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Abstract: We study the duality and norm completeness in the new classes of limitedly L-weakly compact and Dunford–
Pettis L-weakly compact operators from Banach spaces to Banach lattices.
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1. Introduction
The theory of L-weakly compact (briefly, Lwc) sets and operators was developed by P. Meyer-Nieberg in the
beginning of seventies in order to diversify the concept of weakly compact operators via imposing the Banach
lattice structure on the range of operators [18]. Dunford–Pettis sets appeared a decade later in the work [3] of
K. T. Andrews. Shortly thereafter, J. Bourgain and J. Diestel introduced limited sets and operators [6]. Since
then, L-weakly compact operators and limited operators have attracted permanent attention and inspiring
researchers. Recently, further related classes of operators were introduced and studied by several authors (see,
for example, [2, 5, 8, 9, 11–13, 17, 21–23] and references therein). Using the Meyer-Nieberg approach for the
Dunford–Pettis and for limited (instead of bounded) sets in the domain, we introduce Dunford–Pettis Lwc and
the limitedly Lwc operators. We study the duality and norm completeness in classes of these operators.

Throughout the text: vector spaces are real; operators are linear and bounded; X and Y stand for Banach
spaces, E and F for Banach lattices; BX for the closed unit ball of X ; L(X,Y ) for the space of all bounded
operators from X to Y ; X ′ for the norm-dual of X . E+ for the positive cone of E ; sol(A) :=

⋃
a∈A

[−|a|, |a|]

for the solid hull of A ⊆ E ; Ea := {x ∈ E : |x| ≥ xn ↓ 0 ⇒ ∥xn∥ → 0} for the order continuous part of E ; and

Lr(E,F ) for the space span(L+(E,F )) of regular operators in L(E,F ) . We identify X with its image X̂ in
X ′′ under the canonical embedding x̂(f) = f(x) . For further terminology and notations see [1, 16, 19].

The paper is organized as follows. In Section 2, we introduce Dunford–Pettis L weakly and limitedly L
weakly compact operators, and investigate their basic properties. Among other things, we characterize Dun-
ford–Pettis sets via limited sets in Theorem 1 and establish semiduality for arbitrary limitedly Lwc operators
in Theorem 4. Section 3 is devoted to complete norms on spaces of such operators in Banach lattice setting.
∗Correspondence: lanagor71@gmail.com
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2. Main definitions and basic properties
In this section, we collect main definitions, introduce the Dunford–Pettis Lwc and limitedly Lwc operators, and
study their basic properties. We begin with the following crucial definition belonging to P. Meyer-Nieberg [19].

Definition 1 A subset A of F is called an Lwc set whenever each disjoint sequence in sol(A) is norm-null. A
bounded operator T : X → F is an Lwc operator (briefly, T ∈ Lwc(X,F )) if T (BX) is an Lwc subset of F .

It can be easily seen that BE is not Lwc unless dim(E) < ∞ . For every Lwc subset A of E , we have
A ⊆ Ea . Indeed, otherwise there is a ∈ A with |a| ∈ E \ Ea , and hence there exists a disjoint sequence (xn)

in [0, |a|] ⊆ sol(A) with ∥xn∥ ̸→ 0 . The next important fact goes back to Meyer-Nieberg (cf. [1, Thm.5.63] and
[7, Prop.2.2] for more general setting).

Proposition 1 Let A ⊆ E and B ⊆ E′ be nonempty bounded sets. Then every disjoint sequence in sol(A) is
uniformly null on B iff every disjoint sequence in sol(B) is uniformly null on A .

We include a proof of the following certainly well known fact.

Lemma 1 Let L be a nonempty bounded subset of F ′ . TFAE.

i) L is an Lwc subset of F ′ .

ii) Each disjoint sequence in BF is uniformly null on L .

iii) Each disjoint sequence in BF ′′ is uniformly null on L .

