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Abstract: In this paper, we introduce in a braided setting the notion of left module for an invertible 1-cocycle and we
prove some categorical equivalences between categories of modules associated to an invertible 1-cocycle and categories

of modules associated to Hopf braces.

Key words: Braided monoidal category, Hopf algebra, Hopf brace, invertible 1-cocycles, module

1. Introduction
Hopf braces were introduced recently in [3] as the linearisation of skew braces given in [6]. A skew brace

consists of two different group structures, denoted as (7,¢) and (T, 0), defined on the same set T'. They satisfy
Y a,b,c € T the compatibility condition

ao(boc)=(aob)oa®o(aocc),

where a® represents the inverse with respect to ¢. Thus, a Hopf brace comprises two structures of Hopf algebras
defined on the same object, sharing a common coalgebra structure and satisfying the same compatibility
condition that generalizes the previous identity. The relevance of these structures comes from the fact that
provide solutions of the Yang-Baxter equation. As pointed out in [3], they establish the right setting for
considering left symmetric algebras as Lie-theoretical analogs of the notion of brace introduced by W. Rump
in [9]. Moreover, it is noteworthy that there exists a profound connection between Hopf braces and invertible
1-cocycles. In fact, the category of Hopf braces is equivalent to the category of invertible 1-cocycles.

Thus, invertible 1-cocycles are nothing more than coalgebra isomorphisms between Hopf algebras that
share the underlying coalgebra and that are related by a module algebra structure.

As long as we are dealing with Hopf-type structures, we are somehow forced to have a deep look into
their categories of modules for a complete overview. For example, in [5], the author introduces the category

of left modules for a Hopf brace in order to prove Fundamental Theorem of Hopf modules (see, for example
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[1, 11]) in the Hopf brace setting. This notion of module for a Hopf brace is weaker than that introduced by
H. Zhu in [12] and in the cocommutative setting both notions are equivalent. The main difference between the
two definitions is the following: The Hopf brace with the two associated products is an example of module in
the sense of [5] while with the definition proposed by Zhu that property only holds when the underlying object
of the Hopf brace endowed with a particular action is an object belonging to a class of cocommutativity in the
sense of [2]. In other words, under certain circumstances, for example, the lack of cocommutativity, the category
of left modules over a Hopf brace introduced by Zhu may not contain the obvious object as it happens always
in the case of Hopf algebras.

Hence, the primary goal of this article is to identify the suitable notion of a module associated to an
invertible 1-cocycle. This identification will enable the extension of the established categorical equivalence
between Hopf braces and invertible 1-cocycles to their respective categories of modules. It’s essential to note
that, in our context, the definition of a module associated with a Hopf brace aligns with the one introduced in
[5].

The paper is organized as follows: The second section presents the basic notions that we will need in
the rest of the paper and the main results are provided in the third section. More concretely, working in a
braided setting, in Section 3, we introduce the notion of module for an invertible 1-cocycle and the category of
these objects (see Definition 10). Next, we prove some functorial results and show that under symmetry and
cocommutativity conditions the category of modules associated to an invertible 1-cocycle is symmetric monoidal
(see Theorem 5). Finally, in Theorems 6, 7 and Corollary 1, we obtain the desired categorical equivalences
between categories of modules associated to an invertible 1-cocycle and categories of modules associated to a

Hopf brace.

2. Preliminaries
Throughout this paper, C denotes a strict braided monoidal category with tensor product ®, unit object K,
and braiding c. Recall that a monoidal category is a category C together with a functor ® : C x C — C, called

tensor product, an object K of C, called the unit object, and families of natural isomorphisms

aM’N’p:(M®N)®P—>M®(N®P), ryy MK — M, lMK®M—>M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying the Pentagon Axiom and

the Triangle Axiom, i.e.,

am,N,PeQ ° aMeN,p,Q = (idr ® an,pQ) © am,Nep,qQ © (am N P @ idg),

(ZdM ®lN) oap,K,N =TM ®idN,

where for each object X in C, idx denotes the identity morphism of X (see [8]). A monoidal category is
called strict if the constraints of the previous paragraph are identities. It is a well-known fact (see for example
[7]) that every nonstrict monoidal category is monoidal equivalent to a strict one. This lets us treat monoidal
categories as if they were strict and, as a consequence, the results proved in a strict setting hold for every
nonstrict monoidal category, for example the category F-Vect of vector spaces over a field F, or the category
R-Mod of left modules over a commutative ring R. For simplicity of notation, given objects M, N, P in C
and a morphism f: M — N, in most cases, we will write P® f for idp ® f and f® P for f ®idp.
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A braiding for a strict monoidal category C is a natural family of isomorphisms cyrnv : M QN = NQM

subject to the conditions

cunor = (N®@cup)o ey ®P), cmenp = (cup @N)o (M ®cn.p).

A strict braided monoidal category C is a strict monoidal category with a braiding. Note that, as a
consequence of the definition, the equalities ¢y x = cx,pmr = idpr hold, for all object M of C. If the braiding
satisfies that cy a0 ey, v = idygn, for all M, N in C, we will say that C is symmetric. In this case, we call

the braiding ¢ a symmetry for the category C.

Definition 1 An algebra in C is a triple A = (A,na,pa) where A is an object in C and na : K — A
(unit), ua : A® A — A (product) are morphisms in C such that pso (A®na) = ida = pao(na® A),
pao(A®pua) = pao(na®A). Given two algebras A = (A,na,pa) and B = (B,np,up), o morphism
f:A— B in Cis an algebra morphism if ppo (fQ f) = foua, fona=ng.

