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Abstract: In this paper, we prove a generalization of a discreteness criteria for a large class of subgroups of PSL2(C) .
In particular, given a finitely generated purely loxodromic free Kleinian group Γ = ⟨ξ1, ξ2, . . . , ξn⟩ for n ≥ 2 , we show
that

|trace2(ξi)− 4|+ |trace(ξiξjξ−1
i ξ−1

j )− 2| ≥ 2 sinh2 ( 1
4
logαn

)
for some ξi and ξj for i ̸= j in Γ provided that certain conditions on the hyperbolic displacements given by ξi , ξj and
their length 3 conjugates formed by the generators are satisfied. Above, the constant αn turns out to be the real root
strictly larger than (2n−1)2 of a fourth degree integer coefficient polynomial obtained by solving a family of optimization
problems via the Karush-Kuhn-Tucker theory. The use of this theory in the context of hyperbolic geometry is another
novelty of this work.

Key words: Free Kleinian groups, Jorgensen’s inequality, trace inequalities, hyperbolic displacements, log 3 theorem,
Karush-Kuhn-Tucker theory

1. Introduction
By the work of Thurston [16, 17] and Jorgensen and Gromov [10], it is known that the volume is a geometric
invariant of finite-volume hyperbolic 3 -manifolds. Furthermore, by the Mostow-Prasad rigidity theorem (see
[3, 14]), it is also a topological invariant. Therefore, investigation of the connections between the volume and
the usual invariants of topology is one of the main topics of research in the study of finite-volume hyperbolic
3 -manifolds.

A particular approach practiced in this area of research is to explore the implications of discreteness
criteria such as the Jorgensen’s inequality [11] which states that |trace2(ξ1)− 4|+ |trace(ξ1ξ2ξ−1

1 ξ−1
2 )− 2| ≥ 1

if Γ = 〈ξ1, ξ2〉 is a Kleinian group. Trace inequalities of this sort can be used to calculate not only estimates
for the volumes but also estimates for geometric quantities like the injectivity radius and diameter. A seminal
result along this line due to Meyerhoff [13] which establishes that 0.104 is a Margulis constant for n = 3 .
In other words, for isometries ξ and η of H3 generating a nonelementary discrete group the inequality
max{dξz, dηz} ≥ 0.104 holds for any z ∈ H3 , where dγz denotes the hyperbolic distance between z ∈ H3
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and γ(z) for an isometry γ of H3 . The existence of such constants is implied by the Margulis Lemma [3]. They
have implications on the volumes of closed hyperbolic 3 -manifolds [13].

An analogous lower bound independent from the Jorgensen’s inequality for the maximum of the hyperbolic
displacements by ξ and η known as the log 3 Theorem is proved by Culler and Shalen in [8]. This theorem
states that max{dξz, dηz} ≥ log 3 holds for any z ∈ H3 provided that ξ and η generate a purely loxodromic free
Kleinian group [8, 15]. A brief survey by Shalen on the implications of the log 3 theorem and its generalization
called the log(2k − 1) Theorem [1] on the volume of the closed hyperbolic 3 -manifolds can be found in [15].

The lower bound given in the Jorgensen’s inequality [11] is the best possible. It is conceivable that if one
considers more restrictive Kleinian groups such as the classes of purely loxodromic and free Kleinian groups
as a particular example the class of all finitely generated Schottky groups [12], a larger universal lower bound
in the Jorgensen’s inequality for these classes may be achieved. Consequently, the implications of this lower
bound on the geometric and topological invariants of finite-volume hyperbolic 3 -manifolds can be investigated
for finite-volume hyperbolic 3 -manifolds whose fundamental groups are k -free. A group Γ is called k -free if
every finitely generated subgroup of Γ of rank at most k is free. With this motivation, the following refinement
of the Jorgensen’s Inequality is proved in [20]:

Theorem 1 Let Γ = 〈ξ1, ξ2〉 be a purely loxodromic free Kleinian group. If the following inequalities hold

(i) dγz2 < 1.6068... for every γ ∈ {ξ2, ξ−1
1 ξ2ξ1, ξ1ξ2ξ

−1
1 } for the midpoint z2 of the shortest geodesic segment

connecting the axis of ξ1 to the axis of ξ−1
2 ξ1ξ2 and

(ii) dξ2ξ1ξ−1
2
z2 ≤ dξ2ξ1ξ−1

2
z1 for the midpoint z1 of the shortest geodesic segment connecting the axis of ξ1 to

the axis of ξ2ξ1ξ−1
2

then, we have |trace2(ξ1)− 4|+ |trace(ξ1ξ2ξ−1
1 ξ−1

2 )− 2| ≥ 1.5937....

In this paper, we shall prove the statement below, also proposed in [20], as a generalization of Theorem 1:

Theorem 2 Let Γ = 〈ξ1, ξ2 . . . , ξn〉 be a purely loxodromic free Kleinian group. If there exist generators ξi and
ξj for i 6= j such that

(i) dγz2 <
1
2 logαn for every γ a generator or a length 3 conjugate formed by the generators other than ξi ,

ξ−1
j ξiξj and ξjξiξ

−1
j for the midpoint z2 of the shortest geodesic segment connecting the axis of ξi to the

axis of ξ−1
j ξiξj and

(ii) dξjξiξ−1
j
z2 ≤ dξjξiξ−1

j
z1 for the midpoint z1 of the shortest geodesic segment connecting the axis of ξi to

the axis of ξjξiξ−1
j , then the inequality

|trace2(ξi)− 4|+ |trace(ξiξjξ−1
i ξ−1

j )− 2| ≥ 2 sinh2
(
1
4 logαn

)
(1)
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holds. Above, αn is the only root greater than (2n− 1)2 of the polynomial

P(λ) = (8n3 − 12n2 + 2n+ 1) λ4+

(−64n6 + 192n5 − 192n4 + 64n3 + 4n2 + 2n− 4) λ3 +

(−96n5 + 224n4 − 168n3 + 52n2 − 18n+ 6) λ2 +

(32n5 − 112n4 + 128n3 − 68n2 + 22n− 4) λ +

16n4 − 32n3 + 24n2 − 8n+ 1.

(2)

Both Theorems 1 and 2 follow from some lower bounds for the maximum of hyperbolic displacements given by
the conjugates formed by isometries of length 1 in purely loxodromic free Kleinian groups. These lower bounds
are calculated in Theorem 4.2 in [20] and Theorem 7 in Section 6. In fact, both of these theorems may be
used in their own rights to investigate if the log 3 Theorem and its generalization can be improved using the
techniques in [7] which will be left to future studies.

The proof of Theorem 1 also uses a result of Beardon [2, Theorem 5.4.5] which connects upper bounds for
trace inequalities to a lower bound for the maximum of hyperbolic displacements by loxodromic isometries of
H3 . The proof of Theorem 2 requires the use of the same tools with one major challenge due to the generalization
of Theorem 1 to an arbitrary number of generators. This makes the necessary calculations for a lower bound
for the maximum of hyperbolic displacements by loxodromics much more complicated. A direct analogue of
the paper [20] for even n = 3 would have been technically very cumbersome. To overcome this difficulty, a new
notational system is introduced in Section 2. With this new notational system, a simplified version of Theorem
2 is rephrased as Theorem 8 in Section 6.

A brief summary of the proof of Theorem 2 and the organization of this paper can be given as follows:
The main step in the proof of Theorem 2 is the calculation of a lower bound for the maximum of the hyperbolic
displacements given by the generators of Γ = 〈ξ1, ξ2, ..., ξn〉 and their length 3 conjugates. This is achieved in
Theorem 7 in Section 6 by considering two cases: Γ is geometrically infinite or Γ is geometrically finite. The
machinery introduced by Culler and Shalen to prove the log 3 theorem [8] is used in both cases. The methods
developed in [18, 19] are needed in the first case.

Assuming Γ is geometrically infinite, a carefully chosen decomposition denoted by ΓD of Γ = 〈ξ1, ξ2, ..., ξn〉
concentrating on the length 3 conjugates formed by the generators is defined in Section 2. This decomposi-
tion leads to a decomposition of the Patterson-Sullivan measure which is the area measure on the limit set of Γ

homeomorphic to the sphere at infinity. The group-theoretical relations of ΓD provide some measure-theoretical
relations given in Theorem 3. With a key lemma [8, Lemma 5.5], these measure-theoretical relations provide
lower bounds for the hyperbolic displacements by the isometries determined by the decomposition ΓD of Γ .
The lower bounds are considered as the values of a certain set of functions {fr} , referred to as the displacement
functions, evaluated at a point m in a certain simplex ∆ . This is phrased in Proposition 1. The infimums
αn of the maximum of the displacement functions {fr} over ∆ provide the lower bounds (1/2) logαn for the
maximum of the hyperbolic displacements by the generators of Γ and their length 3 conjugates. In Section
3, we summarize the relevant parts of the Culler-Shalen machinery for this case of the proof, particularly, by
underlining the importance and applications of the group theoretical relations.

