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Abstract: In the present paper, we study timelike surfaces with parallel normalized mean curvature vector field in
the four-dimensional Minkowski space. We introduce special isotropic parameters on each such surface, which we call
canonical parameters, and prove a fundamental existence and uniqueness theorem stating that each timelike surface with
parallel normalized mean curvature vector field is determined up to a rigid motion in the Minkowski space by three
geometric functions satisfying a system of three partial differential equations. In this way, we minimize the number of
functions and the number of partial differential equations determining the surface, thus solving the Lund-Regge problem
for this class of surfaces.

Key words: Parallel normalized mean curvature vector field, canonical parameters, fundamental theorem

1. Introduction
In the local theory of surfaces, both in Euclidean and pseudo-Euclidean spaces, one of the basic problems
is to find a minimal number of invariant functions, satisfying some natural conditions, that determine the
surface up to a motion. This problem is known as the Lund-Regge problem [19]. It is solved for minimal
(or maximal) surfaces of codimension two in the Euclidean 4-space R4 , the Minkoswki space R4

1 , and the
pseudo-Euclidean space R4

2 . The surfaces with zero mean curvature in these spaces admit locally geometrically
determined special isothermal parameters, called canonical, such that the two main invariants (the Gaussian
curvature and the normal curvature) of the surface satisfy a system of two partial differential equations called
a system of natural PDEs. The number of the invariant functions determining the surfaces and the number of
the differential equations are reduced to two. Moreover, the geometry of the corresponding zero mean curvature
surface (minimal or maximal) is determined by the solutions of this system of natural PDEs.

Special geometric parameters on minimal surfaces in R4 were introduced by T. Itoh in [14], and further,
these parameters were used to prove that a minimal surface in R4 is determined up to a motion by two invariant
functions satisfying a system of two PDEs [23]. Based on the canonical parameters, the system of natural PDEs
was solved explicitly in terms of two holomorphic functions [9]. The same problem was solved for maximal
spacelike surfaces and minimal timelike surfaces in the Minkowksi space R4

1 . Special isothermal parameters
on maximal spacelike surfaces in R4

1 were introduced in [2] and it was proved that the local geometry of
these surfaces is determined by two invariant functions satisfying two PDEs. On the base of these canonical
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parameters the system of natural PDEs of maximal spacelike surfaces was solved explicitly in [10]. Minimal
timelike surfaces in R4

1 were studied by G. Ganchev and the second author in [12] and it was proved that they
admit locally canonical parameters and their geometry is determined by two invariant functions, satisfying the
following system of natural PDEs:

4

√
K2 + κ2 ∆h ln 4

√
K2 + κ2 = 2K;

4

√
K2 + κ2 ∆h arctan

κ
K

= 2κ;
K2 + κ2 ̸= 0,

where K is the Gaussian curvature, κ is the curvature of the normal connection (the normal curvature), and
∆h is the hyperbolic Laplace operator.

Similar results were obtained for minimal Lorentz surfaces in the pseudo-Euclidean space with neutral
metric R4

2 in [1], [11], and [15].

Thus, the following natural question arises: How to introduce canonical parameters and obtain natural
equations for other classes of surfaces in 4-dimensional spaces?

This problem can be solved for the surfaces with parallel normalized mean curvature vector field—
another important class of surfaces both in Riemannian and pseudo-Riemannian geometry, since being a natural
extension of the surfaces with parallel mean curvature vector field, they play an important role in differential
geometry and physics.

Surfaces with parallel normalized mean curvature vector field in the Euclidean 4-space R4 and spacelike
surfaces with parallel normalized mean curvature vector field in the Minkowski 4-space R4

1 were studied by G.
Ganchev and the second author in [13]. These classes of surfaces are described in terms of the so-called canonical
parameters. Each surface with parallel normalized mean curvature vector field in R4 is determined up to a
motion by three functions λ(u, v) , µ(u, v) and ν(u, v) satisfying the following system of partial differential
equations

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u;

ν2 − (λ2 + µ2) = 1
2 |µ|∆ln |µ|,

where ∆ denotes the Laplace operator.
The class of spacelike surfaces with parallel normalized mean curvature vector field in the Minkowski

space R4
1 is described by three functions λ(u, v) , µ(u, v) , and ν(u, v) , satisfying the following system of PDEs

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u;

ε(ν2 − λ2 + µ2) = 1
2 |µ|∆ln |µ|,

where ε = 1 corresponds to the case where the mean curvature vector field is spacelike, and ε = −1 corresponds
to the case where the mean curvature vector field is timelike.

In the present paper, we focus our attention on the class of timelike surfaces with parallel normalized
mean curvature vector field in the Minkowski 4-space R4

1 . On each such surface, we introduce special isotropic
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parameters (u, v) , which we call canonical, that allow us to prove the fundamental existence and uniqueness
theorem in terms of three geometrically determined functions. With respect to these parameters, the metric
function and all invariants of the surface are expressed by these geometric functions. The timelike surfaces with
parallel normalized mean curvature vector field in R4

1 can be divided into three subclasses:

• surfaces satisfying K −H2 > 0 ;

• surfaces satisfying K −H2 < 0 ;

• surfaces satisfying K −H2 = 0 ,

where K is the Gauss curvature and H is the mean curvature vector field.
The timelike surfaces with parallel normalized mean curvature vector field in R4

1 for which K−H2 > 0 are
determined up to a rigid motion in R4

1 by three functions λ(u, v) , µ(u, v) , and ν(u, v) satisfying the following
system of partial differential equations:

νu + λv = λ(ln |µ|)v;

λu − νv = λ(ln |µ|)u;

|µ|(ln |µ|)uv = −ν2 − (λ2 + µ2).