If A, B are algebras in C, the tensor product A ® B is also an algebra in C where Nagp = N4 ® NB
and pagp = (a @ pup) o (A®cpa ® B).

Definition 2 A coalgebra in C is a triple D = (D,ep,dp) where D is an object in C and ep : D — K
(counit), 6p : D — D ® D (coproduct) are morphisms in C such that (ep ® D) odp =idp = (D ®ep)odp,
(bp®D)odp =(DRp)odp. If D= (D,ep,0p) and E = (E,eg,dr) are coalgebras, a morphism f: D — E
in C is a coalgebra morphism if (f @ f)odp =dgof, egof=ep.

Given D, E coalgebras in C, the tensor product D @ E is a coalgebra in C where epgp = eép ®eg and
dper = (D®cp,p®FE)o(dp ® k).

Definition 3 Let D = (D,ep,dp) be a coalgebra and let A = (A,na,pua) be an algebra. By H(D,A), we
denote the set of morphisms f : D — A in C. With the convolution operation fxg = pao (f®g)odp,

H(D, A) is an algebra where the unit element is Naoep =e€p @ N4 .-

Definition 4 Let A be an algebra. The pair (M,on) is a left A-module if M is an object in C and
om : AQM — M is a morphism in C satisfying ppro(na®@M) = idar, opmo(AR@n) = eumo(pa®@M). Given
two left A-modules (M, ppr) and (N, on), f: M — N is a morphism of left A-modules if opno(ARf) = fopns.

The composition of morphisms of left A-modules is a morphism of left A-modules. Then left A-modules

form a category that we will denote by A Mod.

Definition 5 We say that H is a bialgebra in C if (H,ng,un) is an algebra, (H,eq,dn) is a coalgebra, and
eg and dg are algebra morphisms (equivalently, ng and pg are coalgebra morphisms). Moreover, if there
exists a morphism Ag : H — H in C, called the antipode of H , satisfying that Ay is the inverse of idy in
H(H,H), i.e.,

idg x A\g =ngoeg = g xidy, (1)

we say that H is a Hopf algebra.
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If H is a Hopf algebra, the antipode is antimultiplicative and anticomultiplicative

Agopg =pro(Ag @Ag)ocan, oAy =cano(Am ®Ag)ody, (2)

and leaves the unit and counit invariant, i.e., Ay ong =ng, egolyg =cgy.
A morphism of Hopf algebras is an algebra-coalgebra morphism. Note that, if f : H — D is a Hopf
algebra morphism, the following equality holds:

)\Dof:fo)\H.

With the composition of morphisms in C, we can define a category whose objects are Hopf algebras and
whose morphisms are morphisms of Hopf algebras. We denote this category by Hopf.
A Hopf algebra is commutative if pp o cy g = pg and cocommutative if ¢y g o dg = 0. 1t is easy to

see that in both cases Ay o Ay = idy .

Definition 6 Let D be a Hopf algebra. An algebra B is said to be a left D-module algebra if (B, ®g) is a left

D -module and np, pug are morphisms of left D -modules, i.e.,

Ppo(D®np)=cp®@np, Ppo (DR up)=ppoPpgn;

where Ppep = (Pp @ Pp)o (D ®cp,p @ B) o (0p ® B® B) is the left action on B® B.

3. Modules over invertible 1-cocycles and Hopf braces

We begin the main section of this paper by defining the notion of invertible 1-cocycle in the braided monoidal
category C. This definition can be directly generalized from the one given for the symmetric setting, for example

in the category of vector spaces over a field F (see [3]).

Definition 7 Let A, H be Hopf algebras in C. Let’s assume that H is a left A-module algebra with action @ .
Let m: A — H be a coalgebra morphism. We will say that 7 is an invertible 1-cocycle if it is an isomorphism
such that

mopa =g o (T®Py)o (04 @) 3)

holds.
Let m: A— H and 7: B — D be invertible 1-cocycles. A morphism between them is a pair

A B
(fag) : ™ \L — T \L
H D

where f: A— B and g: H — D are algebra-coalgebra morphisms satisfying the following identities:

gor=rof, (4)

go®y =¢po(f®yg). (5)

Then, with these morphisms, invertible 1-cocycles form a category denoted by |C. Note that mona = ngy
holds (see [3]).
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Remark 1 It is easy to see that there exists a functorial connection between the categories Hopf and IC given
by the following: If A is a Hopf algebra, (A,tx =c4 ® A) is a left A-module algebra. Then, ids : A — A is
an object in |C. On the other hand, if f: A — B is a morphism of Hopf algebras, we have that the pair (f, f)
is a morphism in IC between idy : A — A and idg : B — B. Therefore, there exists a functor

H : Hopf — IC
defined on objects by
A
H(A) = ida |,
A

where the action is ty =e4 ® A (the trivial action), and on morphisms by H(f) = (f, f).

