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Abstract: Gelfand and Shilov give the definition of the composition δ(g(x)) for an infinitely differentiable function g(x) having
any number of simple roots. In the paper, we consider their definition for an infinitely differentiable function having any number
of multiple roots by using the method of the discarding of unwanted infinite quantities from asymptotic expansions and give some
examples. Further, we define the compositions δ(g+) and δ(g−) for a locally summable function g(x).
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1. Introduction

The symbol δ2 often appears in quantum mechanics which leads to reasonable results and further the symbol
δ−1 appeared in cosmological models [16, 17] in which the following distributional identities

[
f(ω) + Cδ(ω)

]−1
= f−1(ω),

d

dω

[
f(ω) + Cδ(ω)

]−1
=

d

dω
f−1(ω)

were used. In the theory of Schwartz distributions, there is no reasonable way of introducing neither the square
δ2 nor δ−1 , generally the composition G(g(x)) of distributions G and g. Nevertheless, Fisher, in numerous
papers [7–10, 14], has approached the problems of distributional operations namely composition, multiplication
and convolution. In addition, the meaning has recently been given to the power of the composition δ(g(x)) in
[19] and to the symbol δ−k in [21].

Now recall that D denotes the space of infinitely differentiable functions with compact support and D′

denotes the space of distributions defined on D. For a locally summable function (absolutely integrable in every
bounded region of Rn ) g(x) and for every φ ∈ D the equation ⟨g, φ⟩ =

∫
Rn g(x)φ(x) dx defines the distribution.

So the distribution given by this equation is called regular, and all others (including the delta function) are
called singular.

Explicit sequences that approach the Dirac delta function and its derivatives are often helpful and used
in presenting distributions. In fact, this idea based on the important property of the space D′ is that every
distribution is the limit of a regular sequence of infinitely differentiable functions with compact support [13]. In
the following, we construct a regular sequence of infinitely differentiable functions which converges to δ(x).
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Let τ be a fixed infinitely differentiable function having the properties:
(i) τ(x) = 0 for |x| ≥ 1 , (ii) τ(x) ≥ 0 ,

(iii) τ(x) = τ(−x) , (iv)
∫ 1

−1

τ(x) dx = 1,

and put δn(x) = nτ(nx) for n = 1, 2, . . . . Then it follows that δn(x) is a regular sequence [22] of infinitely
differentiable functions converging to Dirac delta-function δ(x).

Further, if h is a distribution in D′ and hn(x) = ⟨h(t), δn(x− t)⟩, then {hn(x)} is a regular sequence of
infinitely differentiable functions and converges to h(x).

Antosik [1] defines the composition G(g(x)) of distributions G and g as the limit of the sequence
of composition {Gn(gn)} on R proving that the limit exists and converges to a distribution F (x). By this
definition, he obtained

(i)
√
δ = 0, (ii)

√
δ2 + 1 = 1 + δ, (iii) log(1 + δ) = 0, (iv) sin δ = 0, (v) 1

1+δ = 1.

However, it is not possible to define the composition for many pairs of distributions, by using Antosik’s
definition.

2. Extension of the definition of the composition δ(g(x))

Gelfand and Shilov defined the composition δ(g(x)) [13] for an infinitely differentiable function g having simple
zeros at x1, x2, . . . , xn by

δ(g(x)) =
∑
n

1

|g′(xn)|
δ(x− xn).

It will be valuable as a side to give the definition of δ(g(x)) for an infinitely differentiable g(x) having any
number of multiple roots. We will need the following definition given by Fisher [7] for larger class of distributions,
but, first of all, let N denote the neutrix having domain N ′ = {1, 2, . . . , n, . . .} , range the real numbers with
negligible functions which are finite linear sums of the functions nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, . . .) and all
functions which converge to zero in the usual sense as n tends to infinity [3].

Definition 1 Let G be distribution in D′ and let g be infinitely differentiable function. We say that the
distribution G(g(x)), the neutrix composition of G and g, exists and is equal to F (x) on the interval (a, b) if
the neutrix limit

N−lim
n→∞

[∫ ∞

−∞
Gn(g(x))φ(x) dx

]
= ⟨F (x), φ(x)⟩

for all φ in D with support contained in the interval (a, b), where Gn(x) = (G ∗ δn)(x), and N is the neutrix
defined above.

The reader can find some examples of the neutrix limit and some examples of compositions and some
applications of the neutrix limit in conjunction with special functions in [9, 10, 14, 18, 20]. The essential use
of the neutrix limit is to extract an appropriate finite part from a divergent quantity as one has usually done

280



ÖZÇAĞ/Turk J Math

to subtract the divergent terms via rather complicated procedures in the renormalization theory. In fact, the
technique of neglecting appropriately defined infinite quantities given by Hadamard and the resulting finite
value extracted from divergent integral usually known as the Hadamard finite part [5, 12, 15] can be regarded
as a particular application of the neutrix calculus developed by J.G. van der Corput [3]. In connection with
this, Fisher gave a general principle via the theory of neutrices for the discarding of unwanted infinite quantities
from asymptotic expansions [8, 9].