(1)

The surfaces from the second subclass (characterized by the inequality K −H2 < 0) are determined up
to a rigid motion in R4

1 by three functions λ(u, v) , µ(u, v) , and ν(u, v) satisfying the system of PDEs:

νu + λv = λ(ln |µ|)v;

λu + νv = λ(ln |µ|)u;

|µ|(ln |µ|)uv = −ν2 + (λ2 + µ2).

(2)

The surfaces from the third subclass (characterized by K−H2 = 0) are determined up to a rigid motion
by three functions λ(u, v) , µ(u, v) , and ν(u) satisfying:

νu + λv = λ(ln |µ|)v;

|µ|(ln |µ|)uv = −ν2. (3)

The above systems (1), (2), and (3) are the background systems of natural partial differential equations
describing the three subclasses of timelike surfaces with parallel normalized mean curvature vector field in R4

1 .
In this way, we solve the Lund-Regge problem for this class of surfaces in R4

1 .

2. Preliminaries
Let R4

1 be the four-dimensional Minkowski space endowed with the metric ⟨., .⟩ of signature (3, 1) . The standard
flat metric is given in local coordinates by dx21 + dx22 + dx23 − dx24.

Let M = (D, z) be a surface in R4
1 , where D ⊂ R2 and z : D → R4

1 is an immersion, i.e. M is locally
parametrized by M : z = z(u, v), (u, v) ∈ D . The surface M is said to be spacelike (resp. timelike), if ⟨., .⟩
induces a Riemannian (resp. Lorentzian) metric g on M .
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We use the notations ∇̃ and ∇ for the Levi Civita connections on R4
1 and M , respectively. Thus, if x

and y are vector fields tangent to M and ξ is a normal vector field, then we have the following formulas of
Gauss and Weingarten:

∇̃xy = ∇xy + σ(x, y);

∇̃xξ = −Aξx+Dxξ,

which define the second fundamental tensor σ , the normal connection D , and the shape operator Aξ with
respect to ξ . In general, Aξ is not diagonalizable.

The mean curvature vector field H of M is defined as

H =
1

2
trσ.

A surface M is called totally geodesic if its second fundamental form vanishes identically. The surface is called
minimal if its mean curvature vector vanishes identically, i.e. H = 0 .

A normal vector field ξ on a surface M is called parallel in the normal bundle (or simply parallel) if
Dξ = 0 [7]. The surface M is said to have parallel mean curvature vector field if its mean curvature vector H is
parallel, i.e. DH = 0 . In the early 1970s, the surfaces with parallel mean curvature vector field in Riemannian
space forms were classified by Chen [3] and Yau [24]. In 2009, Chen classified spacelike surfaces with parallel
mean curvature vector field in pseudo-Euclidean spaces with arbitrary codimension and later, Lorentz surfaces
with parallel mean curvature vector field in arbitrary pseudo-Euclidean space Rm

s were studied in [5] and [8].
Some classical and recent results on submanifolds with parallel mean curvature vector in Riemannian manifolds
as well as in pseudo-Riemannian manifolds are presented in the survey [6].

The class of surfaces with parallel mean curvature vector field is naturally extended to the class of surfaces
with parallel normalized mean curvature vector field as follows: a surface is said to have parallel normalized
mean curvature vector field if H is nonzero and there exists a unit vector field in the direction of H which
is parallel in the normal bundle [4]. It is proved that every analytic surface with parallel normalized mean
curvature vector in the Euclidean m -space Rm must either lie in a 4-dimensional space R4 or in a hypersphere
of Rm as a minimal surface [4].

Complete classification of biconservative surfaces with parallel normalized mean curvature vector field in
R4 is given in [21] and biconservative m -dimensional submanifolds with parallel normalized mean curvature
vector field in Rn+2 are studied in [20]. Recently, 3-dimensional biconservative and biharmonic submanifolds
with parallel normalized mean curvature vector field in the Euclidean 5-space R5 have been studied in [22].

Let M : z = z(u, v), (u, v) ∈ D (D ⊂ R2) be a local parametrization on a timelike surface in R4
1 . The

tangent space TpM at an arbitrary point p = z(u, v) of M is spanned by zu and zv . We use the standard
denotations E(u, v) = ⟨zu, zu⟩, F (u, v) = ⟨zu, zv⟩, G(u, v) = ⟨zv, zv⟩ for the coefficients of the first fundamental
form and denote W =

√
|EG− F 2| . Without loss of generality, we assume that E < 0 and G > 0 . Choosing

an orthonormal frame field {n1, n2} of the normal bundle, i.e. ⟨n1, n1⟩ = 1 , ⟨n2, n2⟩ = 1 , ⟨n1, n2⟩ = 0 , we can
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write the following derivative formulas:

∇̃zuzu = zuu = −Γ1
11 zu + Γ2

11 zv + c111 n1 + c211 n2;

∇̃zuzv = zuv = −Γ1
12 zu + Γ2

12 zv + c112 n1 + c212 n2;

∇̃zvzv = zvv = −Γ1
22 zu + Γ2

22 zv + c122 n1 + c222 n2;

(4)

where Γk
ij are the Christoffel’s symbols and the functions ckij , i, j, k = 1, 2 are defined by

c111 = ⟨zuu, n1⟩; c112 = ⟨zuv, n1⟩; c122 = ⟨zvv, n1⟩;

c211 = ⟨zuu, n2⟩; c212 = ⟨zuv, n2⟩; c222 = ⟨zvv, n2⟩.

