 < s1 < · · · < sn−1.

This allows us to represent S as follows:

S = {0, s1, . . . , sn−1, sn = C(S),→}.

Here, the arrow at the end signifies that all integers greater than C(S) are considered part of the set S.

For an element s ∈ S, we define the set difference S − s as follows: S − s = {x− s | x ∈ S and x ≥ s}.
If s ≥ C(S), then S − s = N. However, if s is equal to a small element si ∈ S, then S − s can be expressed as:

S − s = {0 = si − s, si+1 − s, . . . , sn − s,→}.

In this case, S − s forms a numerical set with gaps, and its gap set G(S − s) = {g − s | g ∈ G(S) and g > s}.
Consequently, the Frobenius number of S − s is given by F(S − s) = F(S)− s.
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Example 2 The set S = {0, 4, 5, 7, 8, 10, 12,→} is a numerical set which possesses a complement G(S) =

{1, 2, 3, 6, 9, 11}. Its genus is calculated as g(S) = 6 . Notably, the Frobenius number of S is F(S) = 11, and
the conductor of S is C(S) = 12.

For a numerical set S, we can create a Young diagram, labelled as YS , that corresponds to S by sketching
a continuous polygonal path originating from the origin in Z2. We begin with s = 0, and for each subsequent
s:

1. if s ∈ S, then we draw a unit-length line to the right.

2. if s /∈ S, then we draw a unit-length line upwards.

We continue this process until we reach s = F(S). The region above this polygonal path and the horizontal line
positioned g(S) units above the origin collectively define the corresponding Young diagram YS .

It is evident that every Young diagram corresponds to a unique proper numerical set. Consequently,
the mapping from S to YS establishes a one-to-one correspondence, i.e. a bijection, between the set of proper
numerical sets and the set of Young diagrams. For instance, the numerical set given in Example 2 corresponds to
the Young diagram presented in Example 1. When we have a numerical set S = {0, s1, . . . , sn−1, sn = C(S),→}
with the corresponding Young diagram YS , by the construction process, it is evident that YS has g(S) rows
and n columns.

For a positive integer N, a partition λ is a nonincreasing finite sequence of positive integers λ1 ≥ λ2 ≥
· · · ≥ λn such that λ1 + λ2 + · · · + λn = N, denoted by λ = (λ1, λ2, . . . , λn). For each i = 1, 2, . . . , n, the
number λi is called a part of the partition and the number n of parts called the length of the partition. When
two partitions are being compared, it can be considered that they have the same length because it is convenient
to tap a partition with zeros to the length we need.

For a Young diagram, listing all the lengths of each column gives a partition. Conversely, every partition
λ = (λ1, λ2, . . . , λn) corresponds to a Young diagram with λ1 rows and n columns where the lengths of columns
are λ1, λ2, . . . , λn, respectively. It is evident that this correspondence is a bijection between the set of partitions
and the set of Young diagrams. For example, the Young diagram in Example 1 corresponds to the partition
(6, 3, 3, 2, 2, 1) of 17.

Let Young diagrams Yλ and Yµ correspond to the partitions (λ1, λ2, . . . , λn) and (µ1, µ2, . . . , µn),

respectively. We say that Yµ is a subdiagram of Yλ and we write Yµ ⊆ Yλ if µi ≤ λi for each i = 1, 2, . . . , n.

This gives a partial order on the set of Young diagrams.

3. Special subdiagrams and numerical sets
In this section, we will introduce special subdiagrams of a Young diagram. We will explore the relationship
between Young diagrams and numerical sets to identify the elements within the corresponding numerical sets of
these special subdiagrams. Additionally, we will examine Young diagrams of numerical semigroups and establish
conditions under which the corresponding numerical sets for special subdiagrams also qualify as numerical
semigroups.

Definition 3.1 Let g, n ∈ N. Let Y represent a Young diagram with g rows and n columns. The following
process gives a new Young diagram which has less rows and columns than Y.

