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Abstract: We consider the integro-differential Dirac operator with parameter-dependent nonlocal integral boundary
conditions. We derive the asymptotic expressions for the eigenvalues and the zeros of eigenfunctions (nodal points or

nodes) and develop a constructive procedure for solving the inverse nodal problem for this operator.
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1. Introduction

We consider the following integro-differential Dirac system
BY'(5¢) + Q(3)Y (5) + /K(%, Q)Y (s)ds = AY (), » € [0, 7], (1)
0

subject to the parameter-dependent nonlocal integral boundary conditions

Wi(Y) : =sindy;(0) + cosdy2(0) + /Y(§)t01(<)d§ =0, (2)
0
Wa(Y) : = AsinBys(r) + Acos Baya(m) + / Y ()l oa(s)ds = 0. 3)
0

K(o€) = 3505 o ) = | 71 .

*Correspondence: bkeskin@cumbhuriyet.edu.tr
2010 AMS Mathematics Subject Classification: 45J05, 47G20, 3 34K29, 34A55, 34B09.
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the functions K;; (3,<), 0i;(3), (i,j =1,2), p(s), and r(5) are real-valued in W3} [0,7], 0 < §,3 < 7, and

A is the spectral parameter.

Boundary value problems with different nonlocal boundary conditions have been one of the most researched
areas in various applications in mathematical physics. The nonlocal boundary conditions arise when values of
the functions at the boundary are connected with values inside the domain. The problem relates to various
areas of mathematical physics, biology, biotechnology, mechanics, and geophysics [4, 14, 18, 50]. The nonlocal
boundary condition was first introduced by Samarskii and Bitsadze in 1969 [5]. In that study, the researchers
investigated and formulated the nonlocal problem for a general elliptic equation and proved the existence and
uniqueness of the solution.

Inverse spectral problems consist of reconstructing the coefficients of the operator from their spectral
characteristics. The results of different types of inverse problems for various nonlocal operators can be found in
[3, 13, 31, 32, 37, 48].

Boundary value problems, with boundary conditions containing the spectral parameter in different ways,
are frequently encountered in applications as well as in various problems of mathematical physics. In 1973,
Walter discussed eigenvalue problems with the eigenvalue parameter in the boundary conditions and gave
expansion theorems for this problem. [41]. Fulton’s [16, 17] studies and the references in this study can be cited
as examples of studies conducted on this subject until 1980. Fulton’s research suggested that the results from
Titchmarsh’s book ([40]) extend to regular problems involving the spectral parameter in the boundary condition.
Direct and inverse problems for various operators with spectral parameter-dependent boundary conditions have
been well-studied (see [1, 15, 19-21, 23, 24], and the references therein).

The problem of determining the coefficients of the operator using the nodes is called the inverse nodal
problem. Mclaughlin (1988) was the first researcher who dealt with the problem and solved it for a specific
Sturm Liouville problem [36]. The researcher showed in her work that a dense subset of nodes alone could
determine the potential function of the Sturm-Liouville problem up to a constant. After Mclaughlin’s work,
using similar methods, Hald and McLaughlin provided some numerical schemes for the reconstruction of the
potential of the operator with some general boundary conditions [25]. Yang was one of the researchers who also
proposed a constructive procedure to reconstruct the coefficients of the operator from the nodes [44]. Many
researchers have extensively investigated the inverse nodal problems for some operators with different boundary
conditions [2, 9, 12, 22, 35, 39, 42, 43, 45-47, 49, 51].

Integro-differential operators appear in many areas of the applied sciences [34]. Inverse problems for such
operators are of great interest and are currently studied by many researchers because of their importance in
applications [6-8, 10, 11, 26-30, 33]. In [38], the authors considered the Dirac operator BY” () + Q(3)Y (5) +

J K (5,6)Y (s)ds = \Y () with nonlocal integral boundary conditions. In this study, the potential function was
0

V(x)+m 0

regarded as Q() = [ 0 Vi) —

} and the special case V() was reconstructed.

The present study aims to discuss the inverse nodal problem for an integro-differential Dirac system with
more general potential function and parameter-dependent nonlocal integral boundary conditions.