It is obvious that the surface M lies in a two-dimensional plane if and only if it is totally geodesic, i.e.
ckij = 0 for all i, j, k = 1, 2. Thus, further we assume that at least one of the coefficients ckij is not zero.

Let us consider the following determinants:

∆1 =

∣∣∣∣∣ c
1
11 c112

c211 c212

∣∣∣∣∣ , ∆2 =

∣∣∣∣∣ c
1
11 c122

c211 c222

∣∣∣∣∣ , ∆3 =

∣∣∣∣∣ c
1
12 c122

c212 c222

∣∣∣∣∣ .
At a given point p ∈ M , the first normal space of M in R4

1 , denoted by Imσp , is the subspace given by

Imσp = span{σ(x, y) : x, y ∈ TpM}.

It is obvious that the condition ∆1 = ∆2 = ∆3 = 0 characterizes points at which the first normal space
Imσp is one-dimensional. Such points are called flat or inflection points of the surface [16, 18]. Lane proved in
[16] that every point of a surface in a 4-dimensional affine space is an inflection point if and only if the surface
is developable or lies in a 3-dimensional space. Thus, further we consider timelike surfaces in R4

1 that are free
of inflection points, i.e. we assume that (∆1,∆2,∆3) ̸= (0, 0, 0) .

3. Canonical parameters on timelike surfaces with parallel normalized mean curvature vector
field

For a timelike surface M in R4
1 , locally there exists a coordinate system (u, v) such that the metric tensor g

of M has the form [17]:
g = −f2(u, v)(du⊗ dv + dv ⊗ du)

for some positive function f(u, v) . Let z = z(u, v), (u, v) ∈ D (D ⊂ R2) be such a local parametrization on M .
Then, the coefficients of the first fundamental form are

E = ⟨zu, zu⟩ = 0; F = ⟨zu, zv⟩ = −f2(u, v); G = ⟨zv, zv⟩ = 0.

We consider the pseudoorthonormal tangent frame field given by x =
zu
f

, y =
zv
f

. Obviously, ⟨x, x⟩ = 0 ,

⟨x, y⟩ = −1 , ⟨y, y⟩ = 0 . Then, the mean curvature vector field H of M is given by

H = −σ(x, y).
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In the case H ̸= 0 (nonminimal surface), we can choose a unit normal vector field n1 which is collinear
with the mean curvature vector field H , i.e. H = νn1 for a smooth function ν = ||H|| . Then, σ(x, y) = −νn1 .
We choose a unit normal vector field n2 such that {n1, n2} is an orthonormal frame field of the normal bundle
(n2 is determined up to orientation). Then we have the following formulas:

σ(x, x) = λ1n1 + µ1n2;

σ(x, y) = −νn1;

σ(y, y) = λ2n1 + µ2n2,

where ν ≠ 0 , λ1, µ1, λ2, µ2 are smooth functions determined by:

λ1 = ⟨∇̃xx, n1⟩; µ1 = ⟨∇̃xx, n2⟩;

λ2 = ⟨∇̃yy, n1⟩; µ2 = ⟨∇̃yy, n2⟩.

Using that ⟨zu, zu⟩ = 0, ⟨zu, zv⟩ = −f2(u, v), ⟨zv, zv⟩ = 0 , after differentiation we calculate the coefficients
Γk
ij , i, j, k = 1, 2 :

Γ1
11 =

2fu
f

; Γ2
11 = 0;

Γ1
12 = 0; Γ2

12 = 0;

Γ1
22 = 0; Γ2

22 =
2fv
f
.

(5)

Having in mind that x =
zu
f

, y =
zv
f

, from (4) and (5), after calculations, we obtain:

∇xx =
fu
f2

x

∇xy = −fu
f2

y

∇yx = − fv
f2

x

∇yy =
fv
f2

y

(6)

We denote γ1 =
fu
f2

= x(ln f) , γ2 =
fv
f2

= y(ln f) . Thus, using equalities (4) and (6), we obtain the

following derivative formulas:

∇̃xx = γ1x + λ1n1 + µ1n2

∇̃xy = −γ1y − νn1

∇̃yx = −γ2x − νn1

∇̃yy = γ2y + λ2n1 + µ2n2

(7)
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Remark: The pseudoorthonormal frame field {x, y, n1, n2} is geometrically determined: x, y are the two
lightlike directions in the tangent space; n1 is the unit normal vector field collinear with the mean curvature
vector field H ; n2 is determined by the condition that {n1, n2} is an orthonormal frame field of the normal
bundle (n2 is determined up to a sign). We call this pseudoorthonormal frame field {x, y, n1, n2} a geometric
frame field of the surface.