Proof Since ∥f∥ = sup{|f(x)| : x ∈ BX} = sup{|y(f)| : y ∈ BX′′} then (fn) in X ′ converges uniformly
on BX iff it converges uniformly on BX′′ under the identification of f ∈ X ′ with f̂ ∈ X ′′′ . Now, applying
Proposition 1 first to A = BF and B = L , and then to A = L and B = BF ′′ , we obtain that both ii) and iii)
are equivalent to the condition that every disjoint sequence in sol(L) is norm null, which means that L is an
Lwc subset of F ′ . 2

For the equivalence i) ⇐⇒ ii) of the next characterization of Lwc sets, we refer to [19, Prop.3.6.2], whereas the
equivalence i) ⇐⇒ iii) can be found in [4, Lem.4.2]

Proposition 2 For a nonempty bounded subset A of E , TFAE.

i) A is an Lwc set.

ii) For every ε > 0 , there exists uε ∈ Ea
+ such that A ⊆ [−uε, uε] + εBE .

iii) For every ε > 0 , there exists an Lwc subset Aε of E with A ⊆ Aε + εBE .

A subset A of E is called almost order bounded whenever, for every ε > 0 , there is uε ∈ E+ such that
A ⊆ [−uε, uε] + εBE . Every relatively compact subset of E is almost order bounded. By Proposition 2, each
almost order bounded subset of Ea is an Lwc set.

The following notions are due to K. Andrews, J. Bourgain, and J. Diestel.
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Definition 2 A bounded subset A of X is called:

a) a Dunford–Pettis set (briefly, A is DP) if (fn) is uniformly null on A for each w-null (fn) in X ′ (see [3,
Thm.1]).

b) a limited set if (fn) is uniformly null on A for each w∗ -null (fn) in X ′ (see [6]).

In reflexive spaces, DP sets agree with limited sets. In general,

A is relatively compact =⇒ A is limited =⇒ A is DP.

Limited sets are relatively compact in separable and in reflexive Banach spaces [6]. By the Josefson–Nissenzweig

theorem [15, 20], BX is not limited in X unless dim(X) < ∞ . However, B̂c0 is limited in c′′0 = ℓ∞ by Phillip’s
lemma (cf., [1, Thm.4.67]). Bc0 is DP in c0 because c′0 = ℓ1 has the Schur property. The DP sets turn to
limited while embedded in the bi-dual.

Theorem 1 Let A ⊆ X . TFAE:

i) A is a DP subset of X .

ii) Â is limited in X ′′ .

Proof i) =⇒ ii) Assume A is a DP subset of X . Let fn
w∗

→ 0 in X ′′′ . Then fn|X := fn|X̂
w→ 0 in X ′ , since

g(fn|X) = ĝ(f̂n|X) = ĝ(fn) = fn(g) → 0 for each g ∈ X ′′ . By the assumption, (fn|X) is uniformly null on A ,

and hence (fn) is uniformly null on Â as desired. Therefore, Â is limited in X ′′ .

ii) =⇒ i) Suppose Â is limited in X ′′ . Let fn
w→ 0 in X ′ . Then f̂n

w∗

→ 0 in X ′′′ and, as Â is limited,

(f̂n) is uniformly null on Â . Hence, supa∈A |fn(a)| = supa∈A |â(fn)| = supa∈A |f̂n(â)| = supb∈Â |f̂n(b)| → 0 .
Therefore, (fn) is uniformly null on A , which means that A is DP in X . 2

2.1. Recently, K. Bouras, D. Lhaimer, and M. Moussa introduced and studied a-Lwc operators from X to
F carrying weakly compact sets to Lwc sets [5]. Here, we investigate operators carrying limited, or else the
Dunford–Pettis subsets of X to Lwc sets of F .