Consider the solutions

S(,\) = { g;gzig ] S(0,\) = { o ] , and

211



KESKIN and WANG /Turk J Math

cen=[ Gl | con=| 5]

of Eq. (1.1). It is easy to show that the following asymptotic expressions exist
r
S1(se,A) = (1 + 2(>\%)> sin(d(sr, A) — 0) (4)

exp(|7] »)

+% (H (50) — /O% 72(<)d<) cos(J(s,A) —6) +o (/\> ,

Sa(se,A) = — <1 + F2()%\)) cos(9(s¢, A) — 0) (5)

el (H_ () — /0% 72(§)dq> sin(0(s2, \) — 6) + o (exp(|)\7'%)) ,

2\

o (12 60 = [0 ) sin0(oe3) — )+ o (220 )

Ch(56,\) = (1 + FW) cos(9(5, \) — 6) (6)

Co(se,\) = (1 + Fz(;f)) sin(¥(s¢, A) — 0) (7)

o (B2 00— [ 2200 ) coston ) - )+ 0 (22U,

for sufficiently large |A|, uniformly in 3. Here, Hy (5) = [;°(K11(s,<) + Kaz(s,<))ds, H_(3) = [77(K12(s,<) —

Koi1(s,6))ds, 2x(39) = [57(p(s) +7(5))ds, v(3¢) = p(32) —7(3¢), ¥(3¢) = [5 7 (¢)ds, 9(36,A) = Ase — x(50) + 6,
I'(3¢) = v(3) —v(0) — Hy (5), and 7 = ImA.

2. Main results
In this section, we will first obtain asymptotics for the eigenvalue, eigenfunction, and nodal points. Then, we

will give an algorithm on how to find the coefficients of the operator with the help of nodal points.

2.1. Eigenvalues of the problem L
Let us denote the problem (1.1-(1.3) by L, and let y(3¢,A) = p1(A)C (3¢, A) + p2(A)S(3¢,A) be a nontrivial
solution of the Eq (1.1). Together with (1.2) and (1.3), we have

prANWL(C (3, 0)) + p2(MW1(S(,A)) = 0,

prAW2(C (2, A)) + p2(MWa(S(, A)) = 0.

The zeros denoted by A, of the characteristic function A(X) := det %) are the eigenvalues of
(C) Wa(S)

L.
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Introduce the function

(5, A) = (91056, A), 02(52, 1)) = Wi(S(52,A))C (52, A) = Wi(C(5,A))S (52, A),

note that this is the solution of the L. Without loss of generality, this is equivalent to choosing pi(\) =
Wl(S(%7 A)) and p2(>‘) = _WI(O(%a )‘))

Hence,

90(%7 )‘V) =W (S(%v )‘V))C(%7 AV) - W (O(%v )‘V))S(%v )‘V)

are the eigenfunctions corresponding to the eigenvalues A\, .

Lemma 1 Let {)\,}
the following asymptotic relations hold:

vz be the eigenvalues and ¢(s¢,\,) be the eigenfunctions of L. For sufficiently large |v],

/\U:(yfl)er);ﬂ ®)
1 & 1
O (7(0)H_(7r)+/0 vz(c)ak) +0<V>, v>2,
and similarly,
,\y:(y+1)+M o)

™

+m (7(0) _H_(m) + /OTr 72(§)d§) +o (i) v< -2

Moreover, the first components ¢1(3¢,\,) of eigenfunctions satisfy

pr(mA) = (—1— FQ(;‘)) cos (3¢ \,) + <H - | ”ﬂg)dg) s e ho)

+5 cos (9(32, Ay) — 8) — % sin (9(56, Ap) — 6) 4 0 (W) ’

where I, = (—1)" (sin(6 + B)o1,2(m) — cos(d + B)or11(m)) + 01.1(0),
Jl, = (71)1/ (COS(5 -+ B)ULQ(’/T) + sin(5 -+ 5)0'171(71')) — 0'172(0).