Using (7), we can easily derive the following derivative formulas for the normal frame field {n1, n2} :

∇̃xn1 = −νx+ λ1y + β1n2

∇̃yn1 = λ2x− νy + β2n2

∇̃xn2 = +µ1y − β1n1

∇̃yn2 = µ2x − β2n1

(8)

where β1 = ⟨∇̃xn1, n2⟩ and β2 = ⟨∇̃yn1, n2⟩ . Formulas (7) and (8) are the derivative formulas of the surface
with respect to the pseudoorthonormal frame field {x, y, n1, n2} which is geometrically determined as explained
above.

The geometric meaning of the functions β1 and β2 is revealed by the next two propositions.

Proposition 1 Let M be a timelike surface in the Minkowski space R4
1 . Then, M has parallel mean curvature

vector field if and only if β1 = β2 = 0 and ν = const .

Proof Let M be a timelike surface in R4
1 with geometric pseudoorthonormal frame field {x, y, n1, n2} . It

follows from (8) that for the normal mean curvature vector field H = νn1 , we have the formulas:

DxH = x(ν)n1 + νβ1n2;

DyH = y(ν)n1 + νβ2n2,

which imply that H is parallel in the normal bundle if and only if β1 = β2 = 0 and ν = const .

Proposition 2 Let M be a timelike surface in the Minkowski space R4
1 . Then, M has parallel normalized

mean curvature vector field if and only if β1 = β2 = 0 and ν ̸= const .

Proof Recall that M is a surface with parallel normalized mean curvature vector field if H is nonzero (and
nonparallel) and there exists a unit vector field in the direction of H which is parallel in the normal bundle.
Since n1 is collinear with H and

Dxn1 = β1n2;

Dyn1 = β2n2,

we conclude that M is a surface with parallel normalized mean curvature vector field if and only if β1 = β2 = 0

and ν ̸= const .

Further, we consider timelike surfaces with parallel normalized mean curvature vector field, i.e. we
assume that β1 = β2 = 0 and ν ̸= const . For this class of surfaces we will introduce special, so-called canonical
parameters, which we will prove to exist locally on each such surface.
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Using that β1 = β2 = 0 , from (7) and (8), we derive the following derivative formulas for the class of
surfaces with parallel normalized mean curvature vector field:

∇̃xx = γ1x + λ1n1 + µ1n2; ∇̃xn1 = −νx+ λ1y;

∇̃xy = −γ1y − νn1; ∇̃yn1 = λ2x− νy;

∇̃yx = −γ2x − νn1; ∇̃xn2 = +µ1y;

∇̃yy = γ2y + λ2n1 + µ2n2; ∇̃yn2 = µ2x.

(9)

Further, we calculate the integrability conditions for this class of surfaces. Since the Levi Civita connection
∇̃ of R4

1 is flat, we have

R̃(x, y, x) = 0; R̃(x, y, y) = 0; R̃(x, y, n1) = 0; R̃(x, y, n2) = 0, (10)

where
R̃(x, y, z) = ∇̃x∇̃yz − ∇̃y∇̃xz − ∇̃[x,y]z

for arbitrary vector fields x, y, z . It follows from (9) that the commutator [x, y] is expressed as follows

[x, y] = ∇̃xy − ∇̃yx = γ2x− γ1y.

Then, by use of formulas (9), we calculate:

R̃(x, y, x) =
(
−x(γ2)− y(γ1)− 2γ1γ2 + ν2 − λ1λ2 − µ1µ2

)
x−

− (x(ν) + y(λ1) + 2γ2λ1) n1 − (y(µ1) + 2γ2µ1) n2;

R̃(x, y, y) =
(
x(γ2) + y(γ1) + 2γ1γ2 − ν2 + λ1λ2 + µ1µ2

)
y+

+(x(λ2) + y(ν) + 2γ1λ2) n1 + (x(µ2) + 2γ1µ2) n2;

R̃(x, y, n1) = (x(λ2) + y(ν) + 2γ1λ2) x− (x(ν) + y(λ1) + 2γ2λ1) y+
+(µ1λ2 − λ1µ2) n2;

R̃(x, y, n2) = (x(µ2) + 2γ1µ2) x− (y(µ1) + 2γ2µ1) y+
+(λ1µ2 − µ1λ2) n1.

(11)

Now, taking into consideration (10) and (11), we obtain the following integrability conditions:

x(λ2) + y(ν) + 2γ1λ2 = 0;

x(ν) + y(λ1) + 2γ2λ1 = 0;

x(µ2) + 2γ1µ2 = 0;

y(µ1) + 2γ2µ1 = 0;

x(γ2) + y(γ1) + 2γ1γ2 − ν2 + λ1λ2 + µ1µ2 = 0;

µ1λ2 − λ1µ2 = 0.