All of Section 5 is devoted to the calculation of the infimums αn , obtained by solving a family of nonlinear
optimization problems via the Karush-Kuhn-Tucker theory [4], completing the proof of Theorem 7 when Γ is
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geometrically infinite. The increase in the number of displacement functions {fr} due to the increase in the
number of generators is tackled by the use of inherent symmetries of the decomposition ΓD of Γ from the start
rather than towards the end as it was done in [20]. This simplifies the entire process as the symmetries are not
encrypted into the displacement functions. The use of these symmetries is achieved via classifications of the
decomposition elements and group theoretical relations as they are discussed and presented in Section 4. On
a side note, Section 5 is largely a simplified and generalized version of the calculations in [20] as we reap the
fruits of our efforts in these classifications. Almost all the ideas that are used in this section are from [20] as
they were presented in this paper but they are translated to the language of the classifications in Section 4.

The second case, when Γ = 〈ξ1, ξ2, ..., ξn〉 is geometrically finite, in the proof of Theorem 7 is considered
in Section 6. This case can be reduced to geometrically infinite case by the use of a number of deep results [8,
Propositions 8.2 and 9.3], [6, Main Theorem] and [5] from the deformation theory of Kleinian groups completing
the proof of this theorem. Once Theorem 7 is at hand, the main result Theorem 2 (Theorem 8 in Section 6)
follows from a proof by contradiction.

Under the hypothesis of Theorem 2, assuming the strictly less than inequality in (1) implies the existence
of a point in H3 so that the infimum of the maximum of the hyperbolic displacements given by the generators
and their length 3 conjugates in Γ = 〈ξ1, ξ2, ..., ξn〉 at that point becomes strictly less than (1/2) logαn

contradicting with Theorem 7. This is done by reversing the inequalities in the proof of a theorem by Beardon
[2, Theorem 5.4.5 (iii)] which states that if ξ1 is elliptic or strictly loxodromic and |trace(ξ1)− 4| < 1/4 , then

max
{
sinh 1

2dξ1z, sinh
1
2dξ2ξ1ξ−1

2
z
}

≥ 1/4 for all z ∈ H3 provided that 〈ξ1, ξ2〉 is discrete and non-elementary.

A number of auxiliary lemmas needed in the proof of Theorem 8 are also proved in the final section.

2. Basic definitions and notations
Throughout this text, we will work with a fixed subset Ξ = {ξ1, ξ2, . . . , ξn} of PSL(2,C) such that Γ = 〈Ξ〉
is a purely loxodromic group freely generated by Ξ . Let Ξ−1 = {ξ−1

1 , ξ−1
2 , . . . , ξ−1

n } . The sets of particular
interest in this paper will be the subsets Γ1 , Ψ and Γ∗ of Γ defined as Γ1 = {1} ∪ Ξ ∪ Ξ−1 ,

Ψ =
{
ξ2ti , ξ

t
iξ

2s
j , ξ

t
iξ
s
j ξ
p
k | i, j, k ∈ {1, 2, . . . , n}, i 6= j, j 6= k, t, s, p ∈ {−1,+1}

}
,

Γ∗ =
{
1, ξti , ξ

t
iξ
s
j ξ

−t
i , | i, j ∈ {1, 2, . . . , n}, i 6= j, t, s ∈ {−1,+1}

}
.

In general, we will consider i, j, k, t, s, p varying in their respective ranges arbitrarily and use subindexes such
as i0, j0, i1 to represent their values once they are fixed. We will also refrain from stating obvious equalities or
inequalities such as i 6= j and t = ±1 . This notational compromise leads to the following relaxations of the
definitions above

Ψ =
{
ξ2ti , ξtiξ

2s
j , ξtiξ

s
j ξ
p
k

}
and Γ∗ =

{
1, ξti , ξ

t
iξ
s
j ξ

−t
i

}
.

For ψ ∈ Ψ , let Jψ represents the elements of Γ that start with ψ in their simplified form. Notice that
(Jψ)ψ∈Ψ gives a collection of disjoint subsets of Γ . Moreover, we have the following partition of Γ :

Γ = {1} t Ξ t Ξ−1 t
⊔
ψ∈Ψ

Jψ. (3)

The setting D = (Ψ,Γ∗) together with the partition above is said to be a decomposition ΓD of Γ . A group
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theoretical relation r of the decomposition ΓD is defined to be a triple (γr, ψr, Ψr) satisfying the following:

r : γr ∈ Γ∗, ψr ∈ Ψ, Ψr ⊆ Ψ and γrJψr = Γ− ({·} ∪ JΨr ) . (4)

To better understand this definition, consider r with γr = ξ−1
1 and ψr = ξ1ξ2ξ3 . It is easy to see that γrJψr

will consist of all the elements of Γ starting with ξ2ξ3 . The term ({·}∪JΨr
) in the relation equation should be

all elements not starting with ξ2ξ3 . If we take Ψr = Ψ− {ξ2ξ3, ξ2ξ3ξti} , then JΨr
=

⋃
ψ∈Ψr

Jψ will exactly be

what needs to be removed from Γ . Hence, the followings r : γr = ξ−1
1 , ψr = ξ1ξ2ξ3, Ψr = Ψ−

{
ξ2ξ

2
3 , ξ2ξ3ξ

t
i

}
,

{·} = Γ1 define a group theoretical relation. Including the relation above, all relations are quite symmetrical.
We can generalize them into families of relations as follows:

r : γr = ξ−t0i0
, ψr = ξt0i0 ξ

s0
j0
ξp0k0 , Ψr = Ψ−

{
ξs0j0 ξ

2p0
k0
, ξs0j0 ξ

p0
k0
ξti

}
, {·} = Γ1.

Next, we shall simplify the notation for displacement functions. Let x ∈ RΨ and r be a relation. We define

xr = x(ψr), Xr =
∑
ψ∈Ψr

x(ψ) and X =
∑
ψ∈Ψ

x(ψ).

Although this notation has been described above only for x , we shall use capital letters almost exclusively for
this purpose. Accordingly, the formula of the displacement function fr of the relation r is defined as:

fr : 4 −→ R++ such that fr(x) =
1− xr
xr

· 1−Xr

Xr
,

where 4 will denote the simplex {x ∈ RΨ
++ | X = 1} . To define the α used in the rest of the paper, we use

the polynomial P(λ) in (2) and introduce the lemma below:

Lemma 1 The polynomial P(λ) has a unique root larger than (2n− 1)2 and all other roots are less than 1 .

Proof All four roots of P(λ) are real and distinct for n ≥ 2 . Therefore, it suffices to find certain intervals
such that the evaluation on either side have opposite signs.

Table 1. Roots of P .

λ P(λ) sign of P
−2 (2n− 3)(256n5 − 608n4 + 424n3 − 36n2 + 18n− 17) pos.

−1/n −(16n8 − 48n7 + 72n6 − 84n5 + 33n4 + 10n3 + 8n2 − 6n− 1)/n4 neg.
−1/(2n− 1) 32n4(n− 1)/(2n− 1)2 pos.

1 −64n4(n− 1)2 neg.
(2n− 1)2 −128n4(2n2 − 3n+ 1)3(4n2 − 8n+ 5) neg.
(2n− 1)3 16(2n− 1)4(n− 1)2(32n7 − 80n6 + 56n5 + 4n4 − 22n3 + 16n2 − 5n+ 1) pos.

The first 4 rows of Table 1 prove that P(λ) has three roots between −2 and 1 . The last two rows prove that
P(λ) has a root larger than (2n− 1)2 . Hence, we located all four roots.

By Lemma 1, we can formally give the definition of α = αn : the unique root of P(λ) larger than (2n− 1)2 .
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3. The Culler-Shalen machinery

In the rest of the paper, we will use S∞ to denote the boundary of the canonical compactification of H3 . The
decompositions ΓD of Γ in (3) and their group theoretical relations defined in (4) in the previous section allow
one to decompose the area measure of S∞ into certain Borel measures and obtain some measure theoretical
relations among these Borel measures, respectively. Consequently, measure theoretical relations lead to the
lower bounds for the hyperbolic displacements by the isometries used in the definition of ΓD . This will be done
in an almost identical way in [8, Lemma 5.3], [18, Lemma 3.3, Theorem 3.4], and [19, Theorem 2.1]. Therefore,
we phrase the basic theorems below without any proofs:

Theorem 3 Let z ∈ H3 and Az be the area measure of S∞ at z . If Γ is geometrically infinite, then there
exists a family of Borel measures {νψ}ψ∈Ψ on S∞ such that:

(i) Az =
∑
ψ∈Ψ

νψ, (ii) Az(S∞) = 1, (iii)

∫
S∞

λ2γr,zdνψr = 1−
∑
ψ∈Ψr

νψ(S∞) for any relation r.