Theorem 2 Let T ∈ L(X,F ) . TFAE.

i) T takes limited subsets of X onto Lwc subsets of F .

ii) T takes compact subsets of X onto Lwc subsets of F .

iii) {Tx} is an Lwc subset of F for each x ∈ X .

iv) T (X) ⊆ F a .

v) T ′fn
w∗

→ 0 in X ′ for each disjoint bounded sequence (fn) in F ′ .
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Proof The implications i) =⇒ ii) =⇒ iii) are trivial, while iii) =⇒ iv) yields because each Lwc subset
of F lies in F a .

iv) =⇒ v) : Let (fn) be a disjoint bounded sequence in F ′ and x ∈ X . Since T (X) ⊆ F a , {Tx} is an
Lwc set, and hence T ′fn(x) = fn(Tx) → 0 by Proposition 1. As x ∈ X is arbitrary, (T ′fn) is w∗ -null.

v) =⇒ i) : Assume in contrary T (L) is not an Lwc set in F for some nonempty limited subset L of X .
By Proposition 1, there exists a disjoint sequence (gn) of BF ′ that is not uniformly null on T (L) . Therefore,

(T ′gn) is not uniformly null on L violating T ′gn
w∗

→ 0 and the limitedness of L . The obtained contradiction
completes the proof. 2

2.2. Because of Theorem 2 i) , we prefer to call operators satisfying the equivalent conditions of Theorem 2
by l-Lwc operators (they may equally deserve to be called compactly Lwc operators in view of Theorem 2 ii)).
While preparing the paper, we have learned that the operators satisfying of Theorem 2 v) have been already
introduced and studied by F. Oughajji and M. Moussa under the name weak L-weakly compact operators [21]
(this name looks more suitable for a-Lwc operators rather than for l-Lwc operators).

Definition 3 An operator T : X → F is called:

a) a Dunford–Pettis L-weakly compact (briefly, T ∈ DP-Lwc(X,F )), if T carries DP subsets of X onto Lwc
subsets of F .

b) limitedly L-weakly compact (briefly, T ∈ l-Lwc(X,F )), if T carries limited subsets of X onto Lwc subsets
of F .

Clearly, DP-Lwc(X,F ) and l-Lwc(X,F ) are vector spaces. Theorem 2 ii) implies the second inclusion of the
next formula, whereas the first one is trivial.

Lwc(X,F ) ⊆ a-Lwc(X,F ) ⊆ l-Lwc(X,F ). (1)

A Banach lattice E has the dual disjoint w∗ -property (shortly, E ∈ (DDw∗P)) if each disjoint bounded
sequence in E′ is w∗ -null. We include the following consequence of Theorem 2.

Corollary 1 TFAE.

i) F ∈ (DDw∗P) .

ii) IF ∈ l-Lwc(F ) .

iii) Each limited subset of F is an Lwc-set.

iv) l-Lwc(F ) = L(F ) .

v) l-Lwc(X,F ) = L(X,F ) for each Banach space X .

Proof The equivalence i) ⇐⇒ ii) follows from Theorem 2.
The implications v) =⇒ iv) =⇒ ii) ⇐⇒ iii) are trivial.
iii) =⇒ v) : Let T ∈ L(X,F ) and let L be limited subset of X . Then T (L) is a limited subset of F ,

and hence T (L) is an Lwc subset of F . Thus, T ∈ l-Lwc(X,F ) , as desired. 2

The following result is a version of Theorem 2.
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Theorem 3 Let T ∈ L(X,F ′) . TFAE.

i) T ∈ l-Lwc(X,F ′) .

ii) T takes compact subsets of X onto Lwc subsets of F ′ .

iii) {Tx} is an Lwc subset of F ′ for each x ∈ X .

iv) T (X) ⊆ (F ′)a .

v) T ′fn
w∗

→ 0 in X ′ for each disjoint bounded sequence (fn) in F ′′ .

vi) T ′ĝn
w∗

→ 0 in X ′ for each disjoint bounded sequence (gn) in F .

Proof The equivalence i) ⇐⇒ ii) ⇐⇒ iii) ⇐⇒ iv) ⇐⇒ v) follows from Theorem 2, and the implication
v) =⇒ vi) is trivial.

vi) =⇒ i) : Assume in contrary T (L) is not an Lwc-set in F ′ for some nonempty limited subset L of
X . By Lemma 1, there exists a disjoint sequence (gn) of BF such that (ĝn) is not uniformly null on T (L) .