It is of interest to emphasize that the novel approach to the computation of the Hadamard Finite Part

of the singular integral
∫ b

a
g(x) dx, where g(x) = f(x)

(x−t)m , m = 1, 2, . . . , a < t < b and f ∈ C∞[a, b] are given

in [23].

The following proposition will be an intermediary to present our results.

Proposition 1 Let g(x) be an infinitely differentiable function. Assume that g does not have any root in the
interval (a, b) . Then the distribution δ(g(x)) exists on the interval (a, b) and

δ(g(x)) = 0. (1)

Proof Let φ(x) be an arbitrary test function with support contained in the interval (a, b). Since the equation
g(x) = 0 has no root in the interval (a, b), then we have either g(x) > 0 or g(x) < 0 on the interval (a, b)

which implies that at least inf{f(x) : a < x < b} or sup{g(x) : a < x < b} exists.

Now suppose that inf g exists and let inf{g(x) : a < x < b} = c > 0. Choosing K > c−1, we have
ng(x) ≥ 1 for n > K and all x. Thus, δn(g(x)) = nτ(ng(x)) = 0 for n > K. So it follows that

⟨δ(g(x)), φ(x)⟩ = N−lim
n→∞

∫ ∞

−∞
δn(g(x))φ(x) dx = 0. (2)

If c < 0, then by choosing K > −c−1 we have for n > K and all x, ng(x) < −1 which gives τ(ng(x)) = 0.

Similarly, we have for φ ∈ D

⟨δ(g(x)), φ(x)⟩ = N−lim
n→∞

∫ ∞

−∞
δn(g(x))φ(x) dx = 0. (3)

If sup{g(x) : a < x < b} exists, then we define f(x) = −g(x) and it follows from Equations 2 and 3 that

⟨δ(f(x)), φ(x)⟩ = N−lim
n→∞

⟨δn(−g(x)), φ(x)⟩ = N−lim
n→∞

⟨δn(g(x)), φ(x)⟩

= 0.

2

Now let us assume that g(x) is an infinitely differentiable real-valued function having multiple roots at
x0 ∈ R with a multiplicity s ∈ Z+ and let us define the function h(x) as follows:

h(x) =

{
g(x)

(x−x0)s
, x ̸= x0,

g(s)(x0)
s! , x = x0
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so that it is continuous and infinitely differentiable on the real line and h(n)(x0) = g(s+n)(x0)
(s+n)! holds for all

n ∈ Z+. Thus, we may write

g(x) = (x− x0)
sh(x). (4)

Further, the similar argument works for the function g(x) having distinct multiple roots at the points
x1, x2, . . . , xn of R with the multiplicities r1, r2, . . . , rn ∈ Z+ respectively. This time, we can define infinitely
differentiable function h(x) on the real line by

h(x) =


g(x)

(x−x1)r1 (x−x2)r2 ...(x−xn)rn
, x ̸= xi, i = 1, 2, . . . , n

g(ri)(xi)
ri!

∏
i ̸=k(xi−xk)

rk
, x = xi, i = 1, 2, . . . , n,

and consequently, we have

g(x) = (x− x1)
r1(x− x2)

r2 . . . (x− xn)
rnh(x). (5)

Equations 4 and 5 will be used in the following section to present the main results. Before presenting one
of the main contributions, which is the definition of the composition δ(g(x)) for the function g with multiple
roots, we first provide the Fa á di Bruno’s formulae [4], defining the nth derivative of a composite function.
The explicit formula for the derivative of a smooth composite function φ ◦ g , of arbitrary order, in terms of
derivatives of φ and g is as follows:

[
φ(g(x))

](n)
=

n∑
r=1

φ(r)(g)Bn,r(g
′(x), g′′(x), . . . , g(n−r+1)(x)), (6)

where Bn,r(g
′(x), g′′(x), . . . , g(n−r+1)(x)) are exponential Bell polynomials [2] defined by the equation

Bn,r

(
g′(x), g′′(x), . . . , g(n−r+1)(x)

)
=

=
∑ n!

b1!b2! . . . bn−r+1!

(g′(x)
1!

)b1(g′′(x)
2!

)b2
. . .

(g(n−r+1)(x)

(n− r + 1)!

)bn−r+1

(7)

where the sum is over all possible combinations of nonnegative integers b1, b2, . . . , bn−r+1 such that two
conditions b1 + b2 + . . .+ bn−r+1 = r and b1 + 2b2 + 3b− 3 . . .+ (n− r + 1)bn−r+1 = n are satisfied.