(12)

Remark: If we assume that both µ1 and µ2 are zero functions, i.e. µ1(u, v) = 0 and µ2(u, v) = 0 for all
(u, v) ∈ D , then from (9) we obtain that ∆1 = ∆2 = ∆3 = 0 , which means that the surface consists of inflection
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points. Moreover, from ∇̃xn2 = 0 and ∇̃yn2 = 0 , we get that the normal vector field n2 is constant, which
implies that the surface M lies in the three-dimensional Minkowski space R3

1 = span{x, y, n1} .
Thus, further we assume that µ2

1 + µ2
2 ̸= 0 at least in a subdomain D0 of D . Without loss of generality,

we may assume that µ1 ̸= 0 . Then, from the last equality of (12) we obtain that µ1λ2 = λ1µ2 , which implies

λ2 =
µ2

µ1
λ1 .

The Gauss curvature of the surface is defined by the following formula:

K =
⟨R(x, y, y), x⟩

⟨x, x⟩⟨y, y⟩ − ⟨x, y⟩2
.

Now, using that R(x, y, y) = ∇x∇yy −∇y∇xy −∇[x,y]y , from formulas (9), we obtain

R(x, y, y) = (x(γ2) + y(γ1) + 2γ1γ2) y,

and hence, the Gauss curvature K is given by

K = x(γ2) + y(γ1) + 2γ1γ2.

Having in mind the fifth equality of (9), we obtain that the Gauss curvature of the surface M is expressed in
terms of the functions ν , λ1 , λ2 , µ1 , µ2 as follows:

K = ν2 − λ1λ2 − µ1µ2.

The last equality together with ν2 = H2 (for simplicity we denote H2 = ⟨H,H⟩) implies that K−H2 =

−(λ1λ2 + µ1µ2). Using that λ2 =
µ2

µ1
λ1 , we get

K −H2 = −µ2

µ1
(λ21 + µ2

1).

Hence, the surfaces with parallel normalized mean curvature vector field can be divided into two main classes:

• K −H2 ̸= 0 (which is equivalent to µ1µ2 ̸= 0) in a subdomain;

• K −H2 = 0 (which is equivalent to µ1µ2 = 0) in a subdomain.

3.1. Surfaces satisfying K −H2 ̸= 0

First, we shall consider the case K −H2 ̸= 0 , i.e. µ1µ2 ̸= 0 . In this case, from the third and forth equalities
of (12), we get:

x(ln |µ2|) = −2γ1;

y(ln |µ1|) = −2γ2.

On the other hand, the functions γ1 and γ2 are expressed by the metric function f as follows: γ1 = x(ln f) ,
γ2 = y(ln f) . Hence, we obtain:

x(ln f2|µ2|) = 0;

y(ln f2|µ1|) = 0.
(13)
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It follows from (13) that the function f2|µ1| depends only on the parameter u , and the function f2|µ2| depends
only on v . Therefore, there exist smooth functions φ(u) > 0 and ψ(v) > 0 such that:

f2|µ1| = φ(u); f2|µ2| = ψ(v).

We consider the following change of the parameters:

u =

∫ u

u0

√
φ(u) du+ u0, u0 = const

v =

∫ v

v0

√
ψ(v) dv + v0, v0 = const

Under this change of the parameters, we obtain:

zu =
zu√
φ(u)

=
zu

f
√
|µ1|

,

zv =
zv√
ψ(v)

=
zv

f
√

|µ2|
,

which imply that

⟨zu, zu⟩ = 0; ⟨zu, zv⟩ = − 1√
|µ1||µ2|

, ⟨zv, zv⟩ = 0.

Therefore, (u, v) are special isotropic parameters with respect to which the metric tensor of the surface is given
by

g = −f2(u, v)(du⊗ dv + dv ⊗ du),

where the metric function f is expressed in terms of µ1 and µ2 as follows:

f(u, v) =
1

4
√

|µ1||µ2|
.

With respect to the isotropic directions:

x =
zu

f
=

4
√

|µ1||µ2|√
|µ1|

x,

y =
zv

f
=

4
√
|µ1||µ2|√
|µ2|

y,

we have the flowing expressions for the second fundamental tensor σ :

σ(x, x) =

√
|µ1||µ2|
|µ1|

σ(x, x) = λ1

√
|µ1||µ2|
|µ1|

n1 + µ1

√
|µ1||µ2|
|µ1|

n2;

σ(x, y) = σ(x, y) = −ν n1;

σ(y, y) =

√
|µ1||µ2|
|µ2|

σ(y, y) = λ2

√
|µ1||µ2|
|µ2|

n1 + µ2

√
|µ1||µ2|
|µ2|

n2.
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Since µ1 and µ2 are smooth functions and we consider a local theory, we may assume that sign(µ1) =

ε1, ε1 = ±1 and sign(µ2) = ε2, ε2 = ±1 in some subdomain. Now, using that λ2
λ1

=
µ2

µ1
=

|µ2|
|µ1|

ε2
ε1

, we get the

formulas:

σ(x, x) = λ1

√
|µ1||µ2|
|µ1|

n1 + ε1
√
|µ1||µ2|n2;

σ(y, y) = λ1
ε2
ε1

√
|µ1||µ2|
|µ1|

n1 + ε2
√

|µ1||µ2|n2.

Denoting λ = λ1

√
|µ1||µ2|
|µ1|

, µ = ε1
√
|µ1||µ2| , we obtain:

σ(x, x) = λn1 + µn2;

σ(y, y) =
ε2
ε1
λn1 +

ε2
ε1
µn2.