1. Add a single unit box immediately to the right of each row in Y, except for the rightmost column.
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2. Consider each row of Y, excluding the bottom row, and add one unit-box just beneath each box that did
not receive a box under in the previous step.

3. Delete the columns on the left of the box added to the far left and most bottom, and delete the rows above
the box added to the rightmost and very top.

This Young diagram is called the first special diagram of Y.

By following the procedure outlined above on the initial special diagram of Y, we obtain another Young
diagram, which we will refer to as the second special diagram of Y. Through induction, when the described
process is applied to Y m times, it generates the mth special diagram of Y, provided it exists. It is essential
to emphasize that, for a Young diagram with n columns, the maximum number of special diagrams can only
be n − 1. The final special diagram is achieved when we reach a Young diagram with either a single row or a
single column. This implies that a Young diagram featuring only one row or one column does not possess any
special diagram.

Example 3 Let Y be the Young diagram having 6 rows and 6 columns as in Example 1. We get its first
special diagram as follows;

→ → →

Then we get consecutive special diagrams of Y as follows;

→ → → →

Definition 3.2 A Young diagram whose bottom row has length one is called a reduced Young diagram.

Let Y be a Young diagram whose bottom row has length a, and let Y ⋆ denote the Young diagram
obtained by deleting the first a − 1 columns of Y. The way we define Y ⋆ shows that if Y is reduced, then
Y ⋆ = Y. It is also easy to see that special diagrams of Y and Y ⋆ are completely the same. Therefore, to find
the special diagrams of Y, we can consider Y ⋆.

Example 4 Let us consider the following two Young diagrams. Their special diagrams are all the same. Thus,
to find the special diagrams of the one on the left, we can consider the one on the right.
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Likewise, if the rightmost column of a Young diagram Y has length b, to find its special diagrams, we
can consider the Young diagram obtained by deleting the top b−1 rows of Y. It is evident that special diagrams
in this scenario remain identical.

Example 5 Let us consider the following Young diagrams. We can easily find out that their special diagrams
are all the same.

We also have some Young diagrams whose special diagrams are exactly the same even if their bottom
rows and rightmost columns have length one. See the example below.

Example 6 Let us consider the following Young diagrams. If we construct their first special diagrams, we can
see that they are identical. Since they have the same first special diagrams, all the other consecutive special
diagrams are completely the same.
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→ and →

Next, we show that the first special diagram of a Young diagram is actually a subdiagram, and so special
diagrams gives a sequence of subdiagrams.

Proposition 3.3 The first special diagram of a Young diagram Y with n columns is a subdiagram of Y, and
all special diagrams give a sequence of subdiagrams of Y with length smaller than n.

Proof Let λ = (λ1, λ2, . . . , λn) be the corresponding partition of Y. If Y is not reduced, then the bottom
row of Y has length a > 1, i.e. λ1 = λ2 = · · · = λa > λa+1, and Y ⋆ corresponds to the partition
λ⋆ = (λa, λa+1, . . . , λn). This means that Y ⋆ is a subdiagram of Y. Since Y and Y ⋆ have the same special
diagrams, if the first special diagram of Y ⋆ is a subdiagram of Y ⋆, it is also a subdiagram of Y. Similarly, the
length of the rightmost column of Y will not affect the special diagrams of Y. Thus, without loss of generality,
we can assume that Y is reduced and λn = 1.

Let YT be the first special diagram of Y. Since Y is reduced, YT has n − 1 columns. Now let
µ = (µ1, µ2, . . . , µn−1) be the corresponding partition of YT . By the definition of YT , the ith column of
YT is constructed by tapping λi − λi+1 unit boxes to the bottom of the i+ 1th column of Y and deleting one
box from the top of the i+1th column of Y if λi > λi+1. And the ith column of YT is constructed by tapping
one unit box to the bottom of the i+ 1th column of Y and deleting one box from the i+ 1th column of Y if
λi = λi+1. This means that for i = 1, 2, . . . , n− 1,

µi =

{
λi − 1 if , λi > λi+1

λi+1 if λi = λi+1.