Theorem 1 Let g be an infinitely differentiable function having multiple roots at x0 with multiplicity s ∈ Z+

on the open interval (a, b). Then the composition δ(g(x)) of Dirac delta function and g exists on the open
interval (a, b) for all s and defined by

δ(g(x)) = 0 (8)
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for even s and

⟨δ(g(x)), φ(x)⟩ =
s−1∑
k=0

(
s− 1

k

)
1

s!|g(s−k)(x0)|
×

×
k∑

r=1

Bk,r

( 1

|g′(x0)|
,

1

|g′′(x0)|
, . . . ,

1

|g(k−r+1)(x0)|

)
φ(r)(x0)

=

s−1∑
k=0

(
s− 1

k

)
1

s!|g(s−k)(x0)|
×

×
k∑

r=1

(−1)rBk,r

( 1

|g′(x0)|
,

1

|g′′(x0)|
, . . . ,

1

|g(k−r+1)(x0)|

)
⟨δ(r)(x− x0), φ(x)⟩ (9)

for s = 1, 3, . . . . In particular, we have

δ(g(x)) =
1

|g′(x0)|
δ(x− x0)

for s = 1 and further
d

dx
δ(g(x)) = g′(x)δ′(g(x)). (10)

Proof We prove the theorem for x0 = 0, then the case x0 ̸= 0 follows by translation. Now we may write g(x)

from equation (4) as g(x) = xsh(x) where h is defined by

h(x) =

{
g(x)
xs , x ̸= 0,

g(s)(0)
s! , x = 0.

Let us put g1(x) = xh1/s(x) and assume that the interval (a, b) is bounded and g′1(x) ̸= 0 on (a, b). Then the
equation y = g1(x) will have inverse x = f1(y) ∈ C∞ on the interval (a, b). Let φ be an infinitely differentiable
function with sup(φ) ⊂ (a, b). Then∫ ∞

−∞
δn(g(x))φ(x) dx =

∫ ∞

0

δn(g(x))φ(x) dx+

∫ ∞

0

δn(g(−x))φ(−x) dx (11)

in which we make the substitution t1/s = g1(x) or x = f1(t
1/s) for the first integral on the right-hand side of

equation 11. Then we have∫ ∞

0

δn(g(x))φ(x) dx =
1

s

∫ ∞

0

δn(t)φ(f1(t
1/s)|f ′

1(t
1/s)|t1/s−1 dt.

The function Φ(y) = φ(f1(y))|f ′
1(y)| is infinitely differentiable function and from Taylor’s formula

Φ(y) =

s−1∑
i=0

Φ(i)(0)

i!
yi +

Φ(s)(ξy)

s!
ys (0 < ξ < 1).
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Thus,

s

∫ ∞

0

δn(g(x))φ(x) dx =

s−1∑
i=0

Φ(i)(0)

i!

∫ ∞

0

δn(t)t
i+1
s −1 dt+

∫ ∞

0

Φ(s)(ξt1/s))

s!
δn(t)t

1/s dt

=

s−2∑
i=0

Φ(i)(0)

i!

∫ 1

0

τ(u)(
u

n
)

i+1
s −1 du+

Φ(s−1)(0)

(s− 1)!

∫ 1

0

τ(u) du+

+

∫ 1

0

Φ(s)(ξ(u/n)1/s)

s!
τ(u)(u/n)s du

on making the substitution nt = u. It now follows that the neutrix limit of
∫∞
0

δn(g(x))φ(x) dx exists and is
equal to

N−lim
n→∞

∫ ∞

0

δn(g(x))φ(x) dx =
Φ(s−1)(0)

2s!
(12)

where
∫ 1

0
τ(u) du = 1

2 . Next consider the integral
∫∞
0

δn(g(−x))φ(−x) dx. Similarly, by making the substitution

−t1/s = g1(−x) where t1/s ≥ 0, we have that

s

∫ ∞

0

δn(g(−x))φ(−x) dx =

∫ ∞

0

δn((−1)st)φ(f1(−t1/s))|f ′
1(−t1/s)|t1/s−1 dt

=

∫ ∞

0

δn(t)Φ(−t1/s)t1/s−1 dt

where Φ is defined above. Thus,

N−lim
n→∞

∫ ∞

0

δn(g(−x))φ(−x) dx =
(−1)s−1Φ(s−1)(0)

s!

∫ 1

0

τ(u) du

=
(−1)s−1Φ(s−1)(0)

2s!
. (13)

It now follows from Equations 11–13 that

N−lim
n→∞

∫ ∞

−∞
δn(g(x))φ(x) dx =

{
0, s = 2, 4, . . .