Therefore, (T ′ĝn) is not uniformly null on L , which is absurd because of T ′ĝn
w∗

→ 0 in X ′ and L is limited in
X . The obtained contradiction completes the proof. 2

2.3. Following G. Emmanuele [10], a Banach space X is said to possess the Bourgain–Diestel property if each
limited subset of X is relatively weakly compact, and an operator T : X → Y is called a Bourgain–Diestel
operator (briefly, T ∈ BD(X,Y )) if T carries limited sets onto relatively weakly compact sets. The weakly
compactness of Lwc sets, Definitions 2, 3, and Theorem 2 together imply

Lwc(X,F ) ⊆ DP-Lwc(X,F ) ⊆ l-Lwc(X,F ) ⊆ BD(X,F ). (2)

All inclusions in (2) are generally proper by items d)–f) of Example 1.

Example 1 a) Idℓ1 ∈ a-Lwc(ℓ1) \ Lwc(ℓ1) (see [5, p.1435]).

b) Idℓ2 ∈ l-Lwc(ℓ2) \ a-Lwc(ℓ2) since limited sets in ℓ2 coincide with relatively compact sets that are in turn
l-Lwc sets in ℓ2 , while Bℓ2 is weakly compact but not an l-Lwc set.

c) It is easy to see that

T := Idc0 ∈ l-Lwc(c0), yet T ′′ = Id′′
c0 = Idℓ∞ /∈ l-Lwc(ℓ∞) = l-Lwc(c′′0).

d) Since l-Lwc(ℓ2) = DP-Lwc(ℓ2) due to reflexivity of ℓ2 , item b) implies Idℓ2 ∈ DP-Lwc(ℓ2) \ a-Lwc(ℓ2) . We
have no example of an operator T ∈ a-Lwc(X,F ) \ DP-Lwc(X,F ) .

e) Idc0 ∈ l-Lwc(c0) \ DP-Lwc(c0) as Bc0 is not Lwc yet is a DP set in c0 .

f) Idc ∈ BD(c)\ l-Lwc(c) since limited sets in c coincide with relatively compact sets, while ca = c0 $ c implies
Idc /∈ l-Lwc(c) by Theorem 2.

g) Combining examples d)–f) in one diagonal operator (3× 3) -matrix:

Lwc(ℓ2 ⊕ c0 ⊕ c) $ DP-Lwc(ℓ2 ⊕ c0 ⊕ c) $ l-Lwc(ℓ2 ⊕ c0 ⊕ c) $ BD(ℓ2 ⊕ c0 ⊕ c).
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2.4. The next result is a consequence of Theorem 2.

Corollary 2 Let T ∈ L(X,F ) . The following four conditions are equivalent:

i) T ′′ ∈ l-Lwc(X ′′, F ′′) .

ii) T ′′ takes compact subsets of X ′′ to Lwc subsets of F ′′ .

iii) T ′′(X ′′) ⊆ (F ′′)a .

iv) T ′′′fn
w∗

→ 0 in X ′′′ for each disjoint bounded sequence (fn) in F ′′′ .

Each of above equivalent conditions implies:

v) T ∈ DP-Lwc(X,F ) .

The condition v) in turn implies:

vi) T ∈ l-Lwc(X,F ) .

Proof Theorem 2 implies i) ⇐⇒ ii) ⇐⇒ iii) ⇐⇒ iv) .

i) =⇒ v) : Let A be a DP subset of X . By Theorem 1, Â is limited in X ′′ . Then T̂ (A) = T ′′(Â) is
an Lwc subset of F ′′ , and hence T (A) is an Lwc subset of F . The latter means T ∈ DP-Lwc(X,F ) .

The implication v) =⇒ vi) is trivial. 2

Note that, T ∈ l-Lwc(X,F ) does not imply T ′′ ∈ l-Lwc(X ′′, F ′′) in general (see Example 1 c)). If T ′′ ∈
DP-Lwc(X ′′, F ′′) then T ′′ ∈ l-Lwc(X ′′, F ′′) by (2), and hence T ∈ DP-Lwc(X,F ) by Corollary 2. We have no
example of an operator T ∈ DP-Lwc(X,F ) such that T ′′ /∈ DP-Lwc(X ′′, F ′′) .