Proof Since the following expressiontion holds

AN = =x {sin (Hm, \)+5) + W sin (9(m, A) + )

_% (7(0) —H_(m) + /07r ’YQ(C)dC) cos (V(m, \) + B)

()

we can obtain equations (2.1) and (2.2) from the above asymptotic, i.e., the first part of Lemma 2.1 is proven.
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Let (5, A,) be the eigenfunctions of the problem L, it follows from (1.2), (1.4)-(1.7) that

Jeostan,) + g (#-60— [ 220 ) sine )

Jo + 0'1,2(0)
Ay

T'(5)
22X,

P16, M) = — (1 +

I — 0
T 2 01,1()

cos (0(5¢, Ay) +9(m,\) =6+ B) — sin (9(5¢, Ay) + 9(z, Ay) — 6 + )

———=cos(V(»,\,) — ) + 017)1(0) sin(9(s¢, A\y) — ) + 0 (exp(|)\7'%))

=— (1 + F(%)) cosV(5¢, \y,) + ! (H /0% 72(<)d§> sin (52, Ay
(
Av

2)\1/ —(%)_
+LE%WWAA—®—’kmwa@_@+O‘m”ﬂ@>

Hence, the second part of Lemma 2.1 is proved.

2.2. Nodal points of the problem L

Let » be the position of the ith zero of the characteristic function (s, \,), » € (0,7). The following

Lemma describes the asymptotic behavior of s when v is large enough.

Lemma 2 As v is large enough, the function ¢1(32,\,) has v — 2 nodes {%l‘, :1=0,1,...,v— 3} in (0,7) :

0 <20 <3l < ... <3473 < 7. Moreover, The following asymptotic expression is provided

T (2i4+1)m X(%f,)—éﬁ(?i-l—l)wx(w)—é—ﬁ
v 2(w-1) v—1 2w-1) w-1nr
@itDr @ ()-8 ()-8 B)
2(V—1) (1/—1)271' (V—1)27T
1 ) o 9 ~ 01,2(0)cosd —01,1(0) sin§
_2(u—1)2 <H< v) /0 v (g)d§> (v —1)>
(=1)" (o1,2(m) cos B+ 1,1 (m)sin ) (x(sd) = 6) @
- (v—1)> (v—17n (10)
XM =8-B—H_(s4) [ ,
v _1n /0 v4(s)ds
_2((=1)" (g1.2(m) cos B + 01,1 (7) sin B)) (x () — & — B)
w1y
2(01,2(0) cosd — 01,1(0)sind) (x (7) — 6 — B) o 1
i (v—1)° " (VS)

for sufficiently large v > 0, uniformly with respect to i, where & = 7r(7(0) —H,(W)—i—fo7T 72(§)d§) +
(x(m) =6 - B)".
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Proof Consider the equation ¢1(3c,,,) =0 on (0,7), then

—cos V(') \y) — % cos (s, \y) + % (H (%;) - / ’ 72(§)d§> sin®(s¢), \y)
v v 0

N (=1)" (o12(m) sin 8 — o1,1() cos B)

cos¥(sct, \y)

Ay
B (=1)" (o1,2(m) CO)S\ﬂ +o1(m)sin ) sin (s, Ay,
+(01,2(0) Sm(s;\r 91,1(0) cos 9) cos ¥(x, \y)
Y . | 1 ,
+(01,2(0) cos 5}\ 01,1(0) sin d) sind (s, \y) + 0 ()\ exp(|7| %11/)> =0.

This implies

cot 93¢, Ay) (1 . T(54) n (—1)" (o1,1(m) cos B — o1,2(m) sin )
2\, Av
_0172(0) sind + o1,1(0) cos5>
Av

- _2;, (—H () + /O%” 72(<)d<> (=1 (012(m) co)s\yﬁ + 01.1(7) sin B)

+01’2(0) cos 5/\— 01,1(0)sind ‘o (/\1 exp(|7] %;)>

which also imply the estimates

tan(ﬂ(% Ao) — g) (HO(;U

-1 (H () - ) (01,2(m) cos B+ oq,1(m) sin )