Φ(s−1)(0)
s! , s = 1, 3, . . . ,

proving the existence of δn(g(x)) on the interval (a, b) for s ∈ N. It is obvious that δn(g(x)) = 0 for s = 2, 4, . . . .
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Furthermore, δn(g(x)) =
Φ(s−1)(0)

s! for s = 1, 3, . . . . Let us evaluate Φ(s−1)(0)

Φ(s−1)(0) =
{
Φ(s−1)(y)

}
y=0

= {φ(f1(y))|f ′
1(y)|}

(s−1)
⌋
y=0

=

s−1∑
k=0

(
s− 1

k

)
{φ(f1(y))}(k) |f (s−k)

1 (y)|
⌋
y=0

=

s−1∑
k=0

(
s− 1

k

) k∑
r=1

φ(r)(x0)Bk,r

(
f ′
1, f

′′
1 , . . . , f

(k−r+1)
1

)
|f (s−k)

1 (y)|
⌋
y=0

=

s−1∑
k=0

(
s− 1

k

)
1

|g(s−k)(x0)|
×

×
k∑

r=1

Bk,r

( 1

|g′(x0)|
,

1

|g′′(x0)|
, . . . ,

1

|g(k−r+1)(x0)|

)
φ(r)(x0)

where Bk,r is the incomplete exponential Bell polynomial. Thus, we have proven so far that the composition
δ(g(x)) exists and equals

⟨δ(g(x)), φ(x)⟩ =
s−1∑
k=0

(
s− 1

k

)
1

s!|g(s−k)(x0)|
×

×
k∑

r=1

(−1)rBk,r

( 1

|g′(x0)|
,

1

|g′′(x0)|
, . . . ,

1

|g(k−r+1)(x0)|

)
⟨δ(r)(x− x0), φ(x)⟩.

It obviously follows from the last equation that for s = 1, we have δ(g(x)) = 1
|g′(x0)|δ(x − x0). Finally,

we have

⟨(δ(g(x)))′, φ(x)⟩ = −⟨δ(g(x)), φ′(x)⟩

= −N−lim

∫ ∞

−∞
δn(g(x))φ

′(x) dx

= N−lim

∫ ∞

−∞
δ′n(g(x))φ(x)g

′(x) dx

on integrating by parts and thus

⟨(δ(g(x)))′, φ(x)⟩ = ⟨δ′(g(x)), φ(x)g′(x)⟩ = ⟨g′(x)δ′(g(x)), φ(x)⟩.

2

Remark 1 The reader can see that if g(x) = xs and s is an odd in Theorem 1, then the function Φ is identical
to an arbitrary function φ so that

⟨δ(g(x)), φ(x)⟩ =
Φ(s−1)(0)

s!

=
(−1)s−1

s!
⟨δ(s−1)(x), φ(x)⟩
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and so

δ(xs) =
(−1)s−1

s!
δ(s−1)(x)

and
δ(xs) = 0

for even s on the real line which are in agreement with the results given in [19].

The other main contribution of this paper is as follows.

Theorem 2 Assume that g(x) is an infinitely differentiable function having distinct multiple roots at x1, x2, . . . , xn

with multiplicities r1, r2, r3, . . . , rn, (n, ri ∈ Z+) respectively on the open interval (a, b). Then the distribution
δ(g(x)) exists on the interval (a, b) and

⟨δ(g(x)), φ(x)⟩ =
n∑

i=1

ri−1∑
k=0

(
ri − 1

k

)
1

ri!|g(ri−k)(xi)|
×

×
k∑

r=1

Bk,r

( 1

|g′(xi)|
,

1

|g′′(xi)|
, . . . ,

1

|g(k−r+1)(xi)|

)
φ(r)(xi)

=

n∑
i=1

ri−1∑
k=0

(
ri − 1

k

)
1

ri!|g(ri−k)(xi)|
×

×
k∑

r=1

(−1)rBk,r

( 1

|g′(xi)|
,

1

|g′′(xi)|
, . . . ,

1

|g(k−r+1)(xi)|

)
⟨δ(r)(x− xi), φ(x)⟩ (14)

for all i = 1, 2, . . . , n, ri ∈ Z+. In particular, if ri = 1 for all i then

δ(g(x)) =
∑
i

1

|g′(xi)|
δ(x− xi)

which was given by Gelfand and Shilov in [13].

Proof It follows from equation 5 that g(x) = (x− x1)
r1(x− x2)

r2(x− x3)
r3 . . . (x− xn)

rnh(x) where h(x) is
infinitely differentiable function defined by

h(x) =


g(x)

(x−x1)r1 (x−x2)r2 ...(x−xn)rn
, x ̸= xi,

g(ri)(xi)
ri!

∏
i ̸=k(xi−xk)

rk
, x = xi,

for i = 1, 2, . . . , n.

Let (λi, υi) be disjoint open subintervals of (a, b) containing xi such that A = ∪n
i=1(λi, υi) for i =

1, 2, . . . , n. Let us write gi(x) = {(x− x1)
r1(x− x2)

r2(x− x3)
r3 . . . (x− xn)

rnh(x)}1/ri and assume that the
interval (λi, υi) is bounded and since xi is a simple root, we have g′i(x) ̸= 0 on (λi, υi) and also assume that
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gi(x) is increasing. Then the equation y = gi(x) will have inverse x = fi(y) ∈ C∞ on the interval (λi, υi).