As was pointed in [3], there exists a closed relation between the Hopf theoretical generalization of skew
braces, called Hopf braces, and invertible 1-cocycles in the category of vector spaces over a field F. In the

braided setting, we have the same relation and the definition of Hopf brace is the following:

Definition 8 Let H = (H,ey,0n) be a coalgebra in C. Let us assume that there are two algebra structures

(H,nk,ut), (H,n%,u2) defined on H and suppose that there exist two endomorphisms of H denoted by AL,
and N3, . We will say that

(H 0gs s s Mo €55 811 Mjgs Ay )
is a Hopf brace in C if:
(i) Hy = (H,nY,puk em,0m,\y) is a Hopf algebra in C.
i) Hy = (H,n%, 1%, cm1,0m,\%) is Hopf algebra in C.
Ne> e H

(iii) The following equality holds:

pi o (H @ py) = py o (ugr ©Tay) o (H @ cpm @ H) o (0 © H ® H),
where

Ta, = ppr o Ay @ pfy) o (0m © H).

Following [5], a Hopf brace will be denoted by H = (Hy, Ha) or in a simpler way by H.

If H is a Hopf brace in C, we will say that H is cocommutative if

0 = cu,H o6,

i.e., Hy and Hy are cocommutative Hopf algebras in C. Note that by [10, Corollary 5], if H is a cocommutative
Hopf algebra in the braided monoidal category C, the identity

CH,H © CH,H = dHgH (6)

holds.
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The previous definition is the general notion of Hopf brace in a braided monoidal setting. If we restrict
it to a category of Yetter-Drinfeld modules over a Hopf algebra in F-Vect which antipode is an isomorphism we
obtain the definition of braided Hopf brace introduced by H. Zhu and Z. Ying in [13, Definition 2.1].

Definition 9 Given two Hopf braces H and B in C, a morphism x in C between the two underlying objects is
called a morphism of Hopf braces if both = : Hi — By and z : Ho — Bs are algebra-coalgebra morphisms, i.e.,
Hopf algebra morphisms.

Hopf braces together with morphisms of Hopf braces form a category which we denote by HBr. This
category is a subcategory of the category of Hopf trusses introduced by T. Brzeziiski in [4].

Theorem 1 There exists a functor between the categories Hopf and HBr.

Proof If H is a Hopf algebra, Hy,;y = (H, g, m, NH, B, 5,00, A, Agr) is an object in HBr. On the other
hand, if  : H — B is a morphism of Hopf algebras, we have that the pair (z,x) is a morphism in HBr between

H,s» and By, . Therefore, there exists a functor

H’ : Hopf — HBr

defined on objects by H'(H) = Hy,;, and on morphisms by H'(z) = (z,x). O
Let H be a Hopf brace in C. Then

Ny = N>

holds and, by [3, Lemma 1.7], in this braided setting the equality
Ty o (H®Ay) = pgg o (Mg opfy) @ H)o (H®cpm) o (6 ® H) (7)

also holds. Moreover, in our braided context [3, Lemma 1.8, Remark 1.9 ] hold and then we have that (H, ni;, u;)

is a left Hy-module algebra with action I'y, and p?, admits the following expression:

ph = py o (H®Th,)o (0n @ H). (8)

Now, taking into account that every Hopf brace is an example of Hopf truss, by [4, Theorem 6.4], we

have that (H,nk, uk) also is a left Ho-module algebra with action

b, = g o (3 @ Ny) o (H®cmm) o (0g ® H)

because the symmetry is not needed in the proof as in the case of I'py, .

Finally, by the naturality of ¢ and the coassociativity of dz, we obtain that

i o (3 @Ty,) o (H® ey @ H)o (6 @ H® H)
= pgro (D, @ piy) o (H @ ey @ H)o (65 © H® H)

and then (iii) of Definition 8 is equivalent to
p o (H®py) = pyo (L, @ pfy) o (H@cpm @ H)o (0n © H® H).
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Therefore, the equality
wh = py o (U, @ H) o (H @ ) o (0 © H) 9)

holds.

Remark 2 Note that if H is a cocommutative Hopf brace in C, we obtain that the morphisms 'y, and Ty
1

are coalgebra morphisms. Indeed, first note that it is easy to show that eg o'y, = eg @ e . Moreover,

ool

= e ° (A ®Ay)ocamodn) @ (o, © (0n ®0m))) o (g ® H) (by the condition of coalgebra morphisms
for ny and piy and (2))

=Ty, ®Ty,) 0o dpgH (by the naturality of ¢ and the cocommutativity and coassociativity conditions)

On the other hand, as in the case of I'y, , trivially eg o F}h =epg Qeg. Finally,
0 © I‘}Il

= o © (LH,0H, © (0n ®01)) @ (A @A) 0dy)) o (H®@cym)o (dy @ H) (by the condition of coalgebra

morphisms for py and p% , (2) and cocommutativity of g )

= (g o (1f @A) @ (npr o (g @A) o (HOH @y @ H@ H) o (H® cpm @ (cp,m © ca) © H)
o6y @cy g @cyp)o(H®Sugwn) o (0 @ H) (by the naturality of c)

= (g o (u3r @A) @ (g o (nr @ Ay))) o (HOH @ cyp @ H@ H) o (H@ cpm @ H® H® H)
o(0g @ cap @ cua) o (HQ0ugnu) o (du @ H) by (6))

= (0 (13 @A) @ (kg © (43 @ ) o (H @ (e @ H) o (H @ eap.ir) o (a1 o 0r) © H)) ® epr.11)
o0 ®@cu g ®H)o (0g ®0m) (by the naturality of ¢ and the coassociativity condition)

= (F}{1 ® I‘}{l) 00ggH (by the naturality of ¢ and the cocommutativity and coassociativity conditions)

As was proved in [3, Theorem 1.12], the category of invertible 1-cocycles associated to a fixed Hopf algebra
is equivalent to the category of Hopf braces where the first Hopf algebra structure is the same one fixed before.
This categorical equivalence remains valid for general invertible 1-cocycles and Hopf braces in braided monoidal
categories.

