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Abstract: In this paper, we introduce in a braided setting the notion of left module for an invertible 1-cocycle and we
prove some categorical equivalences between categories of modules associated to an invertible 1-cocycle and categories
of modules associated to Hopf braces.
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1. Introduction
Hopf braces were introduced recently in [3] as the linearisation of skew braces given in [6]. A skew brace
consists of two different group structures, denoted as (T, ⋄) and (T, ◦) , defined on the same set T . They satisfy
∀ a, b, c ∈ T the compatibility condition

a ◦ (b ⋄ c) = (a ◦ b) ⋄ a⋄ ⋄ (a ◦ c),

where a⋄ represents the inverse with respect to ⋄ . Thus, a Hopf brace comprises two structures of Hopf algebras
defined on the same object, sharing a common coalgebra structure and satisfying the same compatibility
condition that generalizes the previous identity. The relevance of these structures comes from the fact that
provide solutions of the Yang-Baxter equation. As pointed out in [3], they establish the right setting for
considering left symmetric algebras as Lie-theoretical analogs of the notion of brace introduced by W. Rump
in [9]. Moreover, it is noteworthy that there exists a profound connection between Hopf braces and invertible
1-cocycles. In fact, the category of Hopf braces is equivalent to the category of invertible 1-cocycles.

Thus, invertible 1-cocycles are nothing more than coalgebra isomorphisms between Hopf algebras that
share the underlying coalgebra and that are related by a module algebra structure.

As long as we are dealing with Hopf-type structures, we are somehow forced to have a deep look into
their categories of modules for a complete overview. For example, in [5], the author introduces the category
of left modules for a Hopf brace in order to prove Fundamental Theorem of Hopf modules (see, for example
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[1, 11]) in the Hopf brace setting. This notion of module for a Hopf brace is weaker than that introduced by
H. Zhu in [12] and in the cocommutative setting both notions are equivalent. The main difference between the
two definitions is the following: The Hopf brace with the two associated products is an example of module in
the sense of [5] while with the definition proposed by Zhu that property only holds when the underlying object
of the Hopf brace endowed with a particular action is an object belonging to a class of cocommutativity in the
sense of [2]. In other words, under certain circumstances, for example, the lack of cocommutativity, the category
of left modules over a Hopf brace introduced by Zhu may not contain the obvious object as it happens always
in the case of Hopf algebras.

Hence, the primary goal of this article is to identify the suitable notion of a module associated to an
invertible 1-cocycle. This identification will enable the extension of the established categorical equivalence
between Hopf braces and invertible 1-cocycles to their respective categories of modules. It’s essential to note
that, in our context, the definition of a module associated with a Hopf brace aligns with the one introduced in
[5].

The paper is organized as follows: The second section presents the basic notions that we will need in
the rest of the paper and the main results are provided in the third section. More concretely, working in a
braided setting, in Section 3, we introduce the notion of module for an invertible 1-cocycle and the category of
these objects (see Definition 10). Next, we prove some functorial results and show that under symmetry and
cocommutativity conditions the category of modules associated to an invertible 1-cocycle is symmetric monoidal
(see Theorem 5). Finally, in Theorems 6, 7 and Corollary 1, we obtain the desired categorical equivalences
between categories of modules associated to an invertible 1-cocycle and categories of modules associated to a
Hopf brace.

2. Preliminaries
Throughout this paper, C denotes a strict braided monoidal category with tensor product ⊗ , unit object K ,
and braiding c . Recall that a monoidal category is a category C together with a functor ⊗ : C×C → C , called
tensor product, an object K of C , called the unit object, and families of natural isomorphisms

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P ), rM :M ⊗K →M, lM : K ⊗M →M,

in C , called associativity, right unit and left unit constraints, respectively, satisfying the Pentagon Axiom and
the Triangle Axiom, i.e.,

aM,N,P⊗Q ◦ aM⊗N,P,Q = (idM ⊗ aN,P,Q) ◦ aM,N⊗P,Q ◦ (aM,N,P ⊗ idQ),

(idM ⊗ lN ) ◦ aM,K,N = rM ⊗ idN ,

where for each object X in C , idX denotes the identity morphism of X (see [8]). A monoidal category is
called strict if the constraints of the previous paragraph are identities. It is a well-known fact (see for example
[7]) that every nonstrict monoidal category is monoidal equivalent to a strict one. This lets us treat monoidal
categories as if they were strict and, as a consequence, the results proved in a strict setting hold for every
nonstrict monoidal category, for example the category F -Vect of vector spaces over a field F , or the category
R -Mod of left modules over a commutative ring R . For simplicity of notation, given objects M , N , P in C

and a morphism f :M → N , in most cases, we will write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .
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A braiding for a strict monoidal category C is a natural family of isomorphisms cM,N :M ⊗N → N ⊗M
subject to the conditions

cM,N⊗P = (N ⊗ cM,P ) ◦ (cM,N ⊗ P ), cM⊗N,P = (cM,P ⊗N) ◦ (M ⊗ cN,P ).

A strict braided monoidal category C is a strict monoidal category with a braiding. Note that, as a
consequence of the definition, the equalities cM,K = cK,M = idM hold, for all object M of C . If the braiding
satisfies that cN,M ◦ cM,N = idM⊗N , for all M , N in C , we will say that C is symmetric. In this case, we call
the braiding c a symmetry for the category C .

Definition 1 An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and ηA : K → A

(unit), µA : A ⊗ A → A (product) are morphisms in C such that µA ◦ (A ⊗ ηA) = idA = µA ◦ (ηA ⊗ A) ,
µA ◦ (A ⊗ µA) = µA ◦ (µA ⊗ A) . Given two algebras A = (A, ηA, µA) and B = (B, ηB , µB) , a morphism
f : A→ B in C is an algebra morphism if µB ◦ (f ⊗ f) = f ◦ µA , f ◦ ηA = ηB .

If A , B are algebras in C , the tensor product A ⊗ B is also an algebra in C where ηA⊗B = ηA ⊗ ηB

and µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).

Definition 2 A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C and εD : D → K

(counit), δD : D → D ⊗D (coproduct) are morphisms in C such that (εD ⊗D) ◦ δD = idD = (D ⊗ εD) ◦ δD ,
(δD⊗D)◦ δD = (D⊗ δD)◦ δD. If D = (D, εD, δD) and E = (E, εE , δE) are coalgebras, a morphism f : D → E

in C is a coalgebra morphism if (f ⊗ f) ◦ δD = δE ◦ f , εE ◦ f = εD.