Thus, we conclude that there exist two subcases:

1. µ1 and µ2 have one and the same sign in the considered subdomain, i.e. ε1ε2 = 1 ; hence, we have
σ(x, x) = σ(y, y) .

2. µ1 and µ2 have opposite signs in the considered subdomain, i.e. ε1ε2 = −1 ; hence, we have σ(x, x) =

−σ(y, y) .

Having in mind that K −H2 = −µ2

µ1
(λ21 + µ2

1) , we get that the first subcase corresponds to K −H2 < 0 , the

second subcase corresponds to K −H2 > 0 .
Hence, after the change of the parameters, we have the formulas:

σ(x, x) = λn1 + µn2

σ(x, y) = −ν n1

σ(y, y) = −λn1 − µn2

, if K −H2 > 0;

or
σ(x, x) = λn1 + µn2

σ(x, y) = −ν n1

σ(y, y) = λn1 + µn2

, if K −H2 < 0.

In both cases (K −H2 > 0 or K −H2 < 0), the metric function f is expressed by:

f =
1√
|µ|
.

We introduce the notion of canonical isotropic parameters on a timelike surface with parallel normalized
mean curvature vector field by the following definition.
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Definition 1 Let M be a timelike surface with parallel normalized mean curvature vector field in R4
1 and

K −H2 ̸= 0 . The isotropic parameters (u, v) are said to be canonical if the metric function f is expressed by:

f(u, v) =
1√
|µ|
, µ ̸= 0.

With the above considerations, we have proved that:

Proposition 3 Each timelike surface with parallel normalized mean curvature vector field satisfying K−H2 ̸= 0

locally admits canonical parameters.

Let M : z = z(u, v), (u, v) ∈ D be a timelike surface with parallel normalized mean curvature vector field
satisfying K −H2 ̸= 0 and parametrized by isotropic canonical parameters (u, v) . With respect to canonical
isotropic parametrization the derivative formulas of M take the form:

∇̃xx = γ1x + λn1 + µn2; ∇̃xn1 = −νx+ λy;

∇̃xy = −γ1y − νn1; ∇̃yn1 = −ελx− νy;

∇̃yx = −γ2x − νn1; ∇̃xn2 = +µy;

∇̃yy = γ2y − ελn1 − εµn2; ∇̃yn2 = −εµx,

where ε = 1 in the case K −H2 > 0 , and ε = −1 in the case K −H2 < 0 .
The geometric meaning of the canonical parametrization can be explained as follows: if (u, v) are

canonical isotropic parameters, then the canonical directions x =
zu
f

and y =
zv
f

satisfy the relation:

σ(x, x) = −σ(y, y), in the case K −H2 > 0;

σ(x, x) = σ(y, y), in the case K −H2 < 0.

Moreover, with respect to canonical isotropic parameters (u, v) , the functions γ1 and γ2 are expressed
by:

γ1 = − |µ|u
2
√

|µ|
, γ2 = − |µ|v

2
√

|µ|
. (14)

From integrability conditions (12), in the case λ1 = λ , λ2 = −ελ , µ1 = µ , µ2 = −εµ , we get

x(ν) + y(λ) + 2γ2λ = 0;

−εx(λ) + y(ν)− ε2γ1λ = 0;

x(γ2) + y(γ1) + 2γ1γ2 − ν2 − ε(λ2 + µ2) = 0.

Then, having in mind (14), from the equalities above, we obtain

νu + λv = λ(ln |µ|)v;

λu − ενv = λ(ln |µ|)u;

|µ| (ln |µ|)uv = −ν2 − ε(λ2 + µ2).
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Thus, by introducing canonical parameters on a surface with parallel normalized mean curvature vector
field, we manage to reduce the number of functions and the number of partial differential equations up to three.
In the next section, we shall prove that these three functions, λ , µ , and ν , determine the surface up to a
motion.

3.2. Surfaces satisfying K −H2 = 0

Now we shall consider the case K −H2 = 0 , i.e. µ1µ2 = 0 , µ2
1 +µ2

2 ̸= 0 . Without loss of generality, we assume
that µ1 ̸= 0 and µ2 = 0 in a subdomain D0 . From µ1λ2 − λ1µ2 = 0 , it follows that λ2 = 0 , which implies
that K = ν2 . In this case, the derivative formulas take the following form:

∇̃xx = γ1x + λ1n1 + µ1n2; ∇̃xn1 = −νx+ λ1y;

∇̃xy = −γ1y − νn1; ∇̃yn1 = −νy;

∇̃yx = −γ2x − νn1; ∇̃xn2 = µ1y;

∇̃yy = γ2y; ∇̃yn2 = 0.

(15)

From integrability conditions (12), we get:

y(ν) = 0;

x(ν) + y(λ1) + 2γ2λ1 = 0;

y(µ1) + 2γ2µ1 = 0;

x(γ2) + y(γ1) + 2γ1γ2 = ν2.

(16)

Thus, the first equality of (16) implies that:
ν = ν(u),

and from the third one, we get:
y(ln |µ1|) = −2γ2.