Theorem 2 The categories |IC and HBr are equivalent.

Proof The proof follows as in [3]. In the following lines, we give a brief summary of this proof to introduce
some notation and for the convenience of the reader.

Let H be an object in HBr. Then, idy : Hy — H; is an invertible 1-cocycle. Also, if H and H' are
objects in HBr and = : H — H' is a morphism between them, the pair (z,z) is a morphism in IC between

idg : Hy — Hy and idy: : H) — H/. Therefore, there exists a functor E : HBr— IC defined on objects by
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where @y, = T'y,, and on morphisms by E(z) = (z, z).
Conversely, let 7 : A — H be an object in IC. Define py,_ = mopuso (v ' @7 71), ny. = ny and
A, =molgon L. Then, if we denote by H, the algebra (H,ng,,um, ),

(H,mH, H, MH > H € Ol AH, AH,)

is an object in HBr that we will denote by H, = (H, H,).
Moreover, if (f,g) is a morphism in IC between 7 : A — H and 7’ : A’ — H’, the morphism ¢ is a
morphism in HBr between H, and H; .. As a consequence of these facts, we have a functor Q : 1C — HBr

defined by

on objects and by Q((f,¢)) = g on morphisms.
The functors induce an equivalence between the two categories because, clearly, QE = idyg, and, on the
other hand, EQ = idic because, if 'y = pg o (Ag @ pu,.)o (dg ® H),

by =Tpyo(r®H) (10)
holds and
A H, A
(myidg): © | — idg | =EQ( 7] )
H H H
is an isomorphism in IC. O

Lemma 1 Let w: A — H be an object in 1C with action ®g. Then
Ppo(A® (Agom))
=pgo((Apopur) @H)o (P @m)o(6a@H®@A)o(ARcam)o (6a®m).
Proof The proof is the following:
pro(Agopug) H)o(r@ Py @m)o(0a@H®A) o (AR cam)o (da®m)
=pgo((Agomoua)®@m)o(A®caga)o(0a®A) (by naturality of ¢ and (3))
=pugo((Agopf)@H)o(H®cug)o ((0gom)®T) (by naturality of ¢, the condition of coalgebra isomorphism for

7w and the definition of p7;)
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:FHO(7T®(>\HO7T)) (by (7) for Hy)
=Py o(A® (Agom)) (by (10)).
O

Theorem 3 Let A and H be Hopf algebras in C, let m : A — H be an isomorphism of coalgebras such that
mTona =nyg, and let us assume that H is a left A-module algebra with action @y : A® H — H. Then the

following are equivalent:
(i) The morphism 7 : A — H is an invertible 1-cocycle.
(ii) The pair (H,®%;) is a left A-module algebra, where
Oy =pugo(py @H)o(r@Py @ (Agom))o(da®cam)o(da®H),

and moreover
mops=pgo(®yem)o(ARcapn)o(fa®@m) (11)

holds.

Proof First, we will prove that (i) = (ii). Indeed, let H, be the Hopf brace introduced in the proof of
Theorem 2. Then (H,T'y) is a left Hr-module algebra and (10) holds. Then, if

Py =pgo(pp @H)o(m@®y @ (Agom))o(da®cam)o(da®H),

we have that
=Ty o(r®H) (12)

holds because
Oy
= pr o ((pro(H® (o (r ' @ H)))o (g ®H)) @A) o (H®cum)o (0 om) @ H) (by the condition
of coalgebra isomorphism for 7 and the naturality of c)
=pgo((upo(HTH)o (g @H))®@Ag)o (H®cu,u)o (dgom)®H) (by (10))
= pm o (pa, @ Am) o (H @ cym) o (0 om) @ H) (vy (8))
=TI o (7 ® H) (by definition of I'}; ).

Then, as a consequence of (12), (H, ®%) is a left A-module algebra because (H,I";) is a left H,-module
algebra. Finally,

p o (P @m) o (A®cam)o(0a®T)
= g © (F}{ X H) o (H X CH,H) o (((SH o 7T) ® 7T) (by (12), the naturality of ¢ and the condition of coalgebra morphism

for m)
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= pi, o (T @) (by (9))

= T O 4 A (by definition of pg, )

and then (11) holds.
Conversely, to prove that (ii) = (i), we only need to show that (3) holds. Indeed:

TOUA
=ppo(Py@mo(A®can)o(da®T) (by (11))
= pro((uro(pyg @H)o (1@ ® (Agom))o(6a®can)o(@s@H))@m)o(ARcan)o (64 ®T)
(by the definition of ®%;)
=y o((pro(m@Pg)o (04 H)) @ (Mg +idg)om)) o (A cam)o (54 ®T)(by the associativity of jir
the naturality of c, the coassociativity of §4 and the condition of coalgebra morphism for )

= UH © (7‘( X (I)H) [} ((SA X 7T) (by (1), naturality of ¢ and the unit and counit properties).