Given D , E coalgebras in C , the tensor product D⊗E is a coalgebra in C where εD⊗E = εD ⊗ εE and
δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Definition 3 Let D = (D, εD, δD) be a coalgebra and let A = (A, ηA, µA) be an algebra. By H(D,A) , we
denote the set of morphisms f : D → A in C . With the convolution operation f ∗ g = µA ◦ (f ⊗ g) ◦ δD ,
H(D,A) is an algebra where the unit element is ηA ◦ εD = εD ⊗ ηA .

Definition 4 Let A be an algebra. The pair (M,φM ) is a left A-module if M is an object in C and
φM : A⊗M →M is a morphism in C satisfying φM ◦(ηA⊗M) = idM , φM ◦(A⊗φM ) = φM ◦(µA⊗M) . Given
two left A-modules (M,φM ) and (N,φN ) , f :M → N is a morphism of left A-modules if φN◦(A⊗f) = f◦φM .

The composition of morphisms of left A-modules is a morphism of left A-modules. Then left A-modules
form a category that we will denote by AMod.

Definition 5 We say that H is a bialgebra in C if (H, ηH , µH) is an algebra, (H, εH , δH) is a coalgebra, and
εH and δH are algebra morphisms (equivalently, ηH and µH are coalgebra morphisms). Moreover, if there
exists a morphism λH : H → H in C , called the antipode of H , satisfying that λH is the inverse of idH in
H(H,H) , i.e.,

idH ∗ λH = ηH ◦ εH = λH ∗ idH , (1)

we say that H is a Hopf algebra.
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If H is a Hopf algebra, the antipode is antimultiplicative and anticomultiplicative

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH , (2)

and leaves the unit and counit invariant, i.e., λH ◦ ηH = ηH , εH ◦ λH = εH .

A morphism of Hopf algebras is an algebra-coalgebra morphism. Note that, if f : H → D is a Hopf
algebra morphism, the following equality holds:

λD ◦ f = f ◦ λH .

With the composition of morphisms in C, we can define a category whose objects are Hopf algebras and
whose morphisms are morphisms of Hopf algebras. We denote this category by Hopf .

A Hopf algebra is commutative if µH ◦ cH,H = µH and cocommutative if cH,H ◦ δH = δH . It is easy to
see that in both cases λH ◦ λH = idH .

Definition 6 Let D be a Hopf algebra. An algebra B is said to be a left D -module algebra if (B,ΦB) is a left
D -module and ηB , µB are morphisms of left D -modules, i.e.,

ΦB ◦ (D ⊗ ηB) = εD ⊗ ηB , ΦB ◦ (D ⊗ µB) = µB ◦ ΦB⊗B ,

where ΦB⊗B = (ΦB ⊗ ΦB) ◦ (D ⊗ cD,B ⊗B) ◦ (δD ⊗B ⊗B) is the left action on B ⊗B .

3. Modules over invertible 1-cocycles and Hopf braces
We begin the main section of this paper by defining the notion of invertible 1-cocycle in the braided monoidal
category C . This definition can be directly generalized from the one given for the symmetric setting, for example
in the category of vector spaces over a field F (see [3]).

Definition 7 Let A , H be Hopf algebras in C. Let’s assume that H is a left A-module algebra with action ΦH .
Let π : A → H be a coalgebra morphism. We will say that π is an invertible 1-cocycle if it is an isomorphism
such that

π ◦ µA = µH ◦ (π ⊗ ΦH) ◦ (δA ⊗ π) (3)

holds.
Let π : A→ H and τ : B → D be invertible 1-cocycles. A morphism between them is a pair

(f, g) :
A

π ↓
H

−→
B

τ ↓
D

where f : A→ B and g : H → D are algebra-coalgebra morphisms satisfying the following identities:

g ◦ π = τ ◦ f, (4)

g ◦ ΦH = ΦD ◦ (f ⊗ g). (5)

Then, with these morphisms, invertible 1-cocycles form a category denoted by IC. Note that π ◦ ηA = ηH

holds (see [3]).
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Remark 1 It is easy to see that there exists a functorial connection between the categories Hopf and IC given
by the following: If A is a Hopf algebra, (A, tA = εA ⊗ A) is a left A-module algebra. Then, idA : A → A is
an object in IC. On the other hand, if f : A → B is a morphism of Hopf algebras, we have that the pair (f, f)

is a morphism in IC between idA : A→ A and idB : B → B . Therefore, there exists a functor

H : Hopf → IC

defined on objects by

H(A) =
A

idA ↓
A
,

where the action is tA = εA ⊗A (the trivial action), and on morphisms by H(f) = (f, f) .

As was pointed in [3], there exists a closed relation between the Hopf theoretical generalization of skew
braces, called Hopf braces, and invertible 1-cocycles in the category of vector spaces over a field F . In the
braided setting, we have the same relation and the definition of Hopf brace is the following:

Definition 8 Let H = (H, εH , δH) be a coalgebra in C. Let us assume that there are two algebra structures
(H, η1H , µ

1
H) , (H, η2H , µ

2
H) defined on H and suppose that there exist two endomorphisms of H denoted by λ1H

and λ2H . We will say that

(H, η1H , µ
1
H , η

2
H , µ

2
H , εH , δH , λ

1
H , λ

2
H)

is a Hopf brace in C if:

(i) H1 = (H, η1H , µ
1
H , εH , δH , λ

1
H) is a Hopf algebra in C.

(ii) H2 = (H, η2H , µ
2
H , εH , δH , λ

2
H) is Hopf algebra in C.

(iii) The following equality holds:

µ2
H ◦ (H ⊗ µ1

H) = µ1
H ◦ (µ2

H ⊗ ΓH1
) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H),

where

ΓH1 = µ1
H ◦ (λ1H ⊗ µ2

H) ◦ (δH ⊗H).

Following [5], a Hopf brace will be denoted by H = (H1,H2) or in a simpler way by H .
If H is a Hopf brace in C, we will say that H is cocommutative if

δH = cH,H ◦ δH ,

i.e., H1 and H2 are cocommutative Hopf algebras in C. Note that by [10, Corollary 5], if H is a cocommutative
Hopf algebra in the braided monoidal category C, the identity

cH,H ◦ cH,H = idH⊗H (6)

holds.
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The previous definition is the general notion of Hopf brace in a braided monoidal setting. If we restrict
it to a category of Yetter-Drinfeld modules over a Hopf algebra in F -Vect which antipode is an isomorphism we
obtain the definition of braided Hopf brace introduced by H. Zhu and Z. Ying in [13, Definition 2.1].

Definition 9 Given two Hopf braces H and B in C, a morphism x in C between the two underlying objects is
called a morphism of Hopf braces if both x : H1 → B1 and x : H2 → B2 are algebra-coalgebra morphisms, i.e.,
Hopf algebra morphisms.

Hopf braces together with morphisms of Hopf braces form a category which we denote by HBr. This
category is a subcategory of the category of Hopf trusses introduced by T. Brzezńiski in [4].