With Theorem 3, we can define a special element m(ψ) = vψ(S∞) ∈ RΨ for all ψ ∈ Ψ for any given z ∈ H3 .
We take {νψ}ψ∈Ψ as in Theorem 3. We also use the notations of [2] for the hyperbolic displacement of z . If γ
is an isometry of H3 with respect to the hyperbolic metric ρ , then dγz = ρ(z, γz).

The crucial part of the Culler-Shalen machinery for this paper is that it gives lower bounds for the
hyperbolic displacements given by the isometries. This is due to [8, Lemma 5.5] and its improved version [9,
Lemma 2.1]. We present the latter:

Lemma 2 Let a and b be numbers in [0, 1] which are not both equal to 0 and are not both equal to 1 . Let γ
be a loxodromic isometry of H3 and let z ∈ H3 . Suppose that ν is a measure on S∞ such that

v ≤ Az, v(S∞) ≤ a and
∫
S∞

λ2γ,zdν ≥ b.

Then, we have

a > 0, b < 1 and dγz ≥
1

2
log

b(1− a)

a(1− b)
.

Finally, we merge the results of Theorem 3 and Lemma 2 to obtain the lower bounds for the hyperbolic
displacements that we will need in Section 6.

Proposition 1 Let z ∈ H3 and m be the relevant vector in RΨ . If Γ is geometrically infinite, then for any
γ ∈ Γ∗ and for any relation r defined by Ψ we have:

(i) m ∈ 4, (ii) e2dγz ≥ fr(m) for any relation r with γr = γ.

Proof First, we shall prove that m(ψ) 6= 0 for all ψ ∈ Ψ . We do so by starting with the conjugate elements
of Ψ and then generalizing to the rest of the elements.

Assume m(ξt0i0 ξ
s0
j0
ξ−t0i0

) = 0 . Let r0 be the relation defined by r0 : γ0 = ξt0i0 ξ
−s0
j0

ξ−t0i0
, ψ0 = ξt0i0 ξ

s0
j0
ξ−t0i0

,

Ψ0 = {ξ2t0i0
, ξt0i0 ξ

2s
j , ξ

t0
i0
ξsj ξ

p
k}. Since m(ψ0) = 0 , we have M0 =

∑
ψ∈Ψ0

m(ψ) = 1 by Theorem 3(iii). This
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implies that there exists a ψ1 ∈ Ψ0 such that m(ψ1) 6= 0 . Take ψ2 = ξt2i2 ξ
s2
j2
ξ−t2i2

, where i2 6= i0 so that
ψ2 /∈ Ψ0 . Notice that M =

∑
ψ∈Ψm(ψ) = 1 by Theorem 3 (i) and (ii). Now, as both M and M0 are equal to

1 , we have
∑
ψ∈Ψ−Ψ0

m(ψ) = 0 . This implies that m(ψ2) = 0 .

Let r2 be the relation defined by: r2 : γ2 = ψ−1
2 , ψ2 = ψ2, Ψ2 = {ξ2t2i2

, ξt2i2 ξ
2s
j , ξ

t2
i2
ξsj ξ

p
k} so that M2 = 1

and M −M2 = 0 . This gives that m(ψ) = 0 for all ψ ∈ Ψ−Ψ2 , which contradicts with the existence of ψ1 as
Ψ0 ⊂ Ψ−Ψ2 . Hence, we have the following fact

m(ξtiξ
s
j ξ

−t
i ) 6= 0. (5)

Next, assume that m(ξ2t0i0
) = 0 . Take r0 to be the group theoretical relation r0 : γ0 = ξ−t0i0

, ψ0 = ξ2t0i0
,

Ψ0 = Ψ − {ξ2t0i0
, ξt0i0 ξ

2s
j , ξt0i0 ξ

s
j ξ
p
k}. By Theorem 3, we obtain m(ψ) = 0 for all ψ ∈ Ψ − Ψ0 . Thus,

m(ξt0i0 ξ
s0
j0
ξ−t0i0

) = 0 contradicting (5). This proves that m(ξ2ti ) 6= 0.

Using similar arguments given above, we proceed as follows: assume that m(ξt0i0 ξ
2s0
j0

) = 0 . We consider

the relation r0 : γ0 = ξt0i0 ξ
−s0
j0

ξ−t0i0
, ψ0 = ξt0i0 ξ

2s0
j0
, Ψ0 = Ψ − {ξt0i0 ξ

2s0
j0
, ξt0i0 ξ

s0
j0
ξpk} . Then, we derive that

m(ξt0i0 ξ
s0
j0
ξ−t0i0

) = 0 which contradicts with (5). Assume that m(ξt0i0 ξ
s0
j0
ξt0i0 ) = 0 . Consider the relation r0 :

γ0 = ξ−t0i0
, ψ0 = ξt0i0 ξ

s0
j0
ξp0l0 , Ψ0 = Ψ − {ξs0j0 ξ

2t0
i0
, ξs0j0 ξ

t0
i0
ξpk} . Then, we get m(ξs0j0 ξ

t0
i0
ξ−s0j0

) = 0 , a contradiction

by (5). Finally, assume that m(ξt0i0 ξ
s0
j0
ξp0k0 ) = 0 . We consider the relation r0 : γ0 = ξ−t0i0

, ψ0 = ξt0i0 ξ
s0
j0
ξp0k0 ,

Ψ0 = Ψ− {ξs0j0 ξ
2p0
k0
, ξs0j0 ξ

p0
k0
ξpk} . Then, we find that m(ξt0i0 ξ

s0
j0
ξ−t0i0

) = 0 , again a contradiction by (5). Therefore,

we derive that m(ξtiξ
2s
j ) 6= 0, m(ξtiξ

s
j ξ
t
i) 6= 0, and m(ξtiξ

s
j ξ
p
k) 6= 0. We cycled over all element types in Ψ showing

m ∈ RΨ
++ . Since we already know that M = 1 , this proves (i) of the current proposition.

To prove (ii), fix any relation r with γr = γ . Take a = νψr (S∞) = m(ψr) and b =
∫
S∞

λ2γ,zdνψr . Notice
that a and b satisfy the conditions of Lemma 2. Thus, we obtain

dγz ≥
1

2
log

(
1− a

a
· b

1− b

)
.

Moreover, if a = mr and b = 1−
∑
ψ∈Ψr

m(ψ) = 1−Mr (by Theorem 3(iii)), then the inequality above turns
into

dγz ≥
1

2
log

(
1−mr

mr
· 1−Mr

Mr

)
=

1

2
log fr(m).

Taking the exponential of the last expression yields (ii).

The proposition above shows that we can use the displacement functions of the relations r and m to
find lower bounds for hyperbolic displacements. We could sharpen this bound by searching for the maximal
value of fr(m) over a family of relations. Obviously, the larger the family, the better the lower bound for
max{fr(m) | r} . Unfortunately, calculating values for m for every z ∈ H3 is not feasible. Therefore, we look
at all possible values of m within the bounds set by Proposition 1(i). As we do not know which element of
4 is actually m , we need to calculate the infimum over all elements. Ultimately, we shall prove in Section 6
that what matters is the infimum of the max function of a collection of displacement functions over 4 . This
optimization is performed in Section 5.
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4. The max functions and classification of relations

In this section, we mainly present some tables illuminating the mechanics of the displacement functions for the
relevant decompositions ΓD . We also discuss how these tables are used in later sections and the objectives
behind their discovery. We count and classify elements of Ψ into 5 types in the table below:

While reading Table 2, remember the notational relaxations that are discussed in Section 2 and also
assume |{i, j, k}| = 3 at any instance. The above classification (with the counts) will be useful in simplifying
the calculations for the optimization question which is discussed in Section 1. However, what we really need is
a set of coherent relations that will yield many symmetries of the simplex 4 .

Notice that for the purposes of finding a lower bound for f(m) as discussed in Section 3, one can work
with as small or as large a set of relations as one desires. Notice that if the set of relations is small, the resulting
lower bound runs the risk of being too small as well and not be useful in any shape for future applications.
On the opposite side, if the set of relations being considered is too large (or badly curated) the resulting
optimization question will become too complicated to solve. The approach preferred in this paper is to work
with and optimize a midsize collection of displacement functions but to choose that collection in such a way
that the resulting lower bound is actually identical to that of a much larger collection. In the following table,
we list, classify, and count all the relations in the large collection G .