Remark 3 Observe that in the previous theorem, we can recover ®g from &'y as
oy :MHO(MH®H)O(()\HOﬂ)@@}{@ﬂ')o((SA(X)CA,H)O((SA@H),

and @y induces a left A-module algebra structure on H if, and only if, ®); does. As a consequence, we
can define an invertible 1-cocycle as a coalgebra isomorphism satisfying condition (11), where (H,®';) is an

A -module algebra.

Lemma 2 Let m: A — H be an object in IC with action ®y and such that H is cocommutative. Then ®g is

a coalgebra morphism.

Proof The proof follows directly from the equality (10) and Remark 2. O

Lemma 3 Let w: A — H be an object in |C with action ®gy and such that H is cocommutative. Then the

action @ defined in Theorem 3 is a coalgebra morphism.

Proof The proof follows directly from the equality (12) and Remark 2. O

Remark 4 Let H: Hopf — IC be the functor defined in Remark 1. If A is a Hopf algebra, its image by H is
the invertible 1-cocycle idy : A — A where the action is the trivial one, i.e., Py =ts =c4 @ A and then P4

is a coalgebra morphism. Also, by (ii) of Theorem 3, we have that
Oy = pao(pa®Aa)o(A®can)o (64 ®A) = g4

Taking into account the previous considerations, we can introduce the notion of left module for an

invertible 1-cocycle.

257



FERNANDEZ VILABOA et al./Turk J Math

Definition 10 Let w : A — H be an invertible 1-cocycle. A left module over the invertible 1-cocycle m: A — H
is a 6-tuple (M, N, ®pr, o0, PN, 7y) where

(i) (M, ®yr) is a left A-module and (M, ppr) is a left H-module such that

Dpro(A@en) =m0 (Pg@Py)o(A®can®@®M)o(6a®H®M). (13)
(ii) (N,®x) is a left A-module.

(iii) v: N — M is an isomorphism in C such that
Yoln =puo(m@Pu)o(da®7). (14)

Let (M,N, @y, 00, Pn,7y) and (M, N, ®pp o0, Pnry ') be left modules over an invertible 1-cocycle
w: A— H. A morphism between them is a pair (h,l) such that h: M — M’ is a morphism of left A-modules
and left H -modules, | : N — N’ is a morphism of left A-modules and the following identity holds:

hoy=+"ol. (15)

Note that, by (15), the morphism | is determined by h because | = (y')"* o hor.

With the obvious composition of morphisms, left modules over an invertible 1-cocycle m : A — H with

action @y form a category that we will denote by (r ,)Mod.

Remark 5 If (M,N,®p, 00, Pn,7) is a left module over the invertible 1-cocycle w : A — H, by (14), we
obtain that ®n is determined by ®p; and oy because

Oy =7 lopryo(m@Py)o(d4®@7). (16)

Also, composing in both sides of the equality (14) with (Agom)® A)oda)@~y~1 on the right and with
pr on the left we obtain the identity

Dy =pmo((Agom)®@(yody))o(6a®y™ ). (17)

Example 1 [t is easy to see that if m: A — H is an invertible 1-cocycle, the 6-tuple (H, A, @y, g, fia, T) s
an example of left module over the invertible cocycle m: A — H .

Also, the unit object K of C is an example of left module over the invertible 1-cocycle w : A — H,
where P = €4, g = eg and v = idg because by (10) we have that eg o Py = €4 @ eg. We call
(K, K, Pk, 0K, Px,idk) the trivial left module over the invertible 1-cocycle m: A — H .

Note that, if (M, ®yr) is an object in yMod, the 6-tuple (M, M, Dy ta = eg @ M, Ppg,idps) is a left
module over the invertible 1-cocycle idy : H — H defined in Remark 1. Also, if f is a morphism between
two left H-modules (M, ®pr) and (P, ®p), the pair (f,f) is a morphism of left modules over the invertible
1-cocycle idy : H — H between (M, M, Py, trr, ®as,idyr) and (P, P, ®p,tp, Pp,idp). Therefore, we have a

functor

lgr : pMod — (idH,tH)MOd
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defined on objects by
IH((Ma(PM)) = (M7M7‘I)MatMa(I)M7idM)

and on morphisms by g (f) = (f, f).

Theorem 4 Assume that (f,g) is a morphism between the invertible 1-cocycles w: A — H and 7: B — D.

Then, there exists a functor
Mitg) ¢ (rep)Mod = (x.a,)Mod

defined on objects by

M(f,g)((P,Q,@p,QOp,‘I)Q,H)) = (PaQa(bﬂ = (I)P o (f®P)a<pT}; = ppo (9®P)aq)g = CI)Q o (.f®Q)59)
and on morphisms by the identity.