2.5. The following definition [21, Def.3.1] was taken a starting point in [21]. In our approach, this definition
is a derivation of Theorem 2 iv) , similarly to the classical approach to Mwc operators, which were introduced
in [18] as a derivation of Lwc operators.

Definition 4 An operator T : E → Y is limitedly Mwc (briefly, T ∈ l-Mwc(E, Y )), if Txn
w→ 0 for every

disjoint bounded sequence (xn) in E .

Recall that E′ is a KB space iff every disjoint bounded sequence in E is w-null (cf. [1, Thm.4.59] and [19,
2.4.14]). Consequently, IE is l-Mwc iff E′ is a KB-space. Now, we discuss the semiduality for l-Lwc and l-Mwc
operators. It was proved in [21] that T ∈ l-Mwc+(E,F ) iff T ′ ∈ l-Lwc+(F ′, E′) . The next theorem is an
extension of [21, Thm.4.13], where only the case of positive operators is considered.

Theorem 4 The following statements hold:

i) T ′ ∈ l-Mwc(F ′, X ′) =⇒ T ∈ l-Lwc(X,F ) .

ii) T ′ ∈ l-Lwc(Y ′, E′) ⇐⇒ T ∈ l-Mwc(E, Y ) .
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Proof i) Let T ′ ∈ l-Mwc(F ′, X ′) , and let (fn) be disjoint bounded in F ′ . Then T ′fn
w→ 0 , and hence

T ′fn
w∗

→ 0 . Theorem 2 implies T ∈ l-Lwc(X,F ) .
ii) (⇐=) : Let T ∈ l-Mwc(E, Y ) . According to Theorem 2, to demonstrate that T ′ ∈ l-Lwc(Y ′, E′) , we

need to prove that {T ′f} is an l-Lwc subset of E′ for each f ∈ Y ′ . Let f ∈ Y ′ . By Lemma 1, it suffices to show
f(Txn) → 0 for each disjoint sequence (xn) in BE . So, let (xn) be disjoint in BE . Since T ∈ l-Mwc(E, Y )

then Txn
w→ 0 , and hence f(Txn) → 0 , as desired.

(=⇒) : Let T ′ ∈ l-Lwc(Y ′, E′) . Then {T ′g} is an Lwc subset of E′ for each g ∈ Y ′ by Theorem 4. It
follows from Lemma 1 that g(Txn) = T ′g(xn) → 0 for each disjoint bounded sequence (xn) in E . Since g ∈ Y ′

is arbitrary, Txn
w→ 0 for every disjoint bounded (xn) in E , and therefore T ∈ l-Mwc(E, Y ) . 2

Note that a similar semiduality was established in [5, Thm.2.5] for almost L-weakly compact operators, and in
[17, Thm.2.3] for order L-weakly compact operators.

2.6. Although we have no sequential characterization of DP-Lwc operators like the characterization of l-Lwc
operators given by Theorem 2 v) , we include the following result in this direction.

Theorem 5 Let T ∈ L(X,F ) . TFAE.

i) T ′′ ∈ DP-Lwc(X ′′, F ′′) .

ii) T ′fn
w→ 0 in X ′ for each disjoint (fn) in BF ′ .

Proof i) =⇒ ii) : Let (fn) be a disjoint sequence in BF ′ . Suppose (T ′fn) is not w-null in X ′ . Then

f̂n(T
′′g) = T ′′g(fn) = g(T ′fn) ̸→ 0 for some g ∈ X ′′ , and hence (f̂n) is not uniformly null on {T ′′g} . Lemma

1 implies that {T ′′g} is not an Lwc subset of F ′′ . However, {g} is a DP subset of X ′′ and then {T ′′g} must
be Lwc in F ′′ by the condition i) The obtained contradiction proves the implication.

ii) =⇒ i) : Suppose in contrary T ′′ /∈ DP-Lwc(X ′′, F ′′) . Then T ′′(A) is not Lwc in F ′′ for some DP

subset A of X ′′ , and hence (f̂n) is not uniformly null on T ′′(A) for some disjoint sequence (fn) in BF ′ , by