Now let φ(x) ∈ D with supp(φ) ⊂ (a, b), then we have

∫ ∞

−∞
δn(g(x))φ(x) dx =

∫ υ1

λ1

δn(g(x))φ(x) dx+

∫ υ2

λ2

δn(g(x))φ(x) dx+

+ . . .+

∫ υn

λn

δn(g(x))φ(x) dx+

∫
R\A

δn(g(x))φ(x) dx (15)

where the last integral on the right-hand side of Equation 15 equals zero.

Next, for each i , we consider

∫ υi

λi

δn(g(x))φ(x) dx =

∫ xi

λi

δn(g(x))φ(x) dx+

∫ υi

xi

δn(g(x))φ(x) dx. (16)

Making the substitution t1/ri = gi(x) or x = fi(t
1/ri) for the second integral on the right-hand side of equation

16, we have ∫ υi

xi

δn(g(x))φ(x) dx =
1

ri

∫ αi

0

δn(t)φ(fi(t
1/ri))|f ′

i(t
1/ri)|t1/ri−1 dt

where αi = g(υi). The function Φ(y) = φ(fi(y))|f ′
i(y)| is infinitely differentiable and so by Taylor’s theorem

Φ(y) =

ri−1∑
i=0

Φ(i)(0)

i!
yi +

Φ(ri)(ξy)

ri!
yri (0 < ξ < 1).

Thus,

ri

∫ υi

xi

δn(g(x))φ(x) dx =

ri−1∑
j=0

Φ(j)(0)

j!

∫ αi

0

δn(t)t
j+1
ri

−1
dt+

∫ αi

0

Φ(ri)(ξt1/ri))

ri!
δn(t)t

1/ri dt

=

ri−2∑
j=0

Φ(j)(0)

j!

∫ 1

0

τ(u)(
u

n
)

i+1
ri

−1
du+

Φ(ri−1)(0)

(ri − 1)!

∫ 1

0

τ(u) du+

+

∫ 1

0

Φ(ri)(ξ(u/n)1/ri)

ri!
τ(u)(u/n)ri du

on making the substitution nt = u for n−1 < αi. Taking the neutrix limit of
∫ υi

xi
δn(g(x))φ(x) dx , we get

N−lim
n→∞

∫ υi

xi

δn(g(x))φ(x) dx =
Φ(ri−1)(0)

2ri!
(17)

where
∫ 1

0
τ(u) du = 1

2 .

Next, consider the integral
∫ xi

λi
δn(g(x))φ(x) dx. Similarly,by making the substitution −t1/ri = gi(−x) or −
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x = fi(−t1/ri) where t1/ri ≥ 0, we have that

ri

∫ xi

λi

δn(g(x))φ(x) dx =

∫ µi

0

δn(g(−x))φ(−x) dx

=

∫ µi

0

δn((−1)st)φ(fi(−t1/s))|f ′
i(−t1/s)|t1/s−1 dt

=

∫ µi

0

δn(t)Φ(−t1/s)t1/s−1 dt

where µi = −g(λi) and Φ is defined above.

Thus, with n−1 < µi

N−lim
n→∞

∫ xi

λi

δn(g(x))φ(x) dx =
(−1)ri−1Φ(ri−1)(0)

ri!

∫ 1

0

τ(u) du

=
(−1)ri−1Φ(ri−1)(0)

2ri!
. (18)

It now follows from Equations 15–18 that

N−lim
n→∞

∫ υi

λi

δn(g(x))φ(x) dx =

{
0, ri = 2, 4, . . .

Φ(ri−1)(0)
ri!

, ri = 1, 3, . . . ,

proving the existence of the composition δ(g(x)) on the interval (λi, υi) for i = 1, 2, . . . , n, and consequently,
it follows from what we have proven that the composition δ(g(x)) exists on the interval (a, b) and equals

⟨δ(g(x)), φ(x)⟩ =
n∑

i=1

{
Φ(ri−1)(y)

}
y=0

=

n∑
i=1

{φ(fi(y))|f ′
i(y)|}

(ri−1)
⌋
y=0

=

n∑
i=1

ri−1∑
k=0

(
ri − 1

k

)
{φ(fi(y))}(k) |f (ri−k)

i (y)|
⌋
y=0

=

n∑
i=1

ri−1∑
k=0

(
ri − 1

k

) k∑
r=1

φ(r)(fi(y))Bk,r

(
f ′
i , f

′′
i , . . . , h

(k−r+1)
i

)
|f (ri−k)

i (y)|
⌋
y=0

=

n∑
i=1

ri−1∑
k=0

(
ri − 1

k

)
1

|g(ri−k)(xi)|
×

×
k∑

r=1

Bk,r

( 1

|g′(xi)|
,

1

|g′′(xi)|
, . . . ,

1

|g(k−r+1)(xi)|

)
φ(r)(xi)