Theorem 1 There exists a functor between the categories Hopf and HBr.

Proof If H is a Hopf algebra, Htriv = (H, ηH , µH , ηH , µH , εH , δH , λH , λH) is an object in HBr. On the other
hand, if x : H → B is a morphism of Hopf algebras, we have that the pair (x, x) is a morphism in HBr between
Htriv and Btriv . Therefore, there exists a functor

H′ : Hopf → HBr

defined on objects by H′(H) = Htriv and on morphisms by H′(x) = (x, x) . 2

Let H be a Hopf brace in C. Then

η1H = η2H ,

holds and, by [3, Lemma 1.7], in this braided setting the equality

ΓH1 ◦ (H ⊗ λ1H) = µ1
H ◦ ((λ1H ◦ µ2

H)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H) (7)

also holds. Moreover, in our braided context [3, Lemma 1.8, Remark 1.9 ] hold and then we have that (H, η1H , µ
1
H)

is a left H2 -module algebra with action ΓH1 and µ2
H admits the following expression:

µ2
H = µ1

H ◦ (H ⊗ ΓH1
) ◦ (δH ⊗H). (8)

Now, taking into account that every Hopf brace is an example of Hopf truss, by [4, Theorem 6.4], we
have that (H, η1H , µ

1
H) also is a left H2 -module algebra with action

Γ′
H1

= µ1
H ◦ (µ2

H ⊗ λ1H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

because the symmetry is not needed in the proof as in the case of ΓH1 .
Finally, by the naturality of c and the coassociativity of δH , we obtain that

µ1
H ◦ (µ2

H ⊗ ΓH1
) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

= µ1
H ◦ (Γ′

H1
⊗ µ2

H) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

and then (iii) of Definition 8 is equivalent to

µ2
H ◦ (H ⊗ µ1

H) = µ1
H ◦ (Γ′

H1
⊗ µ2

H) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H).
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Therefore, the equality
µ2
H = µ1

H ◦ (Γ′
H1

⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H) (9)

holds.

Remark 2 Note that if H is a cocommutative Hopf brace in C, we obtain that the morphisms ΓH1
and Γ′

H1

are coalgebra morphisms. Indeed, first note that it is easy to show that εH ◦ ΓH1
= εH ⊗ εH . Moreover,

δH ◦ ΓH1

= µH1⊗H1 ◦ (((λ1H⊗λ1H)◦cH,H ◦δH)⊗ (µH2⊗H2 ◦ (δH⊗δH)))◦ (δH⊗H) (by the condition of coalgebra morphisms

for µ1
H and µ2

H and (2))

= (ΓH1
⊗ ΓH1

) ◦ δH⊗H (by the naturality of c and the cocommutativity and coassociativity conditions)

On the other hand, as in the case of ΓH1 , trivially εH ◦ Γ′
H1

= εH ⊗ εH . Finally,

δH ◦ Γ′
H1

= µH1⊗H1
◦ ((µH2⊗H2

◦ (δH ⊗ δH))⊗ ((λ1H ⊗ λ1H) ◦ δH)) ◦ (H ⊗ cH,H) ◦ (δH ⊗H) (by the condition of coalgebra

morphisms for µ1
H and µ2

H , (2) and cocommutativity of δH )

= ((µ1
H ◦ (µ2

H ⊗ λ1H))⊗ (µ1
H ◦ (µ2

H ⊗ λ1H))) ◦ (H ⊗H ⊗ cH,H ⊗H ⊗H) ◦ (H ⊗ cH,H ⊗ (cH,H ◦ cH,H)⊗H)

◦(δH ⊗ cH,H ⊗ cH,H) ◦ (H ⊗ δH⊗H) ◦ (δH ⊗H)(by the naturality of c)

= ((µ1
H ◦ (µ2

H ⊗ λ1H))⊗ (µ1
H ◦ (µ2

H ⊗ λ1H))) ◦ (H ⊗H ⊗ cH,H ⊗H ⊗H) ◦ (H ⊗ cH,H ⊗H ⊗H ⊗H)

◦(δH ⊗ cH,H ⊗ cH,H) ◦ (H ⊗ δH⊗H) ◦ (δH ⊗H)(by (6))

= ((µ1
H ◦ (µ2

H ⊗ λ1H))⊗ (µ1
H ◦ (µ2

H ⊗ λ1H))) ◦ (H ⊗ ((cH,H ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))⊗ cH,H)

◦(δH ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by the naturality of c and the coassociativity condition)

= (Γ′
H1

⊗ Γ′
H1

) ◦ δH⊗H (by the naturality of c and the cocommutativity and coassociativity conditions)

As was proved in [3, Theorem 1.12], the category of invertible 1-cocycles associated to a fixed Hopf algebra
is equivalent to the category of Hopf braces where the first Hopf algebra structure is the same one fixed before.
This categorical equivalence remains valid for general invertible 1-cocycles and Hopf braces in braided monoidal
categories.

Theorem 2 The categories IC and HBr are equivalent.

Proof The proof follows as in [3]. In the following lines, we give a brief summary of this proof to introduce
some notation and for the convenience of the reader.

Let H be an object in HBr. Then, idH : H2 → H1 is an invertible 1-cocycle. Also, if H and H′ are
objects in HBr and x : H → H′ is a morphism between them, the pair (x, x) is a morphism in IC between
idH : H2 → H1 and idH′ : H ′

2 → H ′
1 . Therefore, there exists a functor E : HBr→ IC defined on objects by
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E(H) =
H2

idH ↓
H1

,

where ΦH1
= ΓH1

, and on morphisms by E(x) = (x, x).

Conversely, let π : A → H be an object in IC. Define µHπ
:= π ◦ µA ◦ (π−1 ⊗ π−1) , ηHπ

:= ηH and
λHπ

= π ◦ λA ◦ π−1 . Then, if we denote by Hπ the algebra (H, ηHπ
, µHπ

) ,

(H, ηH , µH , ηHπ , µHπ , εH , δH , λH , λHπ )

is an object in HBr that we will denote by Hπ = (H,Hπ) .
Moreover, if (f, g) is a morphism in IC between π : A → H and π′ : A′ → H ′ , the morphism g is a

morphism in HBr between Hπ and H′
π′ . As a consequence of these facts, we have a functor Q : IC → HBr

defined by

Q(
A

π ↓
H

) = Hπ

on objects and by Q((f, g)) = g on morphisms.
The functors induce an equivalence between the two categories because, clearly, QE = idHBr and, on the

other hand, EQ ⋍ idIC because, if ΓH = µH ◦ (λH ⊗ µHπ
) ◦ (δH ⊗H) ,

ΦH = ΓH ◦ (π ⊗H) (10)

holds and

(π, idH) :
A

π ↓
H

−→
Hπ

idH ↓
H

= EQ(
A

π ↓
H

)

is an isomorphism in IC. 2

Lemma 1 Let π : A→ H be an object in IC with action ΦH . Then

ΦH ◦ (A⊗ (λH ◦ π))

= µH ◦ ((λH ◦ µH)⊗H) ◦ (π ⊗ ΦH ⊗ π) ◦ (δA ⊗H ⊗A) ◦ (A⊗ cA,H) ◦ (δA ⊗ π).