Lemma 1. Thus, (T̂ ′fn) = (T ′′′f̂n) is not uniformly null on A . By ii) , T ′fn
w→ 0 in X ′ , and hence T̂ ′fn

w→ 0 in

X ′′′ . Since A is a DP subset of X ′′ then (T̂ ′fn) is uniformly null on A . The obtained contradiction completes
the proof. 2

2.7. Clearly, DP-Lwc(X,F ) , l-Lwc(X,F ) , and l-Mwc(E, Y ) are vector spaces. It is natural to ask whether
or not DP-Lwc(X,F ) , l-Lwc(X,F ) , and l-Mwc(E, Y ) are Banach spaces under the operator norm. The answer
is affirmative.

Proposition 3 Let T ∈ L(X,F ) and let (Tn) be a sequence in DP-Lwc(X,F ) satisfying Tn
∥·∥→ T . Then

T ∈ DP-Lwc(X,F ) .

Proof Let D be a DP subset of X . WLOG D ⊆ BX . Take an arbitrary ε > 0 and pick k ∈ N with
∥T − Tk∥ ≤ ε . Since Tk ∈ DP-Lwc(X,F ) then Tk(D) is an Lwc subset of F . As T (D) ⊆ Tk(D) + εBF ,
Proposition 2 implies that T (D) is an Lwc subset of F , hence T ∈ DP-Lwc(X,F ) . 2
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Although the next proposition has a similar proof as the proof of Proposition 3, we give an alternative one.

Proposition 4 Let T ∈ L(X,F ) and let (Tn) be a sequence in l-Lwc(X,F ) satisfying Tn
∥·∥→ T . Then

T ∈ l-Lwc(X,F ) .

Proof Let (fn) be disjoint bounded in F ′ , and x ∈ X . By Theorem 2, we need to show T ′fn(x) → 0 . Let
ε > 0 . Pick any k ∈ N with ∥T − Tk∥ ≤ ε . Since Tk ∈ l-Lwc(X,F ) then |T ′

kfn(x)| ≤ ε for n ≥ n0 . As ε > 0

is arbitrary, it follows from
|T ′fn(x)| ≤ |T ′fn(x)− T ′

kfn(x)|+ |T ′
kfn(x)| ≤

∥T ′ − T ′
k∥∥fn∥∥x∥+ |T ′

kfn(x)| ≤ (∥fn∥∥x∥+ 1)ε (∀n ≥ n0)

that T ′fn(x) → 0 . 2

Proposition 5 Let T ∈ L(E, Y ) and let (Tn) be a sequence in l-Mwc(E, Y ) satisfying Tn
∥·∥→ T . Then

T ∈ l-Mwc(E, Y ) .

Proof By Theorem 4, l-Lwc(Y ′, E′) ∋ T ′
n

∥·∥→ T ′ . By Proposition 4, we have T ′ ∈ l-Lwc(Y ′, E′) . Then
T ∈ l-Mwc(E, Y ) by Theorem 4. 2

Corollary 3 Let E be a Banach lattice. The following holds.

i) l-Lwc(E) is a closed right ideal in L(E) (and hence a subalgebra of L(E)) , and it is unital iff IE is l-Lwc.

ii) l-Mwc(E) is a closed left ideal in L(E) (and hence a subalgebra of L(E)) , and it is unital iff IE is l-Mwc.

Proof i) l-Lwc(E) is a closed subspace of L(E) by Proposition 4. As bounded operators carry limited sets
onto limited sets, l-Lwc(E) is a right ideal in L(E) . The condition on IE making algebra l-Lwc(E) unital is
trivial.

ii) By Proposition 5, l-Mwc(E) is a closed subspace of L(E) . It remains to show that l-Mwc(E) is
a left ideal in L(E) . Let T ∈ l-Mwc(E) and S ∈ L(E) . Then T ′ ∈ l-Lwc(E′) , and hence, i) implies
(ST )′ = T ′S′ ∈ l-Lwc(E′) . Now, ST ∈ l-Mwc(E) by Theorem 4. 2

3. The Banach lattice case
In the Banach lattice setting, we investigate the completeness in the regular norm of linear spans of positive
operators belonging to the classes introduced in Section 2. We begin with some technical notions.