Therefore, for each i = 1, 2, . . . , n − 1, we get λi ≥ µi , i.e. YT is a subdiagram of Y. If we consider all the
consecutive special diagrams of Y, the second special diagram of Y is a subdiagram of YT and so on. Hence,
we get a sequence of subdiagrams of Y by induction. Since the maximum number of special diagrams is n− 1,

the length of this sequence must be smaller than n.

Henceforth, in this paper, we will refer to special diagrams of a Young diagram as special subdiagrams.

Definition 3.4 A numerical set S is called reduced if its corresponding Young diagram YS is reduced.

Proposition 3.5 A numerical set S is reduced if and only if 1 /∈ S.

Proof Let YS be the corresponding Young diagram to S. If YS is reduced, then the bottom row of YS

has length one. Then by the construction of YS , we get 0 ∈ S and 1 /∈ S. The converse is true since the
corresponding numerical set to YS is S.

Corollary 3.6 All numerical semigroups except N0 are reduced.
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Proposition 3.7 Let S = {0, s1, . . . , sn,→} be a numerical set and sr be the smallest element of S where
sr+1 − sr ̸= 1. Then the numerical set S⋆ corresponding to (YS)

⋆ is S − r.

Proof If S is reduced, then YS = (YS)
⋆ and 1 /∈ S. Since 1 /∈ S, the smallest element sr of S such that

sr+1 − sr ̸= 1 is s0 = 0, and so S − 0 = {0 = s0 − 0, s1 − 0, s2 − 0, . . . , sn − 0,→} = S. And since YS = (YS)
⋆,

the corresponding numerical set to (YS)
⋆ is S itself. This means that if S is reduced, then S⋆ = S.

Suppose now that S is not reduced. Then 1 ∈ S. This means that the smallest element sr of S such that
sr+1−sr ̸= 1 is greater than or equal to 1. Thus, s0 = 0, s1 = 1, . . . , sr = r and sr+1 > r+1. Then the bottom
row of the corresponding Young diagram YS has length r+1. Deleting the first r columns of YS gives the Young
diagram (YS)

⋆, and the numerical set corresponding to (YS)
⋆ is {sr−r = 0, sr+1−r > 1, sr+2−r, . . . , sn−r,→}.

Hence, S⋆ = S − r.

Next we consider a reduced numerical set S and its Young diagram YS to characterize elements and
gaps of numerical sets corresponding to special subdiagrams of YS .

Proposition 3.8 Let S = {0 = s0, s1, . . . , sn,→} be a reduced numerical set and YS be its Young diagram.
If YT is the first special subdiagram of YS , then the corresponding numerical set to YT is T = {0 =

t0, t1, . . . , tn−1,→} where each ti is characterized as follows.

1. t0 = s0 = 0.

2. For i = 1, 2, . . . , n− 2, ti =

{
si if si+1 − si ̸= 1,

si − 1 if si+1 − si = 1.

3. tn−1 = sn−1.

Proof By the construction of YS , the number of columns of YS is the number of small elements of S, which
is n, and the number of rows of YS is the number of gaps of S, which is the genus g = g(S) of S. Since S is
reduced, the length of the bottom row of YS is 1. This means when we construct YT , we only get one column
on the left of the box added to the far left and bottommost. Thus, we only delete one column from the left and
we get n − 1 columns for YT , i.e. the corresponding numerical set T has n − 1 small elements. Also, by the
correspondence between YT and T, we get t0 = 0. Hence, T is of the form {0 = t0, t1, . . . , tn−1,→}.

The length of the rightmost column of YS gives the number of the gaps between sn−1 and sn. When we
construct YT , the rightmost column of YS gets at least a box underneath. Then we delete rows over the one
added to the rightmost and topmost, meaning we delete sn − sn−1 − 1 rows. Therefore, the number of rows
of YT is g − (sn − sn−1 − 1), which is the genus of T, i.e. g(T ) = g − sn + sn−1 + 1. On the other hand, for
every numerical set S, each small element si is the sum of the number of gaps smaller than si and the number
of small elements smaller than si. In particular, the conductor sn is the sum of the number of small elements
and the number of gaps of S, i.e. sn = n+ g. Therefore, we get

tn−1 = (n− 1) + g − (sn − sn−1 − 1) = n− 1 + g − sn + sn−1 + 1 = sn − sn + sn−1 = sn−1.