Having in mind that γ2 = y(ln f) , we obtain

y(ln(f2|µ1|)) = 0,

which implies that there exists a function φ(u) > 0 such that f2|µ1| = φ(u) .
Consider the following change of the parameters:

u =

∫ u

u0

φ(u)du+ u0, u0 = const

v = v + v0, v0 = const

Under this change of the parameters, we obtain

zu =
zu

f2|µ1|
;

zv = zv,
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which implies that

⟨zu, zu⟩ = 0; ⟨zu, zv⟩ = − 1

|µ1|
; ⟨zv, zv⟩ = 0.

Hence, (u, v) are isotropic parameters with respect to which the new metric function is:

f =
1√
|µ1|

.

We consider the isotropic directions

x =
zu

f
=

x

f
√

|µ1|
;

y =
zv

f
= f

√
|µ1|y.

Then, the second fundamental tensor is expressed as follows:

σ(x, x) =
λ1

f2|µ1|
n1 +

µ1

f2|µ1|
n2;

σ(x, y) = −νn1;

σ(y, y) = 0.

Denoting λ =
λ1

f2|µ1|
and µ =

µ1

f2|µ1|
, we get

σ(x, x) = λn1 + µn2;

σ(x, y) = −νn1;

σ(y, y) = 0.

Note that µ =
ε

f2
, where ε = sign(µ1) . Obviously, λ

µ
=
λ1
µ1

.

Thus, in the case K−H2 = 0 , we can also introduce canonical isotropic parameters by the next definition.

Definition 2 Let M be a timelike surface with parallel normalized mean curvature vector field in R4
1 and

K −H2 = 0 . The isotropic parameters (u, v) are said to be canonical if the metric function f is expressed by:

f(u, v) =
1√
|µ|
, µ ̸= 0.

With the above considerations, we have proved that:

Proposition 4 Each timelike surface with parallel normalized mean curvature vector field satisfying K−H2 = 0

locally admits canonical parameters.
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With respect to canonical isotropic parameters, in the case K − H2 = 0 , we have derivative formulas
(15). From integrability conditions (12), in the case λ1 = λ , λ2 = 0 , µ1 = µ , µ2 = 0 , we get

x(ν) + y(λ) + 2γ2λ = 0;

x(γ2) + y(γ1) + 2γ1γ2 = ν2,

which in view of (14) imply
νu + λv = λ(ln |µ|)v;

|µ|(ln |µ|)uv = −ν2.

Hence, in the case K−H2 = 0 , by introducing canonical parameters on a surface with parallel normalized
mean curvature vector field, we manage to reduce the number of functions and the number of partial differential
equations determining the surface.

4. Fundamental theorems
Now we shall prove fundamental existence and uniqueness theorems for the class of timelike surfaces with
parallel normalized mean curvature vector field in terms of canonical parameters.

Theorem 1 Let λ(u, v) , µ(u, v) and ν(u, v) be smooth functions, µ ̸= 0 , ν ̸= const , defined in a domain
D, D ⊂ R2 , and satisfying the conditions

νu + λv = λ(ln |µ|)v;

λu − ενv = λ(ln |µ|)u;

|µ| (ln |µ|)uv = −ν2 − ε(λ2 + µ2),

(17)

where ε = ±1 . If {x0, y0, (n1)0, (n2)0} is a pseudoorthonormal frame at a point p0 ∈ R4
1 , then there exists a

subdomain D0 ⊂ D and a unique timelike surface M : z = z(u, v), (u, v) ∈ D0 with parallel normalized mean
curvature vector field, such that M passes through p0 , {x0, y0, (n1)0, (n2)0} is the geometric frame of M at
the point p0 , the functions λ(u, v) , µ(u, v) , ν(u, v) are the geometric functions of the surface, and K−H2 > 0

in the case ε = 1 , resp. K−H2 < 0 in the case ε = −1 . Furthermore, (u, v) are canonical isotropic parameters
of M .

Proof Let us denote γ1 = −(
√

|µ|)u , γ2 = −(
√

|µ|)v and consider the following system of partial differential
equations for the unknown vector functions x = x(u, v), y = y(u, v), n1 = n1(u, v), n2 = n2(u, v) in R4

1 :

xu =
1√
|µ|

(γ1 x+ λn1 + µn2) xv =
1√
|µ|

(−γ2 x− ν n1)

yu =
1√
|µ|

(−γ1 y − ν n1) yv =
1√
|µ|

(γ2 y − ελn1 − εµn2)

(n1)u =
1√
|µ|

(−ν x+ λ y) (n1)v =
1√
|µ|

(−ελ x− ν y)

(n2)u =
1√
|µ|

(µ y) (n2)v =
1√
|µ|

(−εµ x)

(18)
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We denote

F =


x

y

n1

n2

; A =
1√
|µ|


γ1 0 λ µ

0 −γ1 −ν 0

−ν λ 0 0

0 µ 0 0

; B =
1√
|µ|


−γ2 0 −ν 0

0 γ2 −ελ −εµ
−ελ −ν 0 0

−εµ 0 0 0

.

Then, system (18) can be written in matrix form as follows:

Fu = AF ,

Fv = BF . (19)

The integrability conditions of system (19) are Fuv = Fvu , i.e.