Proof The existence of the functor My 4) is a consequence of the following facts: Trivially (P, ®%), (Q, 7))
are left A-modules and (P, ¢T) is a left H-module. Also,

o (g @PL)o (AR cam®P)o(0sa®H®P)
=ppo((goPy)R(Ppo(f@P)))o(A®can®@P)o(da®HQ P) (by definition of @5 and ¢})
=ppo(Pp@Pp)o(BRcpp®@P)o (((f® f)oda) ® g® P) (by (5) and natirality of ¢)
=ppo(PpR@Pp)o(BR®cpp®P)o((dpof)®g® P) (by the coalgebra morphism condition for f)
= 0% 0 (A® ) (by (13)),

and

ppo(T®Pp)o (64 ®@0)
=ppo((gom)® (Ppo(f®P)))o(da®80) (by definition of % and ¢F)
=ppo((Tof)@(Ppo(f@P)))o(da®0) my (1)
=ppo(T@®p)o((dpof)®@0) (by the coalgebra morphism condition for f)

=005 (by (1))

Then (P,Q7<I>7},7Lp}§.,<1>5,9) is an object in  (r,¢,)Mod. Finally, it is obvious that if (h,l) is a morphism in

(r,dpyMod, (h,1) is a morphism in (¢, Mod.
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Remark 6 Let f: H — H' be a Hopf algebra morphisms. Then, by Example 1 and Theorem J, we have the

following commutative diagram

|H/

H/MOd (idH/,tH/)MOd
My l JM(ﬁf)
nMod (idH,tH)MOd
Iy

where My is the restriction of scalars functor.

Remark 7 If (f,g) is an isomorphism defined between the invertible 1-cocycles 7 : A — H and 7 : B — D with
inverse (f~1,g71), the functor Ms.9) is an isomorphism of categories with inverse M(y-1 4-1y. For ezample,

in the proof of Theorem 2, we proved that, for all invertible 1-cocycle m: A — H, (mw,idy) is an isomorphism

between the invertible 1-cocycles m: A — H and idy : Hy — H . Therefore, the functor

M(ﬂ',id}-{): (idH,FH)MOd — (W,‘DH)MOd

is an isomorphism of categories with inverse

M(ﬂ,—ljidH): (7,7<1>H)M0d — (idH,I‘H)MOd-

Theorem 5 Let us assume that C is symmetric with natural isomorphism of symmetry c¢. Let A and H be
cocommutative Hopf algebras in C. Then the category of left modules over an invertible 1-cocycle w: A — H 1is

symmetric monoidal with unit object the trivial left module over the invertible 1-cocycle w: A — H .

Proof Let (M,N,®n, o0, PN,7), (P,Q,®p,0p, Pq,0) be objects in (r ¢,,)Mod. Then we will define their

tensor product as

(MvNyq)MvgoMa(I)Na’Y)®(PaQaq)P,§0P7<I)Q79)

=(M®P,N®Q,Puspr, pmer, Prneg, ¥ ®0)

where the left A-actions are defined by ®ygp = (P @ Pp)o(AQRcsam @ P)o(da@M R P), Pnegg = (PN ®
Dg)o(ARcan®Q)o(64®N ®Q) and the left H-actionis pyegpr = (pm®@pp)o(HRcym@P)o(dg@MQP).
By the monoidal property of the category of modules over a Hopf algebra, we have that (M ® P, ®pgp) and
(N®Q,Pngqg) are left A-modules and (M ® P, opep) is a left H-module. Moreover, the equality (13) holds

because
Vrmep© (P @ Pyegp)o (AR can @M ®P)o(0a®@H®M® P)
= (e @pp)o(H@cypm @ P)o((dgo®y)®@Puep)o (AR cany @M@ P)o(Ja® H® M P)
(by definition)

=((pmo(Ho®y))@pp)o(H® (A®cgm)o(cra®@ M) @ AR P)o (g @ Py)odagm)
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RADM @ ®p) o (A® ((can ®can)o(A®can®@M)@P)o(ARSA)0b4)®H® M P)

(by the naturality of ¢ and the condition of coalgebra morphism for ®g (see Lemma 2))

=((pm o (P @Pu)) ® (ppo(Py @ Pp))) o (AR (HRARcany @®H®A)o (H®caa®cyy @A)

o(can ®ARH®@cam)) ®P)o(04® ((cam @cam)odagn)) @M @ P)o(ba@HOMQ P)

(by the naturality of ¢ and cmg,a 0 ca,g = idagn)

= (oMo (g @ D)) @ (ppo (P @Pp))) o (A® ((can Rcam Q@HRA)o (AR can Qcum @A)

o((ca,n00a) ®HR®H @ canm)o (AR H®@can @ M)o(dagr @ M))® P)o (04 ®@H® M ® P) (by

the coassociativity of §4 and the naturality of c¢)

= (oMo (g @ D)) @ (ppo(Pr @Pp))) o (A® ((can ®cam Rcan)o (AR can @canm @ H)

O(A ® A ® CAH ® CH,M)) ® P) o (((5,4 ® 5A) o 6A) X 5H QR M P) (by the cocommutativity, the

coassociativity of §4 and the naturality of c)
= (oMo (g @Pr)o (AR car@M)o(0a@HQOM))R (ppo(Py@Pp)o(AQcan®P)

(640 H®P)) o (AR H®can ® HOP)o (A® can @y ® P)o (54 © 6y ® M@ P)

(by the naturality of c)
=(Pmo(A®om) R (Ppo (AR ¢p))o (ARH @canm @®HQP)o (AR can ® cum @ P)
0(0a @0y ® M ® P) (by (13))
=P rep o (A® prgp) (by the naturality of ¢)
and, on the other hand, (14) follows by
emep o (T® Pygp)o (04 @y ®0)
= ((par o (m@ (Prr 0 (A®7)))) @ (ppo(r® (Ppo(A®0))))) o (AR (A@can)o((caacia)