=

n∑
i=1

ri−1∑
k=0

(
ri − 1

k

)
1

ri!|g(ri−k)(xi)|
×

×
k∑

r=1

(−1)rBk,r

( 1

|g′(xi)|
,

1

|g′′(xi)|
, . . . ,

1

|g(k−r+1)(xi)|

)
⟨δ(r)(x− xi), φ(x)⟩
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for all i = 1, 2, . . . , n, ri ∈ Z+ where Bk,r(x1, x2, . . . , xk−r+1) are again the exponential Bell polynomials. This
completes the proof. 2

Example 1 Let us consider the function g(x) = tan3 x. Using the notation of the proof of Theorem 1,
g1(x) = tanx has simple roots at the points x = 0,±π,±2π, . . . and we have

g1(y) = tan−1 y = y − 1

3
y3 +

1

5
y5 − 1

7
y7 + . . . ,

f ′
1(y) =

1

1 + y2
= 1− y2 + y4 − y6 + . . .

on the open interval (−∞,∞). Thus, Φ(y) = φ(tan−1 y)(1 + y2)−1 and it can be shown that Φ′′(0) =

2φ(0) + φ′′(0). It follows from the proof of Theorem 1 that

⟨δ(tan3 x), φ(x)⟩ = 1

6
Φ′′(0) =

1

3
φ(0) +

1

6
φ′′(0)

and so

δ(tan3 x) =
1

3
δ(x) +

1

6
δ′′(x)

on the open interval (−π
2 ,

π
2 ).

Example 2 As an example of Theorem 2, let us consider the g(x) = sin3 x. The equation g(x) = sinx has
simple roots at the points x = 0,±π,±2π,±3π, . . . and

f1(y) = arcsin y = y +
1

6
y3 +

3

40
y5 + . . . and |f ′

1(y)| = (1− y2)−
1
2 = 1 +

1

2
y2 +

3

8
y4 + . . .

on the open interval (−1, 1). Thus, Φ(y) = φ(arcsin y)(1−y2)−
1
2 and it can be shown as Φ′′(0) = φ(0)+φ′′(0).

It follows from the proof of the theorem that

⟨δ(sin3 x), φ(x)⟩ = 1

6
Φ′′(0) =

1

6
Φ(0) +

1

6
Φ′′(0).

on the open interval (−π, π). Since δ is an even distribution δ(− sin3 x) = δ(sin3 x) it follows by translation

δ(sin3 x) =

∞∑
n=−∞

1

6
[δ(x− nπ) + δ′′(x− nπ)].

3. More on the composition δ(g(x))

We now extend Definition 1 with the following definition given in [6].

289



ÖZÇAĞ/Turk J Math

Definition 2 Let G be a distribution in D′ , and let g be a locally summable function. We say that the
distribution G(g(x)), the neutrix composition of G and g, exists and is equal to F (x) on the interval (a, b) if
the neutrix limit

N−lim
n→∞

[∫ ∞

−∞
Gn(g(x))φ(x) dx

]
= ⟨F (x), φ(x)⟩

for all φ in D with support contained in the interval (a, b), where Gn(x) = (G ∗ δn)(x), and N is the neutrix
taken as in Definition 1.

For a summable function g(x) , the functions g+ and g− are defined by

g+(x) =

{
g(x), x ≥ 0,
0, x < 0,

and g−(x) =

{
g(x), x ≤ 0,
0, x > 0.

In accordance with the usual practice, we define the summable functions xr
+ and xr

− by

xr
+ =

{
xr, x ≥ 0,
0, x < 0,

and xr
− =

{
|x|r, x ≤ 0,
0, x > 0.

If the term infinitely differentiable function is replaced by summable function, then Proposition 1 turns out to
be as follows:

Proposition 2 Let g be a summable function and suppose that g is continuous on [a, b] and g(x) ̸= 0 on this
interval, where a < 0 < b. Then the composition δ(g+(x)) exists and

δ(g+(x)) = 0

on the interval (−∞, b), in particular δ(H(x)) = 0 on the interval (−∞,∞), where H denotes Heaviside’s
function.

Proof Let φ ∈ D′ with compact support contained in the interval (−∞, b). Then

∫ ∞

−∞
δn(g+(x))φ(x) dx =

∫ 0

−∞
δn(0)φ(x) dx+

∫ ∞

0

δn(g(x))φ(x) dx

= nτ(0)

∫ 0

−∞
φ(x) dx+ n

∫ b

0

τ(ng(x))φ(x) dx

where nτ(0)
∫ 0

−∞ φ(x) dx is either negligible or zero. Further, since g is continuous and nonzero on [0, b], we
can find an integer N such that |ng(x)| ≥ 1 for n > N. It follows that we have τ(ng(x)) = 0 for n > N. Thus,

N−lim
n→∞

∫ ∞

−∞
δn(g+(x))φ(x) dx =

= N−lim
n→∞

nτ(0)

∫ 0

−∞
φ(x) dx+ lim

n→∞
n

∫ b

0

τ(ng(x))φ(x) dx = ⟨0, φ(x)⟩
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and so δ(g+(x)) = 0. 2

Let g(x) be as in the proposition 2 and by writing h(x) = g(−x), then h(x) is continuous and nonzero
for −b ≤ x ≤ −a and so by the proposition 2.2, we have δ(h+(x)) = 0 on the interval (−∞,−a). Now replacing
x by −x we see that δ(h+(−x)) = δ(g−(x)) = 0. Thus, we reach the following result.