By the correspondence between YS and S, each small element si of S is represented by the bottommost
box of the i+ 1th column of YS , and each gap is represented by the rightmost box in rows of YS . Let the box
representing si be denoted by Bi. Notice that the number of gaps smaller than si is the number of rows under
Bi, and the number of small elements smaller than si is the number of columns which are on the left of Bi.

352



SÜER and YEŞİL/Turk J Math

If si and si+1 are consecutive numbers, i.e. si+1 − si = 1, then the boxes Bi and Bi+1 are in the same
row. Then by the construction of YT , we get a box under Bi+1 which represents a small element of T . Since
S is reduced, this small element is the i + 1th element, i.e. it is ti ∈ T. Then since ti is represented by the
box added under Bi+1, ti is the sum of the number of rows under Bi+1 minus 1 and the number of columns
which are on the left of Bi+1 minus 1 in YS . Therefore, ti = si+1 − 2 = (si + 1)− 2 = si − 1.

If there is a gap between si and si+1, i.e. si+1 − si ̸= 1, then there are si+1 − si − 1 gaps between si

and si+1. Then we get si+1 − si − 1 boxes under Bi+1 when we construct YT . Since S is reduced, the column
containing Bi+1 is the i + 1th column of YT , and the bottom box in this column represents the ith small
element ti of T, denote it by B′

i. Then Bi and B′
i are consecutive boxes in the same row of YT . Since ti is

the sum of the number of rows under B′
i and the number of columns on the left of B′

i in YT , which are exactly
the number of rows under Bi and the number of columns on left of Bi in YS , respectively, ti = si.

Proposition 3.9 Let S = {0 = s0, s1, . . . , sn,→} be a reduced numerical set and YS be its Young diagram
where the gap set of S is G(S) = {g1, . . . , gt}. If T is the numerical set corresponding to the first special
subdiagram of YS , then for some k ∈ {1, 2, . . . , t− 1},

1. gk+1 − gk ≤ 2 =⇒ gk ∈ G(T ),

2. gk+1 − gk > 2 =⇒ gk /∈ G(T ) and gk+1 − 2 ∈ G(T ),

3. gk+1 > sn−1 =⇒ gr /∈ G(T ) for all r ≥ k,

where G(T ) is the gap set of T.

Proof Let T = {0 = t0, t1, . . . , tn−1,→} and gk+1, gk ∈ G(S) for some k ∈ {1, 2, . . . , t− 1}. If gk+1 − gk = 1,

then gk+1 = gk + 1. Therefore, if si is the largest element of S which is less than gk, then si+1 is the least
element of S bigger than gk+1. In this case, we get si+1 − si ̸= 1. By Proposition 3.8, ti = si ∈ T, and
ti+1 = si+1 or ti+1 = si+1 − 1. If ti+1 = si+1, then we get ti < gk < gk+1 < ti+1. If ti+1 = si+1 − 1, then we
also get ti < gk < gk+1 ≤ ti+1. This means gk /∈ T, i.e. gk ∈ G(T ).

Now suppose gk+1 − gk = 2. If si is the largest element of S which is less than gk, then we get
si+1 = gk + 1 = gk+1 − 1 and gk < si+1 < gk+1. Then si+2 is the least element of S bigger than gk+1.

This means that si+1 − si ̸= 1 and si+2 − si+1 ̸= 1. Therefore, by Proposition 3.8, we have ti = si ∈ T and
ti+1 = si+1 ∈ T, and so gk /∈ T. Hence, gk ∈ G(T ). This finishes the proof of 1.