Proof The proof is the following:

µH ◦ ((λH ◦ µH)⊗H) ◦ (π ⊗ ΦH ⊗ π) ◦ (δA ⊗H ⊗A) ◦ (A⊗ cA,H) ◦ (δA ⊗ π)

= µH ◦ ((λH ◦ π ◦ µA)⊗ π) ◦ (A⊗ cA,A) ◦ (δA ⊗A) (by naturality of c and (3))

= µH ◦ ((λH ◦ µπH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ π)⊗ π) (by naturality of c , the condition of coalgebra isomorphism for

π and the definition of µπ
H )
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= ΓH ◦ (π ⊗ (λH ◦ π)) (by (7) for Hπ )

= ΦH ◦ (A⊗ (λH ◦ π)) (by (10)).

2

Theorem 3 Let A and H be Hopf algebras in C, let π : A → H be an isomorphism of coalgebras such that
π ◦ ηA = ηH , and let us assume that H is a left A-module algebra with action ΦH : A ⊗H → H . Then the
following are equivalent:

(i) The morphism π : A→ H is an invertible 1-cocycle.

(ii) The pair (H,Φ′
H) is a left A-module algebra, where

Φ′
H = µH ◦ (µH ⊗H) ◦ (π ⊗ ΦH ⊗ (λH ◦ π)) ◦ (δA ⊗ cA,H) ◦ (δA ⊗H),

and moreover
π ◦ µA = µH ◦ (Φ′

H ⊗ π) ◦ (A⊗ cA,H) ◦ (δA ⊗ π) (11)

holds.

Proof First, we will prove that (i) ⇒ (ii). Indeed, let Hπ be the Hopf brace introduced in the proof of
Theorem 2. Then (H,ΓH) is a left Hπ -module algebra and (10) holds. Then, if

Φ′
H = µH ◦ (µH ⊗H) ◦ (π ⊗ ΦH ⊗ (λH ◦ π)) ◦ (δA ⊗ cA,H) ◦ (δA ⊗H),

we have that
Φ′
H = Γ′

H ◦ (π ⊗H) (12)

holds because

Φ′
H

= µH ◦ ((µH ◦ (H ⊗ (ΦH ◦ (π−1 ⊗H))) ◦ (δH ⊗H))⊗ λH) ◦ (H ⊗ cH,H) ◦ ((δH ◦ π)⊗H) (by the condition

of coalgebra isomorphism for π and the naturality of c )

= µH ◦ ((µH ◦ (H ⊗ ΓH) ◦ (δH ⊗H))⊗ λH) ◦ (H ⊗ cH,H) ◦ ((δH ◦ π)⊗H) (by (10))

= µH ◦ (µHπ ⊗ λH) ◦ (H ⊗ cH,H) ◦ ((δH ◦ π)⊗H) (by (8))

= Γ′
H ◦ (π ⊗H) (by definition of Γ′

H ).

Then, as a consequence of (12), (H,Φ′
H) is a left A -module algebra because (H,Γ′

H) is a left Hπ -module
algebra. Finally,

µH ◦ (Φ′
H ⊗ π) ◦ (A⊗ cA,H) ◦ (δA ⊗ π)

= µH ◦ (Γ′
H ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ π)⊗ π) (by (12), the naturality of c and the condition of coalgebra morphism

for π )
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= µHπ ◦ (π ⊗ π) (by (9))

= π ◦ µA (by definition of µHπ )

and then (11) holds.
Conversely, to prove that (ii) ⇒ (i), we only need to show that (3) holds. Indeed:

π ◦ µA

= µH ◦ (Φ′
H ⊗ π) ◦ (A⊗ cA,H) ◦ (δA ⊗ π) (by (11))

= µH ◦ ((µH ◦ (µH ⊗H) ◦ (π ⊗ ΦH ⊗ (λH ◦ π)) ◦ (δA ⊗ cA,H) ◦ (δA ⊗H))⊗ π) ◦ (A⊗ cA,H) ◦ (δA ⊗ π)

(by the definition of Φ′
H )

= µH ◦ ((µH ◦ (π ⊗ ΦH) ◦ (δA ⊗H))⊗ ((λH ∗ idH) ◦ π)) ◦ (A⊗ cA,H) ◦ (δA ⊗ π) (by the associativity of µH ,

the naturality of c , the coassociativity of δA and the condition of coalgebra morphism for π )

= µH ◦ (π ⊗ ΦH) ◦ (δA ⊗ π) (by (1), naturality of c and the unit and counit properties).

2

Remark 3 Observe that in the previous theorem, we can recover ΦH from Φ′
H as

ΦH = µH ◦ (µH ⊗H) ◦ ((λH ◦ π)⊗ Φ′
H ⊗ π) ◦ (δA ⊗ cA,H) ◦ (δA ⊗H),

and ΦH induces a left A-module algebra structure on H if, and only if, Φ′
H does. As a consequence, we

can define an invertible 1-cocycle as a coalgebra isomorphism satisfying condition (11), where (H,Φ′
H) is an

A-module algebra.

Lemma 2 Let π : A→ H be an object in IC with action ΦH and such that H is cocommutative. Then ΦH is
a coalgebra morphism.

Proof The proof follows directly from the equality (10) and Remark 2. 2

Lemma 3 Let π : A → H be an object in IC with action ΦH and such that H is cocommutative. Then the
action Φ′

H defined in Theorem 3 is a coalgebra morphism.

Proof The proof follows directly from the equality (12) and Remark 2. 2

Remark 4 Let H : Hopf → IC be the functor defined in Remark 1. If A is a Hopf algebra, its image by H is
the invertible 1-cocycle idA : A → A where the action is the trivial one, i.e., ΦA = tA = εA ⊗ A and then ΦA

is a coalgebra morphism. Also, by (ii) of Theorem 3, we have that

Φ′
A = µA ◦ (µA ⊗ λA) ◦ (A⊗ cA,A) ◦ (δA ⊗A) = φadA .