Table 2. Types of elements in Ψ .

ψ Count
type 1 ξ2ti 2n

type 2 ξtiξ
2s
j 4n(n− 1)

type 3 ξtiξ
s
j ξ
t
i 4n(n− 1)

type 4 ξtiξ
s
j ξ

−t
i 4n(n− 1)

type 5 ξtiξ
s
j ξ
p
k 8n(n− 1)(n− 2)

|Ψ| |{i, j, k}| = 3 2n+ 4n(n− 1) + 8n(n− 1)2

In fact, G is the largest possible collection that can be worked with. Table 3 has been prepared in a ψr

centric way, in the sense that to generate a relation, first ψr is fixed and then a suitable γr is chosen. The
calculation of Ψr and {·} at every type is very similar to the example done in Section 2. With this collection
at hand, we can define the function G : 4 −→ R++ as follows

G(x) = max
r∈G

fr(x).

It is the infimum of this function that we will ultimately obtain in Section 5. The midsize collection F is the
subset of G consisting of Type 1a, 2b, 3a, 4b, and 5a relations. The relevant function F : 4 −→ R++ of this
collection is defined as follows

F (x) = max
r∈F

fr(x).

In Section 5, we will mostly be optimizing F .
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Table 3. Relations in the collection G .

γr ψr Ψr {·} Count

type 1a ξ−t0i0
ξ2t0i0

Ψ− {ξ2t0i0
, ξt0i0 ξ

2s
j , ξ

t0
i0
ξsj ξ

p
k} Γ1 − {ξt0i0 } 2n

type 1b ξt0i0 ξ
s0
j0
ξ−t0i0

ξ2t0i0
Ψ− {ξt0i0 ξ

s0
j0
ξt0i0 } Γ1 4n(n− 1)

type 2a ξ−t0i0
ξt0i0 ξ

2s0
j0

Ψ− {ξ2s0j0
} Γ1 4n(n− 1)

type 2b ξt0i0 ξ
−s0
j0

ξ−t0i0
ξt0i0 ξ

2s0
j0

Ψ− {ξt0i0 ξ
2s0
j0
, ξt0i0 ξ

s0
j0
ξpk} Γ1 4n(n− 1)

type 3a ξ−t0i0
ξt0i0 ξ

s0
j0
ξt0i0 Ψ− {ξs0j0 ξ

2t0
i0
, ξs0j0 ξ

t0
i0
ξpk} Γ1 4n(n− 1)

type 3b ξt0i0 ξ
−s0
j0

ξ−t0i0
ξt0i0 ξ

s0
j0
ξt0i0 Ψ− {ξ2t0i0

} Γ1 4n(n− 1)

type 4a ξ−t0i0
ξt0i0 ξ

s0
j0
ξ−t0i0

Ψ− {ξs0j0 ξ
−2t0
i0

, ξs0j0 ξ
−t0
i0

ξpk} Γ1 4n(n− 1)

type 4b ξt0i0 ξ
−s0
j0

ξ−t0i0
ξt0i0 ξ

s0
j0
ξ−t0i0

{ξ2t0i0
, ξt0i0 ξ

2s
j , ξ

t0
i0
ξsj ξ

p
k} {ξt0i0 } 4n(n− 1)

type 5a ξ−t0i0
ξt0i0 ξ

s0
j0
ξp0k0 Ψ− {ξs0j0 ξ

2p0
k0
, ξs0j0 ξ

p0
k0
ξpk} Γ1 8n(n− 1)(n− 2)

type 5b ξt0i0 ξ
−s0
j0

ξ−t0i0
ξt0i0 ξ

s0
j0
ξp0k0 Ψ− {ξt0i0 ξ

2p0
k0
, ξt0i0 ξ

p0
k0
ξpk} Γ1 8n(n− 1)(n− 2)

|G| 2(2n+ 4n(n− 1) + 8n(n− 1)2) + 2n(2n− 3)

The choice of F can be explained as follows: For example, for any type 1b relation there exists a type
1a relation such that the type 1a relation’s displacement function is larger at every point of the simplex. This
implies that the displacement functions for all the type 1b relations are unnecessary inside the max function.
However, most of the other ”cancellations” are not this straightforward and ultimately unnecessary as once the
unique optimal solution for the infimum of F is calculated, it is straight forward to show that it must also be
the unique optimal point for the infimum of G . As a result, the collection F has been chosen largely due to the
patterns observed in the n = 2 in [20] and the computer models observed by the authors. We list the elements
of F for ease of access in the table below:

In Table 4, we omitted the set {·} and γr columns (as they are irrelevant to the calculation of displace-
ments) and expanded the description of Ψr as to distinguish (and count) type 3, 4, and 5 elements of Ψr better.
Also notice that |F| = |Ψ| .

In the rest of this section, we shall also calculate the gradients of the displacement functions defined in
Section 2. They will be needed in Section 5. Recall that for a relation r , the definition of the displacement
function fr of r is

fr(x) =
(1− xr)(1−Xr)

xrXr
,

where xr = x(ψr) and Xr =
∑
ψ∈Ψr

x(ψ) . Thus, the partial derivative of fr with respect to a coordinate
ψ ∈ Ψ depends on whether the coordinate is in Ψr and if it is equal to ψr or not. To further complicate the
issue, we have ψr ∈ Ψr for some displacements and ψr /∈ Ψr for some displacements. Therefore, we present
the gradient of fr for a given relation r in two cases. For relations of type 1a and 2b, we have ψr /∈ Ψr which
implies that

dfr
dψ

=


1− xr
xr

· −1

X2
r

if ψ ∈ Ψr

−1

x2r
· 1−Xr

Xr
if ψ = ψr

0 if ψ /∈ Ψr ∪ {ψr}.
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Table 4. Relations in the collection F .

ψr Ψr Count

1a ξ2t0i0
Ψ− {ξ2t0i0

, ξt0i0 ξ
2s
j , ξt0i0 ξ

s
j ξ
t0
i0
, ξt0i0 ξ

s
j ξ

−t0
i0

, ξt0i0 ξ
s
j ξ
p
k } 2n

1 2(n− 1) 2(n− 1) 2(n− 1) 4(n− 1)(n− 2)

2b ξt0i0 ξ
2s0
j0

Ψ− { ξt0i0 ξ
2s0
j0
, ξt0i0 ξ

s0
j0
ξt0i0 , ξt0i0 ξ

s0
j0
ξ−t0i0

, ξt0i0 ξ
s0
j0
ξpk } 4n(n− 1)

1 1 1 2(n− 2)

3a ξt0i0 ξ
s0
j0
ξt0i0 Ψ− { ξs0j0 ξ

2t0
i0
, ξs0j0 ξ

t0
i0
ξs0j0 , ξs0j0 ξ

t0
i0
ξ−s0j0

, ξs0j0 ξ
t0
i0
ξpk } 4n(n− 1)

1 1 1 2(n− 2)

4b ξt0i0 ξ
s0
j0
ξ−t0i0

{ξ2t0i0
, ξt0i0 ξ

2s
j , ξt0i0 ξ

s
j ξ
t0
i0
, ξt0i0 ξ

s
j ξ

−t0
i0

, ξt0i0 ξ
s
j ξ
p
k } 4n(n− 1)

1 2(n− 1) 2(n− 1) 2(n− 1) 4(n− 1)(n− 2)

5a ξt0i0 ξ
s0
j0
ξp0k0 Ψ− { ξs0j0 ξ

2p0
k0

ξs0j0 ξ
t0
i0
ξs0j0 , ξs0j0 ξ

t0
i0
ξ−s0j0

, ξs0j0 ξ
t0
i0
ξpk } 8n!

(n− 3)!

1 1 1 2(n− 2)

|F| 2n+ 4n(n− 1) + 8n(n− 1)2

Using the partial derivatives above, we see that

∇fr(x) = −1− xr
xrX2

r

·
∑
ψ∈Ψr

eψ − 1−Xr

x2rXr
· eψr

. (6)

For relations of type 3a, 4b, and 5a, we have ψr ∈ Ψr so that

dfr
dψ

=


1− xr
xr

· −1

X2
r

if ψ ∈ Ψr − {ψr}
−1

x2r
· 1−Xr

Xr
+

1− xr
xr

· −1

X2
r

if ψ = ψr

0 if ψ /∈ Ψr ∪ {ψr}.