If gk+1 − gk > 2, then S has at least two elements between gk and gk+1. In this case, if si is the
largest element of S which is less than gk, we have si < gk < si+1 < si+2 < · · · < si+n < gk+1 < si+n+1

where n ≥ 2. Then si+1 − si ̸= 1 and si+2 − si+1 = 1. Also, by Proposition 3.8, we get ti = si ∈ T

and ti+1 = si+1 − 1 = gk ∈ T. Hence, gk /∈ G(T ) . On the other hand, since si+n+1 − si+n ̸= 1 and
si+n− si+n−1 = 1, by Proposition 3.8 again, we get ti+n = si+n ∈ T and ti+n−1 = si+n−1−1 ∈ T. This means
that ti+n−1 = si+n−1 − 1 < si+n = gk+1 − 2 < ti+n = si+n. Therefore, gk+1 − 2 /∈ T, i.e. gk+1 − 2 ∈ G(T ).

This finishes the proof of 2.
The proof of 3 follows from Definition 3.1.

When S is a numerical semigroup, the following theorem provides precise conditions for when corre-
sponding numerical sets of special subdiagrams of YS become numerical semigroups.
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Theorem 3.10 Let S = {0 = s0, s1, . . . , sn,→} be a numerical semigroup and YS be its Young diagram.
Let YT be the first special subdiagram of YS , and T be the corresponding numerical set to YT . Then T is a
numerical semigroup if and only if for any nonzero elements x, y ∈ T we have x+ y ≥ tn−1, or x+ y < tn−1

and there exists an element sk ∈ S for some k ∈ {1, 2, . . . , n− 2} where one of the following conditions hold

1. x+ y = sk and sk + 1 /∈ S,

2. x+ y = sk and sk + 1, sk + 2 ∈ S,

3. x+ y = sk − 1 and sk + 1 ∈ S,

4. x+ y = sk − 2 and sk − 1 ∈ S,

5. x+ y = sk − 2 and sk − 2 ∈ S.

Proof Let T = {0 = t0, t1, . . . , tn−1,→}. By Proposition 3.8, we know how to get the elements of T from S.

To determine when T is a numerical semigroup, let us take two nonzero elements x, y ∈ T. If x+y ≥ tn−1, then
x+y ∈ T and there is nothing to consider. Thus, we suppose that x = ti, y = tj for some i, j ∈ {1, 2, . . . , n−2}
and ti + tj < tn−1. By Proposition 3.8, ti = si if si+1 − si ̸= 1, i.e. si +1 /∈ S, and ti = si − 1 if si+1 − si = 1,

i.e. si + 1 ∈ S. Similarly, tj = sj if sj+1 − si ̸= 1, i.e. sj + 1 /∈ S, and tj = sj − 1 if sj+1 − sj = 1, i.e.
sj + 1 ∈ S. This means that we have four cases to investigate:

Case 1: Assume that si+1 − si ̸= 1 and sj+1 − sj ̸= 1. This means that si + 1, sj + 1 /∈ S and ti = si,

tj = sj . Then ti + tj = si + sj ∈ S. Since ti + tj < tn−1, we have si + sj < sn and an element sk ∈ S for some
k ∈ {1, 2, . . . , n− 2} such that si + sj = sk, i.e. ti + tj = sk . On the other hand, since sk ∈ S,

ti + tj ∈ T ⇐⇒sk ∈ T

⇐⇒sk+1 − sk ̸= 1 or sk + 1 = sk+1, sk + 2 = sk+2

⇐⇒sk + 1 /∈ S or sk + 1, sk + 2 ∈ S.

This covers 1 and 2.

Case 2: Assume that si+1−si = 1 and sj+1−sj ̸= 1. This implies that si+1 ∈ S, sj+1 /∈ S and ti = si−1,

tj = sj . Since ti + tj < tn−1, we get si + sj < sn and an element sk ∈ S for some k ∈ {1, 2, . . . , n − 2} such
that si + sj = sk, i.e. ti + tj = si + sj − 1 = sk − 1. Since sk ∈ S, in this case

ti + tj ∈ T ⇐⇒ sk − 1 ∈ T ⇐⇒ sk + 1 ∈ S.