®N)) (] A (9] Q) o (5,4 X CA,N X Q) o (§A QN ® Q) (by the coalgebra morphism condition for m, the

coassociativity of 54 and the naturality of c)
= ((par o (m@ (Prr 0 (A®7)))) @ (ppo(T@ (Ppo(A®0)))))o (64 ® ((can @ A)o (AR canN)
0(la®@N))®Q)o(da®N ®Q) (by the cocommutativity and the coassociativity of 4 )
= ((prro(m@ (Par0(A®7)) e (0a@N))) @ (ppo(m® (Ppo(A®0)) o (04©Q))))
o(A®can®@Q)o (04 ®N ®Q) (by the the naturality of ¢)

=(y®0)oPNgq (by (14)).
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Finally, by the cocommutativity condition and the symmetry condition, it is easy to prove that (cas,p, cn,Q)
is a morphism in (; ¢,)Mod between (M, N, ®yr, oar, PN, 7)(P, Q, Pp,op, P, 0) and (P,Q, ®p, pp, Pq,0)®
(M,N,®r, 00, Pn,7y). As a consequence, (m,&5)Mod is symmetric. O

Following [5], we recall the notion of left module over a Hopf brace.

Definition 11 Let H be a Hopf brace. A left H-module is a triple (M,},,v43,), where (M,1,) is a left
Hi-module, (M,v3,) is a left Hy-module and the following identity

Yo (H®p) =y 0 (g @) o (H®cygp @ M) o (6 @ H® M) (18)

holds, where

Lo =ty 0 (A ®3y) 0 (65 @ M).

Given two left H-modules (M, )}, v%3,) and (N, vk, ¥3), a morphism f: M — N is called a morphism
of left H-modules if f is a morphism of left H;-modules and left Hs-modules. Left H-modules with morphisms
of left H-modules form a category which we denote by mMod.

Example 2 Let H be a Hopf brace. The triple (H,u;, n%) is an example of left H-module. Also, if K is the
unit object of C, (K, ¢k =eu, % =epy) is a left H-module called the trivial module.

Let H = (H,np,pm,em,0m, ) be a Hopf algebra. Then (H,pm, pm) is an example of left H-module
for the Hopf brace H with Hy = Ho = H. Also, if (M,vn) is a left H-module, the triple (M, v, ¥ar) is
a left H-module for the same Hopf brace. Then, there exists an obvious functor J :yMod — yMod defined
on objects by J((M,v¥n)) = (M, Y, n) and by the identity on morphisms. Also, there exists a functor
L :yMod — yMod defined on objects by L((M,i;,43,)) = (M,v};) and by the identity on morphisms.
Obviously, Lo J =id, Mod-

Remark 8 As was pointed in [5], Definition 11 is weaker than the one introduced by H. Zhw in [12]. For this
author, if H is a Hopf brace, a left H-module is a triple (M,};,v3,), where (M,},) is a left Hy-module,
(M,2,) is a left Hy-module, and the equalities (18) and

(U @ H) o (H® cu) o (0n @ M) = (b @ H) o (H® e ) © (0n @Tar) 0 (6 @ M) (19)
hold (see [12, Definition 3.1, Lemma 3.2]). Thus, for an arbitrary Hopf brace H, a left H-module in the sense
of Zhu is a left H-module in our sense. Moreover, if H is cocommutative, (19) hold for any left H-module as
in Definition 11. As a consequence, in the cocommutative setting, [12, Definition 3.1] and Definition 11 are
equivalent. Moreover, if we use Definition 11, trivially, (H, uk, pn3) is a left H-module but, if we work with the

definition introduced by Zhu, the condition of left H-module for (H, pl;, u%) implies that the following identity

(FHl ®H)O(H®CH7H)O(5H®H) = (].—‘H1 ®H)O(H®CH,H)O((CH,H05H)®H)

holds. Therefore, if C is symmetric, for example the category of vector spaces over a field K, (H,T'y,) is in
the cocommutativity class of H (see [2] for the definition). In other words, under certain circumstances, for
example, the lack of cocommutativity, the category of left modules over a Hopf brace introduced by Zhu may not

contain the obvious object (H,pul,, u%).
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Remark 9 It is easy to show that (18) is equivalent to

Wi o (H @) =iy o (D, @ $iy) o (H @ en @ M) o (05 ® H @ M).
and the following equality holds:
Taro(H® ) =i 0T, @Tar) o (H® g @ M)o (g ® H® M), (20)
Moreover, (M,Tyr) is a left Hy-module because trivially Tpr o (ng @ M) = idpr and, on the other hand,
Tyo(HRTy)
=Tyo(H® @l oAy ®@¢3,) o (0 @ M))) (by definition of Tar)
=¥y o (P, ®Tw) o (H® cpm @ M) o (6 @ (A @ ¥3y) © (61 ® M))) (by (20)
=30 (o, 0 (H® M) @ Tr) o (H® e @ M) o (3 @ (H ®93y) © (3 @ M))) (by naturality of <)
— o (kg o (N 0 i3) ® H) o (H @ cprir) o (631 ® H)) @ (¥l 0 (Nl ® ¥3,) o (1 © M)
o(H® ey g ®@M)o (6@ (H®Y3,)o 6y ®M))) (by (7) and the definition of Tar)
=P 0 (g o (Mg o uFr) @ (pgg o (H ® Ayp))) ® (Vg o (ufh @ M))) o (H @ e © 6 @ H @ M)
o0y @cgp @HQM)o (6 @0y @ M) (by the condition of left Hy and Hs-module for M and the associativity
of uy)
=g 0 (g o (Mg o pdy) @ (npy © (H ® Ag))) @ (¥ © (g @ M))) o (H @ cpn ® H® H® H)
o(bg ®cup @HQH) o (H®dugu)o (g ® H)) @ M) (by naturality of )