Taking into account the previous considerations, we can introduce the notion of left module for an
invertible 1-cocycle.
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Definition 10 Let π : A→ H be an invertible 1-cocycle. A left module over the invertible 1-cocycle π : A→ H

is a 6-tuple (M,N,ΦM , φM ,ΦN , γ) where

(i) (M,ΦM ) is a left A-module and (M,φM ) is a left H -module such that

ΦM ◦ (A⊗ φM ) = φM ◦ (ΦH ⊗ ΦM ) ◦ (A⊗ cA,H ⊗M) ◦ (δA ⊗H ⊗M). (13)

(ii) (N,ΦN ) is a left A-module.

(iii) γ : N →M is an isomorphism in C such that

γ ◦ ΦN = φM ◦ (π ⊗ ΦM ) ◦ (δA ⊗ γ). (14)

Let (M,N,ΦM , φM ,ΦN , γ) and (M ′, N ′,ΦM ′ , φM ′ ,ΦN ′ , γ′) be left modules over an invertible 1-cocycle
π : A→ H . A morphism between them is a pair (h, l) such that h :M →M ′ is a morphism of left A-modules
and left H -modules, l : N → N ′ is a morphism of left A-modules and the following identity holds:

h ◦ γ = γ′ ◦ l. (15)

Note that, by (15), the morphism l is determined by h because l = (γ′)−1 ◦ h ◦ γ.
With the obvious composition of morphisms, left modules over an invertible 1-cocycle π : A → H with

action ΦH form a category that we will denote by (π,ΦH)Mod.

Remark 5 If (M,N,ΦM , φM ,ΦN , γ) is a left module over the invertible 1-cocycle π : A → H , by (14), we
obtain that ΦN is determined by ΦM and φM because

ΦN = γ−1 ◦ φM ◦ (π ⊗ ΦM ) ◦ (δA ⊗ γ). (16)

Also, composing in both sides of the equality (14) with (((λH ◦ π)⊗A) ◦ δA)⊗ γ−1 on the right and with
φM on the left we obtain the identity

ΦM = φM ◦ ((λH ◦ π)⊗ (γ ◦ ΦN )) ◦ (δA ⊗ γ−1). (17)

Example 1 It is easy to see that if π : A → H is an invertible 1-cocycle, the 6-tuple (H,A,ΦH , µH , µA, π) is
an example of left module over the invertible cocycle π : A→ H .

Also, the unit object K of C is an example of left module over the invertible 1-cocycle π : A → H ,
where ΦK = εA , φK = εH and γ = idK because by (10) we have that εH ◦ ΦH = εA ⊗ εH . We call
(K,K,ΦK , φK ,ΦK , idK) the trivial left module over the invertible 1-cocycle π : A→ H .

Note that, if (M,ΦM ) is an object in HMod, the 6-tuple (M,M,ΦM , tM = εH ⊗M,ΦM , idM ) is a left
module over the invertible 1-cocycle idH : H → H defined in Remark 1. Also, if f is a morphism between
two left H -modules (M,ΦM ) and (P,ΦP ) , the pair (f, f) is a morphism of left modules over the invertible
1-cocycle idH : H → H between (M,M,ΦM , tM ,ΦM , idM ) and (P, P,ΦP , tP ,ΦP , idP ) . Therefore, we have a
functor

IH : HMod → (idH ,tH)Mod
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defined on objects by

IH((M,ΦM )) = (M,M,ΦM , tM ,ΦM , idM )

and on morphisms by IH(f) = (f, f) .

Theorem 4 Assume that (f, g) is a morphism between the invertible 1-cocycles π : A → H and τ : B → D .
Then, there exists a functor

M(f,g) : (τ,ΦD)Mod → (π,ΦH)Mod

defined on objects by

M(f,g)((P,Q,ΦP , φP ,ΦQ, θ)) = (P,Q,ΦπP = ΦP ◦ (f ⊗ P ), φπP = φP ◦ (g ⊗ P ),ΦπQ = ΦQ ◦ (f ⊗Q), θ)

and on morphisms by the identity.

Proof The existence of the functor M(f,g) is a consequence of the following facts: Trivially (P,ΦπP ) , (Q,ΦπQ)

are left A -modules and (P,φπP ) is a left H -module. Also,

φπP ◦ (ΦH ⊗ ΦπP ) ◦ (A⊗ cA,H ⊗ P ) ◦ (δA ⊗H ⊗ P )

= φP ◦ ((g ◦ ΦH)⊗ (ΦP ◦ (f ⊗ P ))) ◦ (A⊗ cA,H ⊗ P ) ◦ (δA ⊗H ⊗ P ) (by definition of Φπ
P and φπ

P )

= φP ◦ (ΦD ⊗ ΦP ) ◦ (B ⊗ cB,D ⊗ P ) ◦ (((f ⊗ f) ◦ δA)⊗ g ⊗ P ) (by (5) and natirality of c )

= φP ◦ (ΦD ⊗ ΦP ) ◦ (B ⊗ cB,D ⊗ P ) ◦ ((δB ◦ f)⊗ g ⊗ P ) (by the coalgebra morphism condition for f )

= ΦπP ◦ (A⊗ φπP ) (by (13)),

and

φπP ◦ (π ⊗ ΦπP ) ◦ (δA ⊗ θ)

= φP ◦ ((g ◦ π)⊗ (ΦP ◦ (f ⊗ P ))) ◦ (δA ⊗ θ) (by definition of Φπ
P and φπ

P )

= φP ◦ ((τ ◦ f)⊗ (ΦP ◦ (f ⊗ P ))) ◦ (δA ⊗ θ) (by (4))

= φP ◦ (τ ⊗ ΦP ) ◦ ((δB ◦ f)⊗ θ) (by the coalgebra morphism condition for f )

= θ ◦ ΦπQ (by (14))

Then (P,Q,ΦπP , φ
π
P ,Φ

π
Q, θ) is an object in (π,ΦH)Mod . Finally, it is obvious that if (h, l) is a morphism in

(τ,ΦD)Mod , (h, l) is a morphism in (π,ΦH)Mod .

2
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Remark 6 Let f : H → H ′ be a Hopf algebra morphisms. Then, by Example 1 and Theorem 4, we have the
following commutative diagram

-

? ?
-

IH′

H′Mod (idH′ ,tH′ )Mod

Mf M(f,f)

HMod (idH ,tH)Mod
IH

where Mf is the restriction of scalars functor.

Remark 7 If (f, g) is an isomorphism defined between the invertible 1-cocycles π : A→ H and τ : B → D with
inverse (f−1, g−1) , the functor M(f,g) is an isomorphism of categories with inverse M(f−1,g−1) . For example,
in the proof of Theorem 2, we proved that, for all invertible 1-cocycle π : A → H , (π, idH) is an isomorphism
between the invertible 1-cocycles π : A→ H and idH : Hπ → H . Therefore, the functor

M(π,idH) : (idH ,ΓH)Mod → (π,ΦH)Mod

is an isomorphism of categories with inverse

M(π−1,idH) : (π,ΦH)Mod → (idH ,ΓH)Mod.