As a result, we calculate the gradients as

∇fr(x) = −1− xr
xrX2

r

·
∑
ψ∈Ψr

eψ −
(
1−Xr

x2rXr
+

1− xr
xrX2

r

)
· eψr . (7)

In both (6) and (7), the expression (eψ)Ψ is the canonical basis for RΨ .

5. Optimizing the infimum of the max function

The purpose of this section is to compute infx∈△(G(x)) . However, for this purpose, we will calculate
infx∈△(F (x)) . This calculation can be summarized in three phases. The first phase is to show the attain-
ment of optimality (for both G and F ). The second phase is to prove the uniqueness of optimality. The final
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phase is to calculate the point of optimality using the Karush-Kuhn-Tucker theorem. We would like to point
out that the problem with the infimum is not that of existence, as the image is a bounded below subset of R
that part is obvious, but attainment in 4 . In fact, from here on we shall denote the infimums with α∗ and
β∗ ; in other words,

α∗ = inf
x∈△

(G(x)) and β∗ = inf
x∈△

(F (x)).

Lemma 3 There exists x∗ ∈ 4 such that G(x∗) = α∗ .

Proof As α∗ is the infimum of the set G(4) , there must be a sequence (xn)n in 4 such that G(xn) → α∗ .
Moreover, (xn)n must have a convergent subsequence since the closure of 4 is a bounded subset of RΨ .
Without loss of generality, assume xn → x̄ for some x̄ ∈ cl(4) . Notice that cl(4) = {x ∈ RΨ

+ | X = 1} . The
fact that the max function of continuous functions is also continuous is a simple exercise ([4] Exercise 2.3.1).
Our aim is to prove x̄ /∈ cl(4)−4 . We shall do so by assuming the opposite and obtaining a contradiction.

Let K = {ψ ∈ Ψ | x̄ψ = 0} . The assumption that x̄ ∈ cl(4)−4 implies K 6= ∅ . Now, if there exists a
relation r such that ψr ∈ K and Xr ∈ [0, 1) , then xnr → x̄r = 0 and (1−Xn

r )/X
n
r either converges or diverges

to ∞ , which shows that fr(xn) = (1− xnr )/x
n
r · (1−Xn

r )/X
n
r → ∞ . However, fr(x) ≤ G(x) for any x . Thus,

we also have lim fr(x
n) ≤ limG(xn) = α∗ , contradicting the existence of α∗ .

The above paragraph shows that for all r ∈ G with ψr ∈ K , we have Xr = 1 . However, we know that
Xr +

∑
ψ/∈Ψr

x̄(ψ) = X = 1 proving x̄(ψ) = 0 for all ψ ∈ Ψ−Ψr in any such relation. In summary, what we
showed is that

ψr ∈ K implies Ψ−Ψr ⊆ K (8)

for a relation r ∈ G . The contradiction that we seek will soon come in the form of K = Ψ as that would imply
X = 0 , contradicting the fact that x̄ ∈ cl(4) . We already know K 6= ∅ by our assumption. We shall start with
a random element of K . We will cycle over all possible types in Table 2 and use (8) together with Table 3 to
show that K = Ψ .

If ξ2t0i0
∈ K , the relevant type 1a relation r0 will satisfy ψr0 ∈ K . By (8), we get Ψ − Ψr0 ⊆ K ,

implying {ξt0i0 ξ
s
j ξ

−t0
i0

} ⊆ K . Repeating the same process for the type 4b relation rj with ψrj = ξt0i0 ξ
s
j ξ

−t0
i0

, we

get {ξ2ti } − {ξ2t0i0
} ⊆ K . Since we already know that ξ2t0i0

∈ K , we actually have {ξ2ti } ⊆ K . The arguments
so far in this paragraph show that for any type 1a relation r , we obtain ψr ∈ K . Merging all this information
together, we get Ψ =

⋃n
i=1(Ψ−Ψri) ⊆ K , proving what we wanted. We summarize this result below:

if there exists a type 1 element in K , then Ψ = K. (9)

If ξt0i0 ξ
2s0
j0

∈ K , the relevant type 2b relation r0 will satisfy ψr0 ∈ K and so by (8) we get Ψ−Ψr0 ⊆ K ,

implying {ξt0i0 ξ
s0
j0
ξ−t0i0

} ⊆ K . Repeating the same process for the type 4b relation r1 with ψr1 = ξt0i0 ξ
s0
j0
ξ−t0i0

, we

get {ξ2ti }−{ξ2t0i0
} ⊆ K . This shows that K has a type 1 element and K = Ψ by (9). We summarize this result

below:
if there exists a type 2 element in K , then Ψ = K. (10)

If K has an element of the other types, we have the same conclusion Ψ = K . More specifically, we
see that if K has a type 3 element and the relevant type 3a relation together with (10), then K = Ψ . The
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assumption that K has a type 4 element and the relevant type 4b relation together with (9) implies K = Ψ .
If K has a type 5 element and the relevant type 5a relation together with (10), then K = Ψ . This gives that
as long as K has an element no matter what type, K = Ψ .

Notice that in the proof above, we only used the relations in F . Therefore, the following lemma has an
identical proof.

Lemma 4 There exists x∗ ∈ 4 such that F (x∗) = β∗ .

The next lemma gives us a rough location for β∗ and α∗ which proves very useful for the proofs in the
second phase.

Lemma 5 The infimums of F (x) and G(x) on 4 , β∗ and α∗ are greater than 1 and less than or equal to
α . Moreover, β∗ ≤ α∗ .

Proof First of all, we know that 1 < α by Lemma 1. Therefore, at the very least the lemma makes sense.
Also, since F ⊂ G , we have F (x) ≤ G(x) for any x ∈ 4 . This proves β∗ ≤ α∗ .

To show that 1 < β∗ , let r be any type 1a relation. As ψr /∈ Ψr , we have 1 = X > xr + Xr for all
x ∈ 4 . Dividing both sides of this inequality with xrXr , we obtain:

1

xrXr
>

1

xr
+

1

Xr
or 1

xrXr
− 1

xr
− 1

Xr
> 0.

Moreover, we have

fr(x) =
1− xr
xr

· 1−Xr

Xr
=

1

xrXr
− 1

xr
− 1

Xr
+ 1,

which must be greater than 1 by the first inequality. Since F (x) ≥ fr(x) for any relation (and specifically any
type 1a relation) in F , we see that β∗ = F (x∗) ≥ fr(x

∗) > 1 for x∗ in Lemma 4. To show that α∗ ≤ α , we
shall need a special element y ∈ 4 . Define

y(ψ) =



1

(2n− 1)α+ 1
if ψ is type 1,

(2n− 1)(α− 1)

(4n2 − 4n− 1)(2n− 1)α2 + (4n2 − 2)α− (2n− 1)
if ψ is type 2,3,5,

(2n− 1)

(2n− 1) + α
if ψ is type 4.

All the coordinates of y are obviously greater than 0 . It is straightforward to show that Y = 1 by using Table
2 and the counts of element types therein. The resulting expression can easily be simplified using P(α) = 0 .
Similarly, one can also show that fr(y) = α for all r ∈ F and fr(y) ≤ α for all r ∈ G by using Table 4 and
the counts of element types within every Ψr . Therefore, α∗ = inf(G(x)) ≤ G(y) = α . In summary, we have
1 < β∗ ≤ α∗ ≤ α , completing the proof.

The previous lemma marks the end of phase one. The vector y given in the proof is in fact the unique
optimization point for our problem. Proving this statement takes most of the technical work in this paper.
What we shall do next is to prove the uniqueness of the optimal point using convexity arguments via a bank of
lemmas.
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Lemma 6 For all x∗ ∈ 4 such that F (x∗) = β∗ , there exists a type 4b relation r0 such that fr0(x∗) = β∗ .

Proof If we consider 4 as a submanifold of RΨ , the tangent space Tx4 at any point x ∈ 4 is the set of
vectors whose coordinates sum to 0 . Moreover, every displacement function is smooth on an open set containing
4 which implies that the directional derivative for u⃗ ∈ Tx4 will be ∇f(x) · u⃗ .

Our plan of attack is to find a common direction of decrease for type 1a, 2b, 3a, and 5a relations, which
will give us a very nice contradiction if the infimum was not attained by any type 4b relation at an optimal
point. As the common direction of decrease, consider the vector u⃗ described below.

u(ψ) =

 1 if ψ is not type 4,

−1 + 4(n− 1)2

2(n− 1)
if ψ is type 4.