Case 3: Suppose that si+1 − si ̸= 1 and sj+1 − sj = 1. This is similar to Case 2. These cover 3.

Case 4: Suppose now that si+1−si = 1 and sj+1−sj = 1. This implies that si+1, sj+1 ∈ S and ti = si−1 ,
tj = sj − 1 . Since ti + tj < tn−1 and tn−1 ≤ sn − 2, we get si + sj − 2 < sn and an element sk ∈ S for some
k ∈ {1, 2, . . . , n− 2} such that si + sj = sk, i.e. ti + tj = si + sj − 2 = sk − 2. In this case, since sk ∈ S,

ti + tj ∈ T ⇐⇒ sk − 2 ∈ T ⇐⇒ sk−1 = sk − 1 or sk−1 = sk − 2.

This covers 4 and 5. The converse of the proof is clear by definitions.
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Example 7 Let us consider the numerical semigroup S = {0, 6, 8, 9, 10, 12,→} and its Young diagram YS

where the gap set of S is G(S) = {1, 2, 3, 4, 5, 7, 11}. If the first special subdiagram of YS is YT where T

is its corresponding numerical set. We use Proposition 3.8 and find T = {0, 6, 7, 8, 10,→}. Furthermore,
by using Proposition 3.9, we see that 1, 2, 3, 4, 5 ∈ G(T ) and 7, 11 /∈ G(T ). However, we actually have
G(T ) = {1, 2, 3, 4, 5, 9}. It is also easy to see that T is a numerical semigroup and it satisfies the conditions of
Theorem 3.10.

4. Special subdiagrams of symmetric and almost symmetric numerical semigroups

In this section, we first consider symmetric numerical sets and we prove all numerical sets corresponding to
special subdiagrams of the Young diagram of a symmetric numerical set are symmetric as well. Then we consider
almost symmetric numerical semigroups and explain with an example that numerical sets corresponding to
special subdiagrams of the Young diagram of an almost symmetric numerical semigroup do not have to be
almost symmetric even if they are numerical semigroups.

Remember that a numerical set S is symmetric if and only if for each k ∈ {0, 1, 2, . . . ,F(S)} exactly
one of k and F(S)− k is an element of S, and that a Young diagram is called symmetric if its corresponding
numerical set is symmetric.

Proposition 4.1 Let S be a numerical set and YS be its Young diagram. Let YT be the first special subdiagram
of YS and T be the corresponding numerical set to YT . If S is symmetric, then T is also symmetric.

Proof Let S = {0 = s0, s1, . . . , sn,→} and sr be the smallest element of S which satisfies that sr+1−sr ̸= 1.

Then s0 = 0, s1 = 1, . . . , sr = r and sr+1 > r + 1. Since S is symmetric, 1, 2, . . . , r ∈ S implies that
F(S)− 1,F(S)− 2, . . . ,F(S)− r /∈ S and r+1 /∈ S implies that F(S)− r− 1 ∈ S, and so sn−1 = F(S)− r− 1.

Therefore, the lengths of the bottom row and the rightmost column of YS are equal and r+1 . By Examples 4
and 5, if we delete the first r columns and rows of YS , it will not affect the special subdiagrams and gives us a
Young diagram whose corresponding numerical set is S′ = {0, sr+1 − r, . . . , sn−1 − r, sn−1 − r+2,→}. Namely,
YS and YS′ have identical special subdiagrams. Since sr+1−r > 1, S′ is reduced. Therefore, to find T, we can
now apply Proposition 3.8 to S′. On the other hand, take k ∈ {0, 1, 2, . . . ,F(S′) = sn−1−r+1} and assume that
k ∈ S′. Then k = sj−r for some j ∈ {r+1, . . . , n−1}, and F(S′)−k = sn−1−r+1−(sj−r) = sn−1+1−sj . If
sn−1+1− sj ∈ S′, then sn−1+ r+1− sj = F(S)− sj ∈ S. However, this is impossible because S is symmetric.
Therefore, F(S′)− k /∈ S′, and so S′ is symmetric. Hence, without loss of generality we can assume that S is
reduced.