Theorem 5 Let us assume that C is symmetric with natural isomorphism of symmetry c . Let A and H be
cocommutative Hopf algebras in C. Then the category of left modules over an invertible 1-cocycle π : A→ H is
symmetric monoidal with unit object the trivial left module over the invertible 1-cocycle π : A→ H .

Proof Let (M,N,ΦM , φM ,ΦN , γ) , (P,Q,ΦP , φP ,ΦQ, θ) be objects in (π,ΦH)Mod . Then we will define their
tensor product as

(M,N,ΦM , φM ,ΦN , γ)⊗ (P,Q,ΦP , φP ,ΦQ, θ)

= (M ⊗ P,N ⊗Q,ΦM⊗P , φM⊗P ,ΦN⊗Q, γ ⊗ θ)

where the left A -actions are defined by ΦM⊗P = (ΦM ⊗ΦP ) ◦ (A⊗ cA,M ⊗P ) ◦ (δA⊗M ⊗P ) , ΦN⊗Q = (ΦN ⊗
ΦQ)◦(A⊗cA,N⊗Q)◦(δA⊗N⊗Q) and the left H -action is φM⊗P = (φM⊗φP )◦(H⊗cH,M⊗P )◦(δH⊗M⊗P ) .
By the monoidal property of the category of modules over a Hopf algebra, we have that (M ⊗ P,ΦM⊗P ) and
(N ⊗Q,ΦN⊗Q) are left A -modules and (M ⊗P,φM⊗P ) is a left H -module. Moreover, the equality (13) holds
because

φM⊗P ◦ (ΦH ⊗ ΦM⊗P ) ◦ (A⊗ cA,H ⊗M ⊗ P ) ◦ (δA ⊗H ⊗M ⊗ P )

= (φM ⊗ φP ) ◦ (H ⊗ cH,M ⊗ P ) ◦ ((δH ◦ ΦH)⊗ ΦM⊗P ) ◦ (A⊗ cA,H ⊗M ⊗ P ) ◦ (δA ⊗H ⊗M ⊗ P )

(by definition)

= ((φM ◦ (H ⊗ ΦM ))⊗ φP ) ◦ (H ⊗ ((A⊗ cH,M ) ◦ (cH,A ⊗M))⊗A⊗ P ) ◦ (((ΦH ⊗ ΦH) ◦ δA⊗H)
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⊗A⊗M ⊗ ΦP ) ◦ (A⊗ ((cA,H ⊗ cA,M ) ◦ (A⊗ cA,H ⊗M))⊗ P ) ◦ (((A⊗ δA) ◦ δA)⊗H ⊗M ⊗ P )

(by the naturality of c and the condition of coalgebra morphism for ΦH (see Lemma 2))

= ((φM ◦ (ΦH ⊗ ΦM ))⊗ (φP ◦ (ΦH ⊗ ΦP ))) ◦ (A⊗ ((H ⊗A⊗ cA,M ⊗H ⊗A) ◦ (H ⊗ cA,A ⊗ cH,M ⊗A)

◦(cA,H ⊗A⊗H ⊗ cA,M ))⊗ P ) ◦ (δA ⊗ ((cA,H ⊗ cA,H) ◦ δA⊗H))⊗M ⊗ P ) ◦ (δA ⊗H ⊗M ⊗ P )

(by the naturality of c and cH,A ◦ cA,H = idA⊗H )

= ((φM ◦ (ΦH ⊗ ΦM ))⊗ (φP ◦ (ΦH ⊗ ΦP ))) ◦ (A⊗ ((cA,H ⊗ cA,M ⊗H ⊗A) ◦ (A⊗ cA,H ⊗ cH,M ⊗A)

◦((cA,A ◦ δA)⊗H ⊗H ⊗ cA,M ) ◦ (A⊗H ⊗ cA,H ⊗M) ◦ (δA⊗H ⊗M))⊗ P ) ◦ (δA ⊗H ⊗M ⊗ P ) (by

the coassociativity of δA and the naturality of c )

= ((φM ◦ (ΦH ⊗ ΦM ))⊗ (φP ◦ (ΦH ⊗ ΦP ))) ◦ (A⊗ ((cA,H ⊗ cA,M ⊗ cA,H) ◦ (A⊗ cA,H ⊗ cA,M ⊗H)

◦(A⊗A⊗ cA,H ⊗ cH,M ))⊗ P ) ◦ (((δA ⊗ δA) ◦ δA)⊗ δH ⊗M ⊗ P ) (by the cocommutativity, the

coassociativity of δA and the naturality of c )

= ((φM ◦ (ΦH ⊗ ΦM ) ◦ (A⊗ cA,H ⊗M) ◦ (δA ⊗H ⊗M))⊗ (φP ◦ (ΦH ⊗ ΦP ) ◦ (A⊗ cA,H ⊗ P )

◦(δA ⊗H ⊗ P ))) ◦ (A⊗H ⊗ cA,M ⊗H ⊗ P ) ◦ (A⊗ cA,H ⊗ cH,M ⊗ P ) ◦ (δA ⊗ δH ⊗M ⊗ P )

(by the naturality of c )

= ((ΦM ◦ (A⊗ φM ))⊗ (ΦP ◦ (A⊗ φP )) ◦ (A⊗H ⊗ cA,M ⊗H ⊗ P ) ◦ (A⊗ cA,H ⊗ cH,M ⊗ P )

◦(δA ⊗ δH ⊗M ⊗ P ) (by (13))

= ΦM⊗P ◦ (A⊗ φM⊗P ) (by the naturality of c )

and, on the other hand, (14) follows by

φM⊗P ◦ (π ⊗ ΦM⊗P ) ◦ (δA ⊗ γ ⊗ θ)

= ((φM ◦ (π ⊗ (ΦM ◦ (A⊗ γ))))⊗ (φP ◦ (π ⊗ (ΦP ◦ (A⊗ θ))))) ◦ (A⊗ ((A⊗ cA,N ) ◦ ((cA,A ◦ δA)

⊗N))⊗A⊗Q) ◦ (δA ⊗ cA,N ⊗Q) ◦ (δA ⊗N ⊗Q) (by the coalgebra morphism condition for π , the

coassociativity of δA and the naturality of c )

= ((φM ◦ (π ⊗ (ΦM ◦ (A⊗ γ))))⊗ (φP ◦ (π ⊗ (ΦP ◦ (A⊗ θ))))) ◦ (δA ⊗ ((cA,N ⊗A) ◦ (A⊗ cA,N )

◦(δA ⊗N))⊗Q) ◦ (δA ⊗N ⊗Q) (by the cocommutativity and the coassociativity of δA )

= ((φM ◦ (π ⊗ (ΦM ◦ (A⊗ γ)) ◦ (δA ⊗N)))⊗ (φP ◦ (π ⊗ (ΦP ◦ (A⊗ θ)) ◦ (δA ⊗Q))))

◦(A⊗ cA,N ⊗Q) ◦ (δA ⊗N ⊗Q) (by the the naturality of c )

= (γ ⊗ θ) ◦ ΦN⊗Q (by (14)).
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Finally, by the cocommutativity condition and the symmetry condition, it is easy to prove that (cM,P , cN,Q)

is a morphism in (π,ΦH)Mod between (M,N,ΦM , φM ,ΦN , γ)⊗(P,Q,ΦP , φP ,ΦQ, θ) and (P,Q,ΦP , φP ,ΦQ, θ)⊗
(M,N,ΦM , φM ,ΦN , γ) . As a consequence, (π,ΦH)Mod is symmetric. 2

Following [5], we recall the notion of left module over a Hopf brace.