It is easy to check that the sum of coordinates of u⃗ is 0 with the help of Table 2; in turn, this shows that
u⃗ ∈ Tx4 . Moreover, we present the calculations below using (6), (7), and Table 4 proving that directional
derivatives of type 1a, 2b, 3a, and 5a relation displacements are all negative in the direction u⃗ . For r of type
1a, we see that

∇fr(x) · u⃗ = −1−Xr

x2rXr
· uψr −

1− xr
xrX2

r

∑
ψ∈Ψr

uψ

= −1−Xr

x2rXr
· 1− 1− xr

xrX2
r

 ∑
ψ∈Ψr−type 4

uψ +
∑

ψ∈Ψr∩type 4
uψ


= −1−Xr

x2rXr
− 1− xr

xrX2
r

 ∑
ψ∈Ψr−type 4

1 +
∑

ψ∈Ψr∩type 4
−1 + 4(n− 1)2

2(n− 1)


= −1−Xr

x2rXr
− 1− xr

xrX2
r

(
(2n− 1)(1 + 4(n− 1)2)− 1 + 4(n− 1)2

2(n− 1)
· 2(n− 1)(2n− 1)

)
= −1−Xr

x2rXr

< 0.

For the last inequality, recall that xr, Xr ∈ (0, 1) . For type 2b, 3a, and 5a, we find that

∇fr(x) · u⃗ = −1−Xr

x2rXr
− 1− xr

xrX2
r

·
(
1− 1

2(n− 1)

)
< 0.

Assume that there exists an optimal point x∗ such that fr(x
∗) < β∗ for all r of type 4b. Let

ε > 0 be small enough so that x∗ + εu⃗ ∈ 4 and fr(x
∗ + εu⃗) < β∗ for all r of type 4b. Such a choice is

possible by the continuity of displacement functions. Under these conditions, we have F (x∗ + εu⃗) < β∗ as
fr(x

∗ + εu⃗) < fr(x
∗) ≤ F (x∗) = β for all r of type 1a, 2b, 3a, 5a and fr(x

∗ + εu⃗) < β for all r of type 4b,
contradicting the minimality of β∗ .

Unfortunately, the displacement functions are not convex on the entire simplex. Therefore, neither are
the max functions. Any argument of uniqueness of the optimal solution must first be defended on a local level,
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displacement by displacement. Fortunately, each displacement function is strictly convex on a relatively large
set.

Lemma 7 For r ∈ F define Cr = {x ∈ 4 | xr +Xr − xrXr < 3/4} . The displacement function fr is strictly
convex on Cr .

Proof Consider the function g : (0, 1)2 → R defined by g(z1, z2) = (1− z1)/z1 · (1− z2)/z2 . As g is twice
differentiable, g is strictly convex, where the Hessian of g is positive definite by [4, Theorem 3.1.11 and Exercise
3.1.12(c)]:

Hess(g) =
(
2(1− z2)/z

3
1z2 1/z21z

2
2

1/z21z
2
2 2(1− z1)/z1z

3
2

)
.

Moreover, a 2× 2 matrix is positive definite if and only if det(H) > 0 and trace(H) > 0 , where

det(Hess(g)) = 4(1− z1)(1− z2)

z41z
4
2

− 1

z41z
4
2

and trace(Hess(g)) = 2(1− z1)

z1z32
+

2(1− z2)

z31z2
.

Since the trace of the Hessian is always positive in our domain, g is strictly convex, where the determinant
is positive. Hence, g is strictly convex on Cg = {(z1, z2) ∈ (0, 1)2 | z1 + z2 − z1z2 < 3/4} . Now, notice that
fr = g(xr, Xr) . Since the map x → (xr, Xr) ∈ (0, 1)2 satisfies the conditions listed in [4, Exercise 1.1.9], we
get fr is strictly convex on Cr = {x ∈ 4 | xr +Xr − xrXr < 3/4} .

We already know that some type 4b displacement attains β∗ at a point of optimality by Lemma 6. It is
also true that any optimal point of a strictly convex function is unique [4, Exercise 2.1.8(a)]. Therefore, proving
any optimal point must be in the domain of convexity of all type 4b relation displacements will take us most of
the way to the uniqueness.

Theorem 4 If r is a type 4b relation, then x∗ ∈ Cr for all x∗ ∈ 4 such that F (x∗) = β∗ .

Proof Assume there exists a point of optimality x∗ such that x∗ /∈ Cr0 for a type 4b group theoretical relation
r0 : ψ0 = ξt0i0 ξ

s0
j0
ξ−t0i0

, Ψ0 = {ξ2t0i0
, ξt0i0 ξ

2s
j , ξ

t0
i0
ξsj ξ

p
k} , where

x∗0 +X∗
0 − x∗0X

∗
0 ≥ 3/4. (11)

Our aim is to obtain a contradiction under these conditions. Let T be the collection of type 4b relations such
that ψr = ξtiξ

s0
j0
ξ−ti and ψr = ξsj0ξ

t0
i0
ξ−sj0 . Notice that (Ψr)r∈T gives a disjoint partition of Ψ . This means that

Ψ =
⊔
r∈T

Ψr, which implies that for any x ∈ 4 , we get

1 =
∑
r∈T

Xr. (12)

Based on the possible location of x∗ , we will separate the proof into the following three cases

(A)
1

2
≥ X∗

0 , (B)
1

2n+ 2
≥ X∗

r1 for some r1 ∈ T, (C)
1

2
< X∗

0 and 1

2n+ 2
< X∗

r for all r ∈ T.
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Each one of these cases will end up with a contradiction, proving the theorem. Assume (A) is the case. Then,
(11) gives us the following chain of inequalities:

X∗
0 (1− x∗0) + x∗0 ≥ 3/4 or 1

2
(1− x∗0) + x∗0 ≥ 3/4 or x∗0 ≥ 1/2.

However, as ψ0 ∈ Ψ0 , we get the contradiction 1/2 ≥ X∗
0 > x∗0 ≥ 1/2 .

Assume (B) is the case. Let ψr1 = ξt1i1 ξ
s1
j1
ξ−t1i1

. Consider any type 4b relation r with ψr = ξt1i1 ξ
s
j ξ

−t1
i1

.
By Lemma 5, we have

1− x∗r
x∗r

· 1−X∗
r

X∗
r

= fr(x
∗) ≤ β∗ ≤ α.

This, after a number of rearrangements, turns into the following inequality

1−X∗
r

X∗
r (α− 1) + 1

≤ x∗r .

Notice that Ψr1 = Ψr and so 1/(2n + 1) ≥ X∗
r1 = X∗

r . In the above inequality, the left side is a decreasing
function of X∗

r . Thus, by the case assumption, we preserve the inequality by replacing X∗
r with 1/(2n + 2) .

We obtain

2n+ 1

α+ 2n+ 1
=

1− 1

2n+ 2
1

2n+ 2
(α− 1) + 1

≤ x∗r = x∗(ξt1i1 ξ
s
j ξ

−t1
i1

).

The following inequalities

1

2n+ 2
≥ X∗

r1 >
∑

j ̸=i1, s=±1

x∗(ξt1i1 ξ
s
j ξ

−t1
i1

) ≥ 2(n− 1) · 2n+ 1

α+ 2n+ 1

are obtained by using the previous inequality and the fact that ξt1i1 ξ
s
j ξ

−t1
i1

∈ Ψr1 for all j 6= i1 , s = ±1 . Again,
after a number of rearrangements, we get α > (2n− 1)3 + 8n2 − 12n− 4. However, we have 8n2 − 12n− 3 > 0

for n ≥ 2 implying α > (2n− 1)3 , contradicting the proof of Lemma 1.
Assume (C) is the case. By using (12) and the fact that n ≥ 2 , we derive that

1 = X∗
0 +

∑
r∈T−{r0}

X∗
r >

1

2
+ (2n− 1) · 1

2n+ 2
= 1 +

1

2
− 3

2n+ 2
≥ 1,

which is the final contradiction that we needed.
It is a simple exercise to show that the max function of strictly convex functions is strictly convex.

Hence, we have the fact that F is strictly convex on ∩r∈Type 4bCr which is a nonempty set as it contains all
the optimal points at the very least. As optimal points of strictly convex functions are unique, we prove the
following corollary.

Corollary 1 The optimal point of infx∈△F (x) is unique.
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Henceforth, we shall use x∗ to denote the unique optimal point. In other words, we let

x∗ : the unique point in 4 with F (x∗) = β∗,

which marks the end of phase two.
We start phase three by simplifying x∗ . The uniqueness of x∗ will be heavily used in this simplification.

Then, we apply the Karush-Kuhn-Tucker Theorem.