Corollary 1 Let g be a summable function and suppose that g is continuous and nonzero on the interval
[a, b],where a < 0 < b. Then δ(g−(x)) exists and

δ(g−(x)) = 0

on the interval (a,∞) and the result of the corollary follows.

Proof It is similar to the proof of Proposition 2. 2

Corollary 2 Let g be a summable function and suppose that g is continuous and non-zero on the interval
[a, b],where a < 0 < b. Then the composition δ(g+(x)− g−(x)) exists and

δ(g+(x)) = δ(g+(x)− g−(x)) = 0

on the interval (a, b).

Proof It is evident. 2

Example 3 Consider the function g(x) = cosx. It follows immediately from Gelfand and Shilov’s definition
and Proposition 2 that δ(cos+ x) =

∑∞
n=0 δ(x− nπ − π

2 ) and it follows from corollary 3.4 that

δ(cos+ x− cos− x) =

∞∑
n=0

δ(x− nπ − π

2
) +

∞∑
n=1

δ(x+ nπ − π

2
).

We have from Theorem 1 and Proposition 2 that δ(cos2+ x) = 0. It was proved in Example 2 that δ(sin3 x) =∑∞
n=−∞

1
6 [δ(x− nπ) + δ′′(x− nπ)] and it follows by translation and Proposition 2 that

δ(cos3 x) =

∞∑
n=−∞

1

6
[δ(x− nπ − π

2
) + δ′′(x− nπ − π

2
)]

and

δ(cos3+ x) =

∞∑
n=0

1

6
[δ(x− nπ − π

2
) + δ′′(x− nπ − π

2
)].

Of course these results hold on the real line. In the following, we consider Theorem 1 for summable function
g(x).
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Theorem 3 Let G be a summable function which is k + 1 times continuously differentiable on the interval
[a, b], where a < 0 < b. Suppose that the equation G(x) = 0 has a single simple root at the point x = 0 in the
interval [a, b]. Then if g = Gk, the composition δ(g+(x)) exists on the interval (−∞, b) and the composition
δ(g−(x)) exists on the interval (a,∞) for k = 1, 2, . . . . In particular

δ(xk
+) =

(−1)k−1

2k!
δ(k−1)(x) and δ(xk

−) =
1

2k!
δ(k−1)(x)

on the interval (−∞,∞) for k = 1, 2, . . . .

Proof The proof is slightly similar to the proof of Theorem 1. Since x = 0 is a simple root of the equation
G(x) = 0, this implies that G′(x) ̸= 0 on the interval [o, c], where 0 < c ≤ b. The equation G(x) = y will
therefore have inverse x = h(y) on the interval [0, c] and the function h will be k + 1 times continuously
differentiable. Let φ ∈ D′ with supp(φ) ⊂ (−∞, c). Then∫ ∞

−∞
δn(g+(x))φ(x) dx =

∫ 0

−∞
δn(0)φ(x) dx+

∫ ∞

0

δn(g(x))φ(x) dx =

= nτ(0)

∫ 0

−∞
φ(x) dx+

∫ ∞

0

δn(g(x))φ(x) dx

where again nτ(0)
∫ 0

−∞ φ(x) dx is either negligible or zero. By making the substitution t1/k = G(x) or

x = h(t1/k) , we have ∫ ∞

0

δn(g(x))φ(x) dx =
1

k

∫ ∞

0

δn(t)φ(h(t
1/k))|h′(t1/k)|t1/k−1 dt.

The function Ψ(y) = φ(h(y))|h′(y)| is k times continuously differentiable and so we have by Taylor’s theorem

Ψ(y) =

k−1∑
i=0

Ψ(i)(0)

i!
yi +

Ψ(k)(ξy)

k!
yk, (0 ≤ ξ ≤ 1).

Thus,

k

∫ ∞

0

δn(g(x))φ(x) dx =

k−2∑
i=0

Ψ(i)(0)

i!

∫ 1

0

nτ(u)(u/n)(i+1)/k−1 du+

+
Ψ(k−1)(0)

(k − 1)!

∫ 1

0

τ(u)u du+

∫ 1

0

Ψ(k)(ξ(u/n)1/k)

k!
nτ(u)(u/n)1/k du

where the substitution nt = u has been made. It follows that

N−lim
n→∞

∫ ∞

−∞
δn(g+(x))φ(x) dx = N−lim

n→∞

∫ ∞

0

δn(g(x))φ(x) dx

=
Ψ(k−1)(0)

k!