3.1. Let ∅ ̸= P ⊆ L(E,F ) . The set P is said to satisfy the domination property whenever 0 ≤ S ≤ T and
T ∈ P imply S ∈ P . We say that T ∈ L(E,F ) is P -dominated, if there exists an U ∈ P such that ±T ≤ U ,
and denote P+ := P ∩ L+(E,F ) .

Proposition 6 Let P ⊆ L(E,F ) , P ± P ⊆ P ̸= ∅ , and T ∈ L(E,F ) . Then the following holds.
i) T ∈ span(P+) ⇐⇒ T is a P-dominated operator from P .
ii) Assume the modulus |T | of T exists in L(E,F ) and P possesses the domination property. Then

T ∈ span(P+) ⇐⇒ |T | ∈ P .
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Proof i) Let T ∈ span(P+) . WLOG, T = T1 − T2 , where T1, T2 ∈ P+ . P ± P ⊆ P implies T ∈ P and
U = T1 + T2 ∈ P . From ±T ≤ U , we obtain that T is P -dominated.

Now, let T ∈ P be P -dominated. Take U ∈ P such that ±T ≤ U . Since T = U − (U − T ) , and both
U and U − T are in P+ then T ∈ span(P+) .

ii) First suppose |T | ∈ P . Since T = T+ − T− , 0 ≤ T± ≤ |T | ∈ P , the domination property implies
that T+ and T− are positive operators in P , and hence T = T+ − T− ∈ span(P+) .

Now, suppose T ∈ span(P+) . Then there exist T1, T2 ∈ P+ satisfying T = T1 − T2 . Since 0 ≤ T+ ≤ T1

and 0 ≤ T− ≤ T2 , the domination property implies T+, T− ∈ P . Hence, |T | = T+ + T− ∈ P . 2

Proposition 7 Let F be Dedekind complete, and let P be a subspace in L(E,F ) possessing the domination
property. Then span(P+) is an order ideal in the Dedekind complete vector lattice Lr(E,F ) .

Proof Since F is Dedekind complete, Lr(E,F ) is a Dedekind complete vector lattice. By Proposition 6 ii) ,
T ∈ span(P+) =⇒ |T | ∈ span(P+) , and hence span(P+) is a vector sublattice of Lr(E,F ) . Since P has the
domination property, span(P+) is an order ideal in Lr(E,F ) . 2

3.2. The following proposition is contained in [21, Thm.3.6 and Thm.4.6].

Proposition 8 Let operators S, T ∈ L(E,F ) satisfy ±S ≤ T . Then:

i) T ∈ l-Lwc(E,F ) =⇒ S ∈ l-Lwc(E,F ) .

ii) T ∈ l-Mwc(E,F ) =⇒ S ∈ l-Mwc(E,F ) .

We include here the following domination result for DP-Lwc operators.

Proposition 9 Let operators S, T ∈ L(E,F ) satisfy 0 ≤ S ≤ T . If T ′′ ∈ DP-Lwc(E′′, F ′′) then S′′ ∈
DP-Lwc(E′′, F ′′) .

Proof Let (fn) be a disjoint sequence in BF ′ . Then (|fn|) is also disjoint in BF ′ , and hence T ′|fn|
w→ 0 by

Theorem 5. It follows from

|g(S′fn)| ≤ |g|(|S′fn|) ≤ |g|(S′|fn|) ≤ |g|(T ′|fn|) → 0 (∀g ∈ E′′)

that S′fn
w→ 0 . Using Theorem 5 again, we get S′′ ∈ DP-Lwc(E′′, F ′′) . 2

The next proposition follows from Proposition 6 ii) by Proposition 8.

Proposition 10 Let an operator T ∈ L(E,F ) possess the modulus. Then

i) T ∈ span(l-Lwc+(E,F )) iff |T | ∈ l-Lwc(E,F ) .

ii) T ∈ span(l-Mwc+(E,F )) iff |T | ∈ l-Mwc(E,F ) .
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3.3. We conclude the paper with some algebraic aspects concerning the l-Lwc and l-Mwc operators. We need
the following lemma.