∂aki
∂v

− ∂bki
∂u

+

4∑
j=1

(aji b
k
j − bji a

k
j ) = 0, i, k = 1, . . . , 4, (20)

where, by aji and bji , we denote the elements of the matrices A and B . Using (17), one can check that equalities
(20) are fulfilled. Hence, there exists a subdomain D1 ⊂ D and unique vector functions x = x(u, v), y =

y(u, v), n1 = n1(u, v) , n2 = n2(u, v), (u, v) ∈ D1 , which satisfy system (18) and the conditions

x(u0, v0) = x0, y(u0, v0) = y0, n1(u0, v0) = (n1)0, n2(u0, v0) = (n2)0.

It can be proved that x(u, v), y(u, v), n1(u, v), n2(u, v) form a pseudoorthonormal frame in R4
1 for each

(u, v) ∈ D1 . Indeed, let us consider the following functions:

φ1 = ⟨x, x⟩; φ5 = ⟨x, y⟩+ 1; φ8 = ⟨y, n1⟩;

φ2 = ⟨y, y⟩; φ6 = ⟨x, n1⟩; φ9 = ⟨y, n2⟩;

φ3 = ⟨n1, n1⟩ − 1; φ7 = ⟨x, n2⟩; φ10 = ⟨n1, n2⟩;

φ4 = ⟨n2, n2⟩ − 1;

defined for (u, v) ∈ D1 . Having in mind that x(u, v), y(u, v), n1(u, v), n2(u, v) satisfy (18), we obtain the
system

∂φi

∂u
= pji φj ,

∂φi

∂v
= qji φj ;

i = 1, . . . , 10, (21)

where pji , q
j
i , i, j = 1, . . . , 10 are functions of (u, v) ∈ D1 . System (21) is a linear system of partial differential

equations for the functions φi(u, v) , satisfying the conditions φi(u0, v0) = 0 for all i = 1, . . . , 10 , since
{x0, y0, (n1)0, (n2)0} is a pseudoorthonormal frame. Therefore, φi(u, v) = 0, i = 1, . . . , 10 for each (u, v) ∈ D1 .
Hence, the vector functions x(u, v), y(u, v), n1(u, v), n2(u, v) form a pseudoorthonormal frame in E4

1 for each
(u, v) ∈ D1 .
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Finally, we consider the following system of partial differential equations for the vector function z(u, v) :

zu =
1√
|µ|

x

zv =
1√
|µ|

y
(22)

It follows from equalities (17) and (18) that the integrability conditions zuv = zvu of system (22) are fulfilled.
Hence, there exists a subdomain D0 ⊂ D1 and a unique vector function z = z(u, v) , defined for (u, v) ∈ D0

and satisfying z(u0, v0) = p0 .
Now, we consider the surface M : z = z(u, v), (u, v) ∈ D0 . Obviously, M is a timelike surface in R4

1 . It
follows from (18) that M has parallel normalized mean curvature vector field, since H = ν n1 ; Dxn1 = 0 and

Dyn1 = 0 . Moreover, (u, v) are canonical isotropic parameters of M , since ⟨zu, zv⟩ = − 1

|µ|
, and the metric

function is f =
1√
|µ|

.

Theorem 2 Let λ(u, v) , µ(u, v) , and ν(u) be smooth functions, µ ̸= 0 , ν ̸= const , defined in a domain
D, D ⊂ R2 , and satisfying the conditions

νu + λv = λ(ln |µ|)v;

|µ| (ln |µ|)uv = −ν2. (23)

If {x0, y0, (n1)0, (n2)0} is a pseudoorthonormal frame at a point p0 ∈ R4
1 , then there exists a subdomain

D0 ⊂ D and a unique timelike surface M : z = z(u, v), (u, v) ∈ D0 with parallel normalized mean curvature
vector field, such that M passes through p0 , {x0, y0, (n1)0, (n2)0} is the geometric frame of M at the point p0 ,
the functions λ(u, v) , µ(u, v) , ν(u) are the geometric functions of the surface, and K −H2 = 0 . Furthermore,
(u, v) are canonical isotropic parameters of M .

Proof Let us consider the following system of partial differential equations for the unknown vector functions
x = x(u, v), y = y(u, v), n1 = n1(u, v), n2 = n2(u, v) in R4

1 :

xu =
1√
|µ|

(γ1 x+ λn1 + µn2) xv =
1√
|µ|

(−γ2 x− ν n1)

yu =
1√
|µ|

(−γ1 y − ν n1) yv =
1√
|µ|

(γ2 y)

(n1)u =
1√
|µ|

(−ν x+ λ y) (n1)v =
1√
|µ|

(−ν y)

(n2)u =
1√
|µ|

(µ y) (n2)v = 0

(24)

where γ1 = −(
√
|µ|)u and γ2 = −(

√
|µ|)v . It follows from equalities (23) that the integrability conditions of

system (24) are fulfilled.
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Further, the proof follows the steps in the proof of Theorem 1; therefore, we are not going to give the
details.

Remark: We can also introduce canonical nonisotropic parameters which in the case where K −H2 > 0 have
the same geometric meaning as the canonical parameters of spacelike surfaces with parallel normalized mean
curvature vector field in R4

1 and R4 .
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