2, A

01,2(0) cosd — a1 1 ( 51116 i o(J7]
N N, AT

using Taylor’s expansion formula, we get

. 2i+ 1) y(d)—08 1 [ 1
%lz, = ( ) + X( ) + ’72(§)d§_ W
0 v

2, N 22 H- (=)

(=1)" (o1,2(m) cos B+ a11(m)sinB)  01,2(0) cosd — 01,1(0)sind
AD AL

+o (;2 exp(|7| > ))

+
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If we substitute the following expression in the above equation
_ 1 x(m)—6-p0 P 1
A= 1-— — —
v 1/—1{ (v—1m (y—1)27r+0 v2) |’

we have completed the proof of Lemma 2.2

2.3. Reconstruction of problem of the problem L

In this section, we develop a constructive algorithm for determining the coefficients of problem L. Denote the

set of nodal points by = and the dense subset of the set = by F.

Theorem 1 For s € (0,7), let (%f,)yeN C Z, and lim s, = 5. Then, the following limits exist and are finite

and

h () = lim <%;(222;_1)17)T> (u—2):><(%)—57%)<(7r);ﬂ (11)
o ;o Qi+D)7 xGA)—-8  2i+D)mx(m)—d-8 2
g0 (%) _ulinéo<%_2(y—2)_ v—1 201 (-1 )ﬂ(”_m

= —x®—(x(>) =) (x(m) =0 - 5) +

vol 3

| =S (12
0

—7 (01,2(0) cosd — 01,1(0) sin §) + 7 (

—~

—1)" (o1,2(m) cos B + 01,1 () sin 8))

fr() o = lim 2 (v —2) v—2 2w—-1) (v—-1=

vV— 00

i+)r  ® (x(54) = 6) (x (w) =6 — B)

{%i(2i+1)ﬂ x() -6 i+Drax(n)—5—p

2(v—-1) (1/—1)277 (V—1)27T
1 = 9 H_ (%) 7 (v—2)
2(v—1) /0 T(ds 2(v—1) (13)
+0172(0) cosd —01,1(0)sind (=1)" (01,2(m) cos B + 01,1 () sin B) } (v—2)>°
(v—1)° (v—1)° 2

= —(X(%)—5)‘I>—(X(?T)—5—ﬂ)/0%72(<)d<+(x(7f)—5—B)H— () + 71,

where YT, = (x (7) — 8 — ) (012(0) cos § — 71,1(0) sind — (1) (o1,2(7) cos B+ 71,1 (7) sin 3))

Proof By using (2.3) and lim s, = 5. For any v € Z , (2.4), (2.5), and (2.6) can be easily obtained by direct

calculation.
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Theorem 2 Let us assume that x (w) = 0. The given set [ uniquely determines p(5¢), r(s) almost everywhere

on (0,7m), w1, pe, and the coefficients § and . Also, we have the algorithm below for reconstructing p(s),

T’(%), M1, H2, 0 and ﬁ ;
(1) For each set F and » € (0,7), {%,ij(y)} C F, then lim %,i,(”) =

[v|—o0

(2) Find h(sc) from the Eq. (2.4), and calculate

= —h(0)
6 = hx)
X6 = 5000 +p0a) = K~ 227

(3) If x(7) =0, and Kia2(z,z) — Ko1(x,x) is known, find the functions g,(3) and f,(3) via (2.5) and (2.6)

and calculate

o fl/(O) — TV
¢=- h(0)
p() = Wi - 22 S
— 92k41(0) + g2(0) + 26 (0 + 8)
f = —2m
iy — 92x(0) —252k+1(0)’
where
€200 = nf) (30) + 7 (0 + B) H. (3) + (wh/(3) — (5 + B)) @
p1 = o012(0)cosd —o1,1(0)sind
pe = o12(m)cos B+ oq,1(m)sinf.

3. Conclusion

In this work, we study inverse nodal problems for Dirac-type integral differential systems with parameter-
dependent nonlocal integral boundary conditions. Asymptotic expressions were obtained for the eigenfunctions,
eigenvalues, and nodes of the problem under consideration. With the help of these data, a constructive procedure
for solving inverse nodal problems is proposed.This study differs significantly from studies in the literature in

that it includes both a more general potential function and more general boundary conditions.
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