= Yig o ((pg o (Mg o pdy) @ (idp * Ajy)) o (H @ cr) o (6 @ H)) @ (3 o (i @ M))) o Onen @ M)

(by naturality of ¢ and coassociativity of 6 )
= ’1/111\4 o ()\}{ (9 1#12\4) o (((/13_[ (39 ﬂ%{) o 5H®H) (9 M) (by (1) and unit and counit properties)

= FM o (ﬂ%{ (24 M) (by the condition of coalgebra morphism for ;Ai,)

Theorem 6 Let H be a Hopf brace and let E(H) be the invertible 1-cocycle induced by the functor E introduced

in the proof of Theorem 2. There exists a functor
GHI HMOd — (idH,FHI)MOd

defined on objects by

Gu((M, ¥}, v3,)) = (M, M, ®pr =Tar, Pas = Vi ®ar = U3y, idar)

and on morphisms by Gu(f) = (f, f).
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Proof By Remark 9, we know that (M, Dy = [yr) is a left Ha-module and, by assumption, (M, P = 1},)
is a left Hy-module and (M, ®y = 12,) is a left Hy-module. On the other hand, by (20) we have that

B0 (H® @) =Gno (L, @Par) o (H@ e m®M)o (6 @ HeM)
and then, (13) holds. Also,
P o (H®§)M) o(0g ®M)
=t 0 (H®T ) o (g ® M) (by definition of Gar and Bay)
=Y o (H® (i 0 (A @93,) o (6g @ M))) o (0 @ M) (by definition of Tar)
=l o ((idy * A\y) @13,) 0 (6 ® M) (by the condition of left Hy-module of (M,},) and the coassociativity
of 81)
= ®)s (by (1), the counit properties, the condition of left Hy -module of (M,1,) and the definition of @ ).

Finally, it is easy to show that if f is a morphism in yMod between the objects (M, v}, %%,) and
(M’,g[}}w,w]?w,), the pair (f, f) is a morphism in (idHyle)Mod between the objects Gy ((M, ¢}\47¢12\4)) and

Gu((M', Y5 ¥ir)) - D
Theorem 7 Let m : A — H be an invertible 1-cocycle. Then the categories (ro,)Mod and g, Mod are
equivalent.
Proof First of all, we will prove that there exists a functor

HE, -

r -

(W’éH)MOd — M, Mod
defined on objects by

- —1 —2 _ _
br((MaN7q>M7SDM7(I)N77)):(MJ@[JM:SDM71/}M:’YO¢NO(7T 1®'7 1))

and on morphisms by HF.((k,1)) = h. Indeed: By assumption, (M, E}w = @) is a left H-module and, using

the condition of left A-module of N, we obtain that (M, @?M =yo0®yo(n '@y h)) is a left H-module.
Also, by (17), we have that the identity

(I)MO(W71®M)ZFM (21)
holds, where T'p; = E;\/f o(Am ®E?VI) o (dg ® M). Then, (18) holds because:
—2 —1
Vnr o (H®1Py)
=m0 (m@Prr)o((daom™!)@pn) (by (16)

=pmo(m® (prpo(Pg@Pa)o(ARcam@M)o(ba@HRM)))o((baonmt)®H®M) (by (13))
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=omo(pro(m®@Py)o(a®@m)@Pr)o(ARcaa@M)o((faont)@m ! ®M) (by the condition of
left H-module for M, the coassociativity of 54, the naturality of ¢ and the condition of isomorphism for )

=pmo((mopa)@Puy)o(A®caa@M)o((faorm )@@ M) my (3))

=pmo (uu, ®(@po(r e M)))o(HRcyy®M)o(6y ®H® M) (by the condition of coalgebra isomorphism

for m and the naturality of ¢)

—1 —
=y o (pa, @) o (H®cg g @ M)o (0p @ H® M) (by (21))

On the other hand, if (h,[) is a morphisms in (; 4, )Mod between the objects (M, N, ®rr, o, Pn,7)
and (M',N', ®pp,onr, Pnryy’), we have that h is a morphism in gy _Mod between (M, @}\4,@?\4) and
(M/»E}W»E?w) because, using that h is a morphism of left H-modules, we have h O@}w = E}W o(H®HAh) and,
by (15) and the condition of morphism of left A-modules for h, we have that ho @?\4 = E?w o(H®h).

Taking into account the functors Hf , Gu, and My ;q,), it is easy to show that

Hp, © (M(r,idy) © Gr,) = id ;_Mod

and

((M(r,idg) © G, ) o HE ) (M, N, ®@pr, 001, PN, y)) = (M, M, @y, or, Py =v0 By o (A®y 1), idar)

hold. Then,

(M idp) © Gr, ) o HE, =2id o Mod

because (idys,7) is an isomorphism in the category (r¢,)Mod between the objects (M, N, ®pr, or, ®,y) and
(Mv Ma q)Mva?E;rW?ZdM)

O
As a consequence of this result, we have the following corollary whose proof is an immediate consequence

of the preceding theorems.

Corollary 1 Let H be a Hopf brace. Then, the categories (idH’le)l\/lod and gMod are equivalent.
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