Assume now that S = {0 = s0, s1, . . . , sn,→} is reduced and T = {0 = t0, t1, . . . , tn−1,→}. Since S is
reduced, 1 /∈ S. And since S is symmetric, 1 /∈ S =⇒ F(S) − 1 ∈ S. Therefore, sn−1 = F(S) − 1 = sn − 2,

and so sn − sn−1 ̸= 1. This means that tn−1 = sn−1 and F(T ) = tn−1 − 1 = sn−1 − 1 = sn − 3 = F(S) − 2.

Now take k ∈ {1, 2, . . . ,F(T )} and suppose that k ∈ T. Then k = ti for some i ∈ {1, 2, . . . , n− 2} and we have
two cases.

Case 1: If k = ti = si, then si+1 − si ̸= 1, i.e. si + 1 /∈ S. Therefore, since S is symmetric, we have
F(S)− si = sn − si − 1 /∈ S, and F(S)− si − 1 = sn − si − 2 ∈ S. By Proposition 3.8, sn − si − 3 cannot be an
element of T . That is, F(T )− k = sn − si − 3 /∈ T. Thus, in this case T is symmetric.
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Case 2: If k = ti = si − 1, then si+1 − si = 1, meaning si+1 = si + 1. Since S is symmetric, we have
F(S) − si+1 = sn − 1 − si − 1 = sn − si − 2 /∈ S and F(S) − si = sn − si − 1 /∈ S. Then by Proposition 3.9,
sn − si − 2 /∈ T. On the other hand, F(T )− k = sn − 3− si + 1 = sn − si − 2. Thus, in this case as well, T is
symmetric.

By Proposition 4.1, for a symmetric numerical semigroup S, all the numerical sets corresponding to
special subdiagrams of YS are symmetric. However, it is not guaranteed that they are also semigroups. The
next example illustrates special subdiagrams of a symmetric numerical semigroup.

Example 8 Let us find special subdiagrams of YS when S = {0, 3, 6, 7, 9, 10, 12,→}.

S = {0, 3, 6, 7, 9, 10, 12,→} T1 = {0, 3, 5, 7, 8, 10,→} T2 = {0, 3, 5, 6, 8,→}

→ →

︸ ︷︷ ︸
YS

︸ ︷︷ ︸
YT1

︸ ︷︷ ︸
YT2

T3 = {0, 3, 4, 6,→} T4 = {0, 2, 4,→} T5 = {0, 2,→}

→ →

︸ ︷︷ ︸
YT3

︸ ︷︷ ︸
YT4

︸︷︷︸
YT5

Notice that each Ti is symmetric, but T1 is not a numerical semigroup.

Let S be numerical semigroup and z ∈ Z. We say that z is a pseudo-Frobenius number of S if z /∈ S

and z + s ∈ S for all nonzero element s ∈ S. The set of pseudo-Frobenius numbers of S is denoted by PF(S),

and the cardinality of PF(S) is called the type of S, denoted by t(S).

It is well-known that 2 g(S) ≥ F(S) + t(S) is valid for any numerical semigroup S. When the equality
holds, i.e. 2 g(S) = F(S) + t(S), S is called almost symmetric. The notion of almost symmetric numerical
semigroups is one of the mostly studied concepts in numerical semigroup theory which were introduced by
Barucci and Fröberg in [1]. They are the natural generalizations of symmetric numerical semigroups used for
studying generalizations of one-dimensional Gorenstein rings. Remember that a numerical semigroup is almost
symmetric of type 1 if and only if it is symmetric, and that a numerical semigroup is almost symmetric of type
2 if and only if it is pseudosymmetric.