Lemma 8 There exists a∗, b∗, c∗ ∈ (0, 1) such that

x∗(ψ) =


a∗ for ψ ∈ type 1
b∗ for ψ ∈ type 2 or type 3 or type 5
c∗ for ψ ∈ type 4.

Proof Let i1, i2 ∈ {1, 2, . . . , n} and t1, t2 ∈ {−1,+1} such that i1 6= i2 . Consider the symmetry τ ∈ Sym(Ψ) ,
which switches ξt1i1 with ξt2i2 and vice versa in every element of Ψ . For clarification, we give the details of the
action of τ in the following table:

Table 5. Actions of the symmetry τ ∈ Sym(Ψ) .

type 1 ξ±2t1
i1

↔ ξ±2t2
i2

type 2 ξt1i1 ξ
±2t2
i2

↔ ξt2i2 ξ
±2t1
i1

ξ−t1i1
ξ±2t2
i2

↔ ξ−t2i2
ξ±2t1
i1

ξtiξ
±2t1
i1

↔ ξtiξ
±2t2
i2

ξ±t1i1
ξ2sj ↔ ξ±t2i2

ξ2sj

type 3 ξt1i1 ξ
±t2
i2

ξt1i1 ↔ ξt2i2 ξ
±t1
i1

ξt2i2 ξ−t1i1
ξ±t2i2

ξ−t1i1
↔ ξ−t2i2

ξ±t1i1
ξ−t2i2

ξtiξ
±t1
i1

ξti ↔ ξtiξ
±t2
i2

ξti ξ±t1i1
ξsj ξ

±t1
i1

↔ ξ±t2i2
ξsj ξ

±t2
i2

type 4 ξt1i1 ξ
±t2
i2

ξ−t1i1
↔ ξt2i2 ξ

±t1
i1

ξ−t2i2
ξ−t1i1

ξ±t2i2
ξt1i1 ↔ ξ−t2i2

ξ±t1i1
ξt2i2

ξtiξ
±t1
i1

ξ−ti ↔ ξtiξ
±t2
i2

ξ−ti ξ±t1i1
ξsj ξ

∓t1
i1

↔ ξ±t2i2
ξsj ξ

∓t2
i2

type 5 ξt1i1 ξ
±t2
i2

ξpl ↔ ξt2i2 ξ
±t1
i1

ξpl ξ−t1i1
ξ±t2i2

ξpl ↔ ξ−t2i2
ξ±t1i1

ξpl

ξt1i1 ξ
s
j ξ

±t2
i2

↔ ξt2i2 ξ
s
j ξ

±t1
i1

ξ−t1i1
ξsj ξ

±t2
i2

↔ ξ−t2i2
ξsj ξ

±t1
i1

ξtiξ
t1
i1
ξ±t2i2

↔ ξtiξ
t2
i2
ξ±t1i1

ξtiξ
−t1
i1

ξ±t2i2
↔ ξtiξ

−t2
i2

ξ±t1i1

ξtiξ
s
j ξ

±t1
i1

↔ ξtiξ
s
j ξ

±t2
i2

ξtiξ
±t1
i1

ξpl ↔ ξtiξ
±t2
i2

ξpl ξ±t1i1
ξsj ξ

p
l ↔ ξ±t2i2

ξsj ξ
p
l

Using Table 4, one can prove that τ can also be considered as an element of Sym(F) in the sense that
ψτ(r) = τ(ψr) and Ψτ(r) = τ(Ψr) by observing the effects of τ on the elements of F listed in Table 5. As a
result, we have the following

F (τ(x)) = maxr∈Ffr(τ(x)) = maxr∈Ffτ(r)(x) = maxr∈Ffr(x) = F (x).
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In particular, we have F (τ(x∗)) = F (x∗) and hence τ(x∗) = x∗ by Corollary 1. By repeated application of
τ (with different values for (i1, t1) and(i2, t2)), we can show that any coordinate of x∗ is equal to any other
coordinate of the same type. We give the following example of type 5 coordinates for clarification

x∗(ξt1i1 ξ
s1
j1
ξp1l1 ) =

τ
(i1,t1)→(i2,t2)

x∗(ξt2i2 ξ
s1
j1
ξp1l1 ) =

τ
(j1,s1)→(j2,s2)

x∗(ξt2i2 ξ
s2
j2
ξp1l1 ) =

τ
(l1,p1)→(l2,p2)

x∗(ξt2i2 ξ
s2
j2
ξp2l2 ).

This proves that there are a∗, b∗2, b∗3, b∗5, c∗ ∈ (0, 1) such that:

x∗(ψ) =



a∗ for ψ ∈ type 1
b∗2 for ψ ∈ type 2
b∗3 for ψ ∈ type 3
b∗5 for ψ ∈ type 5
c∗ for ψ ∈ type 4.

It remains to prove b∗2 = b∗3 = b∗5 . Fortunately, the above simplification makes it much easier.
Consider σ1 = (ξtiξ

2s
j ↔ ξsj ξ

t
iξ
s
j | ∀i, j, t, s) ∈ Sym(Ψ) . It is not true that in general F (σ1(x)) = F (x) .

However, by using the previous simplification for x∗ together with Table 4, it is easy to see that the equality
F (σ1(x

∗)) = F (x∗) holds. Thus, again by Corollary 1, we get

b∗2 = x∗(ξ1ξ
2
2) = x∗(ξ2ξ1ξ2) = b∗3.

Similarly, σ2 = (ξ1ξ
2
2 ↔ ξ1ξ2ξ3) ∈ Sym(Ψ) gives us b∗2 = b∗5 which completes the proof.

Now that we have simplified x∗ as much as possible, we shall use the optimization question with the
Karush-Kuhn-Tucker Theorem to get further equalities on x∗ with a target of calculating exact values for its
coordinates.

Theorem 5 For all r1, r2 ∈ F , we have fr1(x
∗) = fr2(x

∗) .

Proof We will obtain the proof by applying the Karush-Kuhn-Tucker Theorem to the optimization question

min F (x) for x ∈ 4.

By Lemma 8, we can restrict our search for an optimal solution to those elements of 4 showing the same
coordinate distribution as x∗ . In other words, we solve the problem below:

min F (x) for x ∈ 4̃, where

4̃ := {x ∈ 4 | ∃a, b, c ∈ (0, 1), x(ψ) =


a for ψ ∈ type 1
b for ψ ∈ type 2 or type 3 or type 5
c for ψ ∈ type 4.

A more illuminating observation comes from the fact that X = 1 for all x ∈ 4̃ and the counts in Table 2. For
any x ≡ (a, b, c) , we have

1 = 2na+ 8n(n− 1)2b+ 4n(n− 1)c. (13)
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The displacement functions are simplified as it no longer matters what specific coordinate Ψr contains,
but the number of types of coordinates. As an example, for any type 1a relation r and x ≡ (a, b, c) ∈ 4̃ ,
we have (with the help of Table 4) xr = a and Xr = 1 − (a + 4(n − 1)2b + 2(n − 1)c) . Moreover, using
(13) to replace a , we obtain Xr = (2n − 1)/(2n) . This simplifies fr(x) = (1 − xr)/xr · (1−Xr)/Xr into
fr(x) = (1− a)/a · 1/2n− 1 . We summarize these simplifications for all types of relations in F listed in the
following table:

By Lemma 6, we know that there exists a Type 4b relation r0 such that β∗ = fr0(x
∗) ≥ fr(x

∗) for all
r ∈ F . Applying this knowledge in light of Table 6, we get two new inequalities further narrowing the search
for the optimal solution. We obtain

1− a

a
· 1

2n− 1
≤ 1− c

c
· (2n− 1) and 1− b

b
· 1− 2na

4n(n− 1)− 1 + 2na
≤ 1− c

c
· (2n− 1).

This simplifies the optimization question to its ultimate form as described in the table below:

Table 6. fr(x) for x ≡ (a, b, c) ∈ △̃ .

r xr Xr fr(x)

Type 1a a
2n− 1

2n

1− a

a
· 1

2n− 1

Type 2b, 3a, and 5a b 1− (2(n− 1)b+ c)
1− b

b
· 1− 2na

4n(n− 1)− 1 + 2na

Type 4b c
1

2n

1− c

c
· (2n− 1)

From hereon in, we shall apply the optimization techniques detailed in [4, Chapter 7.2] to solve the
optimization question in Table 7. Our goal is to prove that the Lagrange multipliers for g1 and g2 cannot be
0 , which (by Karush-Kuhn-Tucker Theorem as in [4, Theorem 7.2.9]) will imply that the relevant inequalities
in the constraints has to be active (equal) at the optimal point, proving our theorem.

Table 7. Simplified optimization question.