Definition 11 Let H be a Hopf brace. A left H -module is a triple (M,ψ1
M , ψ

2
M ) , where (M,ψ1

M ) is a left
H1 -module, (M,ψ2

M ) is a left H2 -module and the following identity

ψ2
M ◦ (H ⊗ ψ1

M ) = ψ1
M ◦ (µ2

H ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M) (18)

holds, where

ΓM = ψ1
M ◦ (λ1H ⊗ ψ2

M ) ◦ (δH ⊗M).

Given two left H -modules (M,ψ1
M , ψ

2
M ) and (N,ψ1

N , ψ
2
N ) , a morphism f :M → N is called a morphism

of left H -modules if f is a morphism of left H1 -modules and left H2 -modules. Left H -modules with morphisms
of left H -modules form a category which we denote by HMod.

Example 2 Let H be a Hopf brace. The triple (H,µ1
H , µ

2
H) is an example of left H-module. Also, if K is the

unit object of C , (K,ψ1
K = εH , ψ

2
K = εH) is a left H-module called the trivial module.

Let H = (H, ηH , µH , εH , δH , λH) be a Hopf algebra. Then (H,µH , µH) is an example of left H-module
for the Hopf brace H with H1 = H2 = H . Also, if (M,ψM ) is a left H -module, the triple (M,ψM , ψM ) is
a left H-module for the same Hopf brace. Then, there exists an obvious functor J :HMod → HMod defined
on objects by J((M,ψM )) = (M,ψM , ψM ) and by the identity on morphisms. Also, there exists a functor
L :HMod → HMod defined on objects by L((M,ψ1

M , ψ
2
M )) = (M,ψ1

M ) and by the identity on morphisms.
Obviously, L ◦ J = id

HMod.

Remark 8 As was pointed in [5], Definition 11 is weaker than the one introduced by H. Zhu in [12]. For this
author, if H is a Hopf brace, a left H-module is a triple (M,ψ1

M , ψ
2
M ) , where (M,ψ1

M ) is a left H1 -module,
(M,ψ2

M ) is a left H2 -module, and the equalities (18) and

(ψ2
M ⊗H) ◦ (H ⊗ cH,M ) ◦ (δH ⊗M) = (ψ1

M ⊗H) ◦ (H ⊗ cH,M ) ◦ (δH ⊗ ΓM ) ◦ (δH ⊗M) (19)

hold (see [12, Definition 3.1, Lemma 3.2]). Thus, for an arbitrary Hopf brace H , a left H-module in the sense
of Zhu is a left H-module in our sense. Moreover, if H is cocommutative, (19) hold for any left H-module as
in Definition 11. As a consequence, in the cocommutative setting, [12, Definition 3.1] and Definition 11 are
equivalent. Moreover, if we use Definition 11, trivially, (H,µ1

H , µ
2
H) is a left H-module but, if we work with the

definition introduced by Zhu, the condition of left H-module for (H,µ1
H , µ

2
H) implies that the following identity

(ΓH1
⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H) = (ΓH1

⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H)

holds. Therefore, if C is symmetric, for example the category of vector spaces over a field K , (H,ΓH1) is in
the cocommutativity class of H (see [2] for the definition). In other words, under certain circumstances, for
example, the lack of cocommutativity, the category of left modules over a Hopf brace introduced by Zhu may not
contain the obvious object (H,µ1

H , µ
2
H).
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Remark 9 It is easy to show that (18) is equivalent to

ψ2
M ◦ (H ⊗ ψ1

M ) = ψ1
M ◦ (Γ′

H1
⊗ ψ2

M ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M).

and the following equality holds:

ΓM ◦ (H ⊗ ψ1
M ) = ψ1

M ◦ (ΓH1
⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M). (20)

Moreover, (M,ΓM ) is a left H2 -module because trivially ΓM ◦ (ηH ⊗M) = idM and, on the other hand,

ΓM ◦ (H ⊗ ΓM )

= ΓM ◦ (H ⊗ (ψ1
M ◦ (λ1H ⊗ ψ2

M ) ◦ (δH ⊗M))) (by definition of ΓM )

= ψ1
M ◦ (ΓH1 ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ((λ1H ⊗ ψ2

M ) ◦ (δH ⊗M))) (by (20))

= ψ1
M ◦ ((ΓH1

◦ (H ⊗ λ1H))⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ((H ⊗ ψ2
M ) ◦ (δH ⊗M))) (by naturality of c)

= ψ1
M ◦ ((µ1

H ◦ ((λ1H ◦ µ2
H)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗ (ψ1

M ◦ (λ1H ⊗ ψ2
M ) ◦ (δH ⊗M)))

◦(H ⊗ cH,H ⊗M) ◦ (δH ⊗ ((H ⊗ ψ2
M ) ◦ (δH ⊗M))) (by (7) and the definition of ΓM )

= ψ1
M ◦ ((µ1

H ◦ ((λ1H ◦ µ2
H)⊗ (µ1

H ◦ (H ⊗ λ1H)))⊗ (ψ2
M ◦ (µ2

H ⊗M))) ◦ (H ⊗ cH,H ⊗ δH ⊗H ⊗M)

◦(δH ⊗ cH,H ⊗H ⊗M) ◦ (δH ⊗ δH ⊗M) (by the condition of left H1 and H2 -module for M and the associativity

of µ1
H )

= ψ1
M ◦ ((µ1

H ◦ ((λ1H ◦ µ2
H)⊗ (µ1

H ◦ (H ⊗ λ1H)))⊗ (ψ2
M ◦ (µ2

H ⊗M))) ◦ (((H ⊗ cH,H ⊗H ⊗H ⊗H)

◦(δH ⊗ cH,H ⊗H ⊗H) ◦ (H ⊗ δH⊗H) ◦ (δH ⊗H))⊗M) (by naturality of c)