Next example shows that given an almost symmetric numerical semigroup the corresponding numerical
set to the first special subdiagram of its Young diagram does not have to be almost symmetric even if it is a
numerical semigroup.
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Example 9 Let S = {0, 6, 11, 12, 16, 17, 18, 21, 22, 23, 24, 26,→} be an almost symmetric numerical semigroup
with PF(S) = {5, 10, 15, 20, 25}. Let YS be the Young diagram of S. We find the first special subdiagram YT of
YS and its corresponding numerical set T = {0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,→} depicted below. It is easy
to find that T is a numerical semigroup with G(T ) = {1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 19, 23}, g(T ) = 14 and
PF(T ) = {14, 19, 23}. This means 2 g(T ) ̸= F(T ) + t(T ), i.e. T is not almost symmetric.

S = {0, 6, 11, 12, 16, 17, 18, 21, 22, 23, 24, 26,→} T = {0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,→}

→

︸ ︷︷ ︸
YS

︸ ︷︷ ︸
YT

5. Special subdiagrams of Arf numerical semigroups
In this section, we focus on Arf numerical semigroups and demonstrate that the numerical sets corresponding
to special subdiagrams of the Young diagram of an Arf numerical semigroup also satisfies the Arf property. Let
us recall that a numerical semigroup S is Arf if for every s1, s2, s3 ∈ S with s1 ≤ s2 ≤ s3, we have the property
that s2 + s3 − s1 ∈ S. This is equivalent that for every s1, s2 ∈ S with s1 ≤ s2 we have 2s2 − s1 ∈ S.

Proposition 5.1 Let S be a numerical set and YS be its Young diagram. Let YT be the first special subdiagram
of YS and T be its corresponding numerical set. If S is an Arf numerical semigroup, then T is also an Arf
numerical semigroup.

Proof Let S = {0 = s0, s1, . . . , sn,→} and T = {0 = t0, t1, . . . , tn−1,→}. We first note that sn − sn−1 ̸= 1 ,
since sn is the conductor. Recall that when S is an Arf numerical semigroup, we have si−si−1 ̸= 1 for i ≤ n. To
prove this property, assume on the contrary that si−si−1 = 1 for some i < n. By the definition of Arf numerical
semigroups, we have 2si− si−1 ∈ S. In this case, we get 2si− si−1 = 2(si−1+1)− si−1 = si−1+2 = si+1 ∈ S.

Therefore, we have si+1 = si+1, i.e. si+1−si = 1. Similarly, we get si+2 ∈ S and si+2 = si+1+1. Inductively,
we get si + k ∈ S for all k ∈ N. This contradicts with sn being the conductor. Therefore, when S is an Arf
numerical semigroup, si − si−1 ̸= 1 for i ≤ n. Now by Proposition 3.8, T = {0 = t0 = s0, t1 = s1, . . . , tn−1 =

sn−1,→} which is clearly an Arf numerical semigroup.
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By Proposition 5.1, for an Arf numerical semigroup S = {0 = s0, s1, . . . , sn,→}, all the numerical sets
corresponding to special subdiagrams of YS are Arf numerical semigroups. If Ti is the corresponding Arf
numerical semigroup to the ith special subdiagram of YS , then we can easily describe it by using induction as
Ti = {0 = s0, s1, . . . , sn−i,→}.

Example 10 Consider the Arf numerical semigroup S = {0, 4, 8, 12, 14, 16, 18,→}. By Proposition 5.1, we list
the corresponding Arf numerical semigroups and the special subdiagrams of YS as follows:

S = {0, 4, 8, 12, 14, 16, 18,→} T1 = {0, 4, 8, 12, 14, 16,→} T2 = {0, 4, 8, 12, 14,→}

→ →

︸ ︷︷ ︸
YS

︸ ︷︷ ︸
YT1

︸ ︷︷ ︸
YT2

T3 = {0, 4, 8, 12,→} T4 = {0, 4, 8,→} T5 = {0, 4,→}

→ →

︸ ︷︷ ︸
YT3

︸ ︷︷ ︸
YT4

︸︷︷︸
YT5
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