Lemma 2 Let P be closed in the operator norm subspace of L(E) . Then ∥T∥r-P := inf{∥S∥ : ±T ≤ S ∈ P}
defines a norm on span(P+) such that ∥T∥r-P ≥ ∥T∥r ≥ ∥T∥ for T ∈ span(P+) , where ∥T∥r = inf{∥S∥ : ±T ≤
S ∈ L(E)} is the regular norm. Moreover,

(
span(P+), ∥ · ∥r-P

)
is a Banach space.

Proof It should be clear that ∥ · ∥r-P is a norm satisfying ∥ · ∥r-P ≥ ∥ · ∥r ≥ ∥ · ∥ . Take a sequence (Tn) in
span(P+) that is Cauchy in ∥ · ∥r-P , say Tn = Gn−Rn for some Gn, Rn ∈ P+ . WLOG, ∥Tn+1−Tn∥r-P < 2−n

for all n ∈ N . As ∥ · ∥r-P ≥ ∥ · ∥ , there exists T ∈ L(E) such that ∥T − Tn∥ → 0 . Since P is closed in the
operator norm, T ∈ P . Pick Sn ∈ P with ∥Sn∥ < 2−n and ±(Tn+1 − Tn) ≤ Sn . Then

Tn+1(x
+)− Tn(x

+) ≤ S(x+) and − Tn+1(x
−) + Tn(x

−) ≤ S(x−) (3)

for each x ∈ E . Summing up the inequalities in (3) gives Tn+1x − Tnx ≤ Sn|x| . Replacing x by −x gives
Tnx− Tn+1x ≤ Sn|x| , and hence

|(Tn+1 − Tn)x| ≤ Sn|x| (∀x ∈ E). (4)

As P is closed in the operator norm, Qn :=
∞∑

k=n

Sk ∈ P for all n . By (4),

|(T − Tn)x| = lim
k→∞

|(Tk − Tn)x| ≤
∞∑

k=n

|(Tk+1 − Tn)x| ≤ Qn|x| (x ∈ E),

and hence ±(T − Tn) ≤ Qn . Then

−Qn ≤ (T − Tn) ≤ Qn and 0 ≤ (T − Tn) +Qn

for all n ∈ N . Therefore,

T = [(T − Tn) +Qn] + [Tn −Qn] = [(T − Tn) +Qn +Gn]− [Rn +Qn] ∈ span(P+),

and hence (T − Tn) ∈ span(P+) for all n ∈ N . As ∥T − Tn∥r-P ≤ ∥Qn∥ < 21−n , we conclude Tn
∥·∥r-P−→ T . 2

Theorem 6 The following statements hold:

i) span(l-Lwc+(E)) (resp., span(l-Mwc+(E)) ) is a subalgebra of Lr(E) .

Moreover,
span(l-Lwc+(E)) = Lr(E) ⇐⇒ IE ∈ l-Lwc(E), (5)

span(l-Mwc+(E)) = Lr(E) ⇐⇒ IE ∈ l-Mwc(E). (6)

ii) If E is Dedekind complete then span(l-Lwc+(E)) (resp., span(l-Mwc+(E)) is a closed order ideal of
the Banach lattice (Lr(E), ∥ · ∥r) .
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Proof We give the proof in the case of span(l-Lwc+(E)) . Arguments for span(l-Mwc+(E)) are analogues.
i) It follows from Corollary 3 that span(l-Lwc+(E)) is a right ideal and hence is a subalgebra of Lr(E) .

Formulas (5) and (6) follow from Corollary 3.

ii) By Proposition 10, span(l-Lwc+(E)) is a Riesz subalgebra of Lr(E) . Proposition 7 implies that
span(l-Lwc+(E)) is an order ideal of Lr(E) . Since ∥T∥r = ∥ |T | ∥ = ∥T∥r-l-Lwc(E) for T ∈ span(l-Lwc+(E)) ,
we obtain that span(l-Lwc+(E)) is a norm closed order ideal in (Lr(E), ∥ · ∥r) by Proposition 4 and Lemma
2. 2
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