= ψ1
M ◦ ((µ1

H ◦ ((λ1H ◦ µ2
H)⊗ (idH ∗ λ1H)) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗ (ψ2

M ◦ (µ2
H ⊗M))) ◦ (δH⊗H ⊗M)

(by naturality of c and coassociativity of δH )

= ψ1
M ◦ (λ1H ⊗ ψ2

M ) ◦ (((µ2
H ⊗ µ2

H) ◦ δH⊗H)⊗M) (by (1) and unit and counit properties)

= ΓM ◦ (µ2
H ⊗M) (by the condition of coalgebra morphism for µ2

H )

Theorem 6 Let H be a Hopf brace and let E(H) be the invertible 1-cocycle induced by the functor E introduced
in the proof of Theorem 2. There exists a functor

GH : HMod → (idH ,ΓH1
)Mod

defined on objects by

GH((M,ψ1
M , ψ

2
M )) = (M,M, Φ̂M = ΓM , φ̂M = ψ1

M ,ΦM = ψ2
M , idM )

and on morphisms by GH(f) = (f, f) .
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Proof By Remark 9, we know that (M, Φ̂M = ΓM ) is a left H2 -module and, by assumption, (M, φ̂M = ψ1
M )

is a left H1 -module and (M,ΦM = ψ2
M ) is a left H2 -module. On the other hand, by (20) we have that

Φ̂M ◦ (H ⊗ φ̂M ) = φ̂M ◦ (ΓH1
⊗ Φ̂M ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M)

and then, (13) holds. Also,

φ̂M ◦ (H ⊗ Φ̂M ) ◦ (δH ⊗M)

= ψ1
M ◦ (H ⊗ ΓM ) ◦ (δH ⊗M) (by definition of φ̂M and Φ̂M )

= ψ1
M ◦ (H ⊗ (ψ1

M ◦ (λ1H ⊗ ψ2
M ) ◦ (δH ⊗M))) ◦ (δH ⊗M) (by definition of ΓM )

= ψ1
M ◦ ((idH ∗ λ1H)⊗ ψ2

M ) ◦ (δH ⊗M) (by the condition of left H1 -module of (M,ψ1
M ) and the coassociativity

of δH )

= ΦM (by (1), the counit properties, the condition of left H1 -module of (M,ψ1
M ) and the definition of ΦM ).

Finally, it is easy to show that if f is a morphism in HMod between the objects (M,ψ1
M , ψ

2
M ) and

(M ′, ψ1
M ′ , ψ2

M ′) , the pair (f, f) is a morphism in (idH ,ΓH1
)Mod between the objects GH((M,ψ1

M , ψ
2
M )) and

GH((M
′, ψ1

M ′ , ψ2
M ′)) . 2

Theorem 7 Let π : A → H be an invertible 1-cocycle. Then the categories (π,ΦH)Mod and Hπ
Mod are

equivalent.

Proof First of all, we will prove that there exists a functor

Hπbr : (π,ΦH)Mod → HπMod

defined on objects by

Hπbr((M,N,ΦM , φM ,ΦN , γ)) = (M,ψ
1

M = φM , ψ
2

M = γ ◦ ΦN ◦ (π−1 ⊗ γ−1))

and on morphisms by Hπbr((h, l)) = h . Indeed: By assumption, (M,ψ
1

M = φM ) is a left H -module and, using

the condition of left A -module of N , we obtain that (M,ψ
2

M = γ ◦ ΦN ◦ (π−1 ⊗ γ−1)) is a left Hπ -module.
Also, by (17), we have that the identity

ΦM ◦ (π−1 ⊗M) = ΓM (21)

holds, where ΓM = ψ
1

M ◦ (λH ⊗ ψ
2

M ) ◦ (δH ⊗M) . Then, (18) holds because:

ψ
2

M ◦ (H ⊗ ψ
1

M )

= φM ◦ (π ⊗ ΦM ) ◦ ((δA ◦ π−1)⊗ φM ) (by (16))

= φM ◦ (π ⊗ (φM ◦ (ΦH ⊗ ΦM ) ◦ (A⊗ cA,H ⊗M) ◦ (δA ⊗H ⊗M))) ◦ ((δA ◦ π−1)⊗H ⊗M) (by (13))
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= φM ◦ ((µH ◦ (π ⊗ ΦH) ◦ (δA ⊗ π))⊗ ΦM ) ◦ (A⊗ cA,A ⊗M) ◦ ((δA ◦ π−1)⊗ π−1 ⊗M) (by the condition of

left H -module for M , the coassociativity of δA , the naturality of c and the condition of isomorphism for π )

= φM ◦ ((π ◦ µA)⊗ ΦM ) ◦ (A⊗ cA,A ⊗M) ◦ ((δA ◦ π−1)⊗ π−1 ⊗M) (by (3))

= φM ◦ (µHπ ⊗ (ΦM ◦ (π−1 ⊗M))) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M) (by the condition of coalgebra isomorphism

for π and the naturality of c )

= ψ
1

M ◦ (µHπ ⊗ ΓM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗H ⊗M) (by (21))

On the other hand, if (h, l) is a morphisms in (π,ΦH)Mod between the objects (M,N,ΦM , φM ,ΦN , γ)

and (M ′, N ′,ΦM ′ , φM ′ ,ΦN ′ , γ′) , we have that h is a morphism in Hπ
Mod between (M,ψ

1

M , ψ
2

M ) and

(M ′, ψ
1

M ′ , ψ
2

M ′) because, using that h is a morphism of left H -modules, we have h ◦ψ1

M = ψ
1

M ′ ◦ (H ⊗ h) and,

by (15) and the condition of morphism of left A -modules for h , we have that h ◦ ψ2

M = ψ
2

M ′ ◦ (H ⊗ h) .
Taking into account the functors Hπbr , GHπ and M(π,idH) , it is easy to show that

Hπbr ◦ (M(π,idH) ◦ GHπ
) = id HπMod

and

((M(π,idH) ◦ GHπ ) ◦ Hπbr)((M,N,ΦM , φM ,ΦN , γ)) = (M,M,ΦM , φM ,Φ
π

M = γ ◦ ΦN ◦ (A⊗ γ−1), idM )

hold. Then,

(M(π,idH) ◦ GHπ
) ◦ Hπbr ⋍ id

(π,ΦH )Mod

because (idM , γ) is an isomorphism in the category (π,ΦH)Mod between the objects (M,N,ΦM , φM ,ΦN , γ) and

(M,M,ΦM , φM ,Φ
π

M , idM ).

2

As a consequence of this result, we have the following corollary whose proof is an immediate consequence
of the preceding theorems.

Corollary 1 Let H be a Hopf brace. Then, the categories (idH ,ΓH1
)Mod and HMod are equivalent.
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