∫ 1

0

τ(u)u du

=
(−1)kΨ(k−1)(0)

2k!
.
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This proves the existence of δ(g+(x)) on the interval (−∞, c). We of course have δ(g+(x)) = 0 on the interval
( c2 , b) by Corollary 2. 2

Remark 2 The reader may realize that the value Ψ(k−1)(0) is exactly the same as in the proof of Theorem 2.3.
Thus, consider the particular case when G = x, G is infinitely differentiable, g+ = xk and Ψ is identical to φ,

it follows that

⟨δ(xk
+), φ(x)⟩ =

φ(k−1)(0)

2k!
=

(−1)k−1

2k!
⟨δ(k−1)(x), φ(x)⟩.

Note that δ(g−(x)) = δ(g+(−x)) the right-hand side existing above and in particular replacing x by −x we
have

δ(xk
−) =

(−1)(k−1)

2k!
δ(k−1)(−x) =

1

2k!
δ(k−1)(x). □

Corollary 3 Let G be a summable function which is k + 1 times continuously differentiable on the interval
[a, b], where a < 0 < b. Suppose that the equation G(x) = 0 has a single simple root at the point x = 0 in the
interval [a, b]. Then if g = Gk, the compositions δ(g(x)) and δ(g+(x)− g−(x)) exist on the interval (a, b) for
k = 1, 2, . . . . In particular

δ(sgn(x)|x|k) = δ(|x|k) = 0 (19)

for k = 2, 4, 6 . . . . and

δ(sgn(x)|x|k) = δ(|x|k) = (−1)k

k!
δ(k−1)(x) (20)

for k = 1, 3, 5 . . . , on the interval (−∞,∞).

Proof Writing

∫ ∞

−∞
δn(g(x))φ(x) dx =

∫ 0

−∞
δn(g(x))φ(x) dx+

∫ ∞

0

δn(g(x))φ(x) dx

=

∫ ∞

−∞
δn(g−(x))φ(x) dx+

∫ ∞

−∞
δn(g+(x))φ(x) dx−

∫ ∞

−∞
δn(0)φ(x) dx,

where the last term is either negligible or zero, it follows that

N−lim
n→∞

∫ ∞

−∞
δn(g(x))φ(x) dx = ⟨δ(g+(x)) + δ(g−(x)), φ(x)⟩

implies
δ(g(x)) = δ(g+(x)) + δ(g−(x)).

Similarly, we can simply prove that

δ(g+(x)− g−(x)) = δ(g+(x)) + δ(−g−(x))

= δ(g+(x)) + δ(g−(x)).
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Equations 19 and 20 now follow from these results on using Theorem 3. 2

It follows on using the fact that xk = xk
+ + (−1)kxk

− in the last equation above, we have

δ(xk) = δ(xk
+) + (−1)kδ(xk

−) =

{
(−1)k

k! δ(k−1)(x), k odd,
0, k even,

which is in agreement with the result given in the note and also results given in [19]. We leave the reader as an
exercise to prove that the composition δ(xµ

+) = 0 for µ > 0, µ ̸= 1, 2, . . .

Example 4 As a final example, consider g(x) = sin2 x. It follows from Theorem 1 that δ(sin2 x) = 0 on the
interval (−∞,∞). Further, for arbitrary test function φ, we have Φ(y) = φ(sin−1(y)(1− y2)−1/2 and it can be
shown that Φ′(0) = φ′(0), and Φ′′′(0) = 4φ′(0) + φ′′′(0). It follows from Theorem 3.6 and its corollaries that

⟨δ(sin2+ x), φ(x)⟩ =
1

4
Φ′(0) =

1

4
φ′(0)

⟨δ′(sin2+ x), φ(x)⟩ = − 1

24
Φ′′′(9) = −1

6
φ′(0)− 1

24
φ′′′(0)

and so

⟨δ(sin2+ x), φ(x)⟩ = −1

4
δ′(x),

⟨δ(sin2− x), φ(x)⟩ =
1

4
δ′(x),

⟨δ′(sin2+ x), φ(x)⟩ =
1

6
δ′(x) +

1

24
δ′′′(x),

⟨δ′(sin2− x), φ(x)⟩ = −1

6
δ′(x)− 1

24
δ′′′(x),

⟨δ(sgnx. sin2 x), φ(x)⟩ = −1

2
δ′(x),

⟨δ′(sgnx. sin2 x), φ(x)⟩ =
1

3
δ′(x) +

1

24
δ′′′(x)

on the interval (−∞,∞). □

Conclusion. The composition δ(g(x)) is defined for infinitely differentiable function with simple roots at
x1, x2, . . . , xn by Gelfand and Shilov. In this study, we extend their definition for an infinitely differentiable
function having distinct multiple roots via neutrices theory and also the composition δ(g(x)) is considered for
summable g(x) and defined as the neutrix limit of the regular sequence {δn(g(x))}, due to van der Corput. The
compositions δ(xs), δ(xs

+), δ(xs
−), δ(sgnx|x|s), δ(tan3 x) , and δ(cos3 x) etc. are evaluated as the applications

of the definitions.
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