Target: f(a, b, c) =
(2n− 1)(1− c)

c
(minimize)

Constraints: g1(a, b, c) =
1− a

a
· c

1− c
− (2n− 1)2 ≤ 0

g2(a, b, c) =
1− 2na

4n(n− 1)− 1 + 2na
· 1− b

b
· c

1− c
− (2n− 1) ≤ 0

h(a, b, c) = 2na+ 8n(n− 1)2b+ 4n(n− 1)c = 1

(a, b, c) ∈ U = (0, 1)3.

We shall first discuss the three prerequisites of Karush-Kuhn-Tucker Theorem. The existence of the
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optimal solution is proven in Lemma 4. The target and constraint functions are obviously differentiable on U .
We also need to show that the Mangasarian-Fromovitz constraint qualification [4, Assumption 7.2.3] holds. The
qualification for our question can be checked by verifying the statements (1) if the function p 7→ ∇h(x∗) · p
from R3 to R is onto and, (2) {p ∈ R3 | ∇h(x∗) · p = 0 and ∇gi(x∗) · p < 0 for i = 1, 2} 6= ∅. The first one is
trivially true as ∇h is constant and nonzero. The second one also holds since p = (2(n − 1), 0,−1) is in the
set. Hence, by the Karush-Kuhn-Tucker Theorem, there exists λ1, λ2 ∈ R+ and λ3 ∈ R such that:

(∇f + λ1∇g1 + λ2∇g2 + λ3∇h)(x∗ ≡ (a∗, b∗, c∗)) = 0⃗

This gives us the following linear system of λ1, λ2 and λ3

− c∗

(a∗)2(1− c∗)
λ1 +

8n2(n− 1)

A
λ2 + 2nλ3 = 0, (14)

− (1− 2na∗)c∗

A(b∗)2(1− c∗)
λ2 + 8n(n− 1)2λ3 = 0, (15)

1− a∗

(a∗)(1− c∗)2
λ1 +

(1− 2na∗)(1− b∗)

Ab∗(1− c∗)2
λ2 + 4n(n− 1)λ3 =

2n− 1

(c∗)2
, (16)

where A = 4n(n− 1)− (1− 2na) . It is easy to see that 1− 2na ∈ (0, 1) by using the constraint h = 1 . Thus,
every parenthesis in this system is positive. This implies that the signs in front of the coefficients are the signs
of the coefficients.

If λ3 = 0 , then by (15) λ2 = 0 as well, which implies λ1 = 0 by (14). However, this is a contradiction
to (16). Thus, λ3 6= 0 . The fact that λ3 is nonzero implies λ2 > 0 by (15), which in turn, again via (15),
shows that λ3 > 0 as well. Finally, the positiveness of λ2 and λ3 on (14) shows that λ1 > 0 . Therefore, the
Lagrange multipliers of g1 and g2 are greater than 0 , proving what we wanted.

Theorem 6 If x∗ ≡ (a∗, b∗, c∗) is as in Lemma 8 and α is as defined after Lemma 1, then we have

(i) a∗ =
1

(2n− 1) + α
, b∗ =

(2n− 1)(α− 1)

(4n2 − 4n− 1)(2n− 1)α2 + 2(2n2 − 1)α− (2n− 1)
, c∗ =

2n− 1

2n− 1 + α
,

(ii) β∗ = α∗ = α.

Proof By Theorem 5, we know that fr(x∗) = β∗ for all r ∈ F . By the proof of the same theorem, we also
know that there are really three functions at the point of optimality. Therefore, we have the following equations

1− a∗

a∗
· 1

2n− 1
= β∗,

1− b∗

b∗
· 1− 2na∗

4n(n− 1)− 1 + 2na∗
= β∗,

1− c∗

c∗
· (2n− 1) = β∗.
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Simply solving this system for a∗, b∗ , and c∗ yields that

a∗ =
1

(2n− 1) + β∗,

b∗ =
(2n− 1)(β∗ − 1)

(4n2 − 4n− 1)(2n− 1)(β∗)2 + 2(2n2 − 1)β∗ − (2n− 1)
,

c∗ =
2n− 1

2n− 1 + β∗ .

Putting these formulas into the equation (13) gives P(β∗) = 0 , where P is the polynomial defined in Lemma
1. However, by Lemma 5, we know that 1 < β∗ . Since α is the only root of P greater than 1, we find β∗ = α .
Applying that to β∗ ≤ α∗ ≤ α from Lemma 5 gives us α = β∗ ≤ α∗ ≤ α , also proving that α∗ = α .

6. Proof of the main theorem
We will first prove two lemmas that will simplify the proof of the main theorem.

Lemma 9 Let g, h in PSL(2,C) and G = 〈g, h〉 . If G is freely generated by {g, h} , purely loxodromic and
Kleinian, then G is nonelementary.

Proof Assume G is elementary. By the classification of discrete elementary groups done in [2, Chapter 5.1],
there exists a two element subset of Ĉ that is invariant under the action of G . Without loss of generality, take
the invariant subset to be {0,∞} .

If the fixed points of g were not 0 and ∞ , we would have g(0) = ∞ and g(∞) = 0 . This implies
that g(z) = a/z , contradicting with the freeness of G as g2 = id . Similarly, the fixed points of h must be
0 and ∞ as well. Hence, the fixed point of g and h are the same. By [2, Theorem 4.3.5], we conclude that
either [g, h] = id or [g, h] is parabolic. The first case contradicts with the freeness of G , and the second one
contradicts the lemma hypothesis that G is purely loxodromic.

Lemma 10 Let g, h ∈ PSL(2,C) be noncommuting and loxodromic. If z0 is the midpoint of the shortest
geodesic segment connecting the axes of g and h−1gh , then dgz0 < dhgh−1z0 .

Proof For γ ∈ PSL(2,C) , let Zλ(γ) = {z ∈ H3 | dγz ≤ λ} , the displacement cylinder of γ with radius λ .
By [2, 5.4.11], dγz is an increasing function of ρ(z,Aγ) . Thus, Zλ(γ) really is a cylinder with axis Aγ . Fix
λ = dgz0 so that z0 ∈ Zλ(g) . By lemma hypothesis, we have ρ(z0, Ag) = ρ(z0, Ah−1gh) . Moreover, the terms
Tg and θg in [2, 5.4.11] are invariant under conjugation. Hence, ρ(z0, gz0) = ρ(z0, h

−1ghz0) which proves that
z0 ∈ Zλ(h

−1gh) .
We claim that z0 is the only element in Zλ(g)∩Zλ(h−1gh) . If it was not, then there would be an element

z 6= z0 such that ρ(z, gz) = ρ(z, h−1gh) which (again by [2, 5.4.11]) would imply that ρ(z,Ag) = ρ(z,Ah−1gh) .
By lemma hypothesis, we would have ρ(z0, Ag) < ρ(z,Ag) so that λ = ρ(z0, gz0) < ρ(z, gz) , a contradiction.
Now that we know Zλ(g) ∩Zλ(h−1gh) = {z0} , one can easily show that Zλ(g) ∩Zλ(hgh−1) = {hz0} . Because
z0 ∈ Zλ(g) , we can derive that z0 /∈ Zλ(hgh

−1) . Therefore, λ = dgz0 < dhgh−1z0 .

The following theorem will be the principal effect of the optimization that was done in Section 5 to
our main result. The geometrically infinite case is quite straightforward due to the Culler-Shalen machinery.
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However, the generalization to the geometrically finite case requires some high level theorems which we refer to
inside the proof.

Theorem 7 Let Γ be a Kleinian, purely loxodromic subgroup of PSL(2, C) that is freely generated by Ξ =

{ξ1, ξ2, . . . , ξn} . If Γ∗ = {1, ξti , ξtiξsj ξ
−t
i } and α is the unique root of the polynomial P greater than (2n− 1)2 ,

then for any z ∈ H3 we have

max{dγz | γ ∈ Γ∗} ≥ 1

2
logα.

Proof Fix z ∈ H3 and let λ = max{dγz | γ ∈ Γ∗} . Assume Γ is geometrically infinite. By Proposition 1(ii),
we have

λ ≥ dγrz ≥
1

2
log fr(m)

for any relation r so that λ ≥ 1
2 logG(m) , where G is defined in Section 4. Moreover, by Proposition 1(i) and

Theorem 6, we derive

λ ≥ 1

2
logG(m) ≥ 1

2
log (inf{G(x) | x ∈ 4}) = 1

2
logα.

Assume that Γ is geometrically finite. Our plan of attack is to prove that the infimum of all such lower
boundaries over all possible free groups is attained at a special place close to the geometrically infinite case. We
will have to use yet another optimization and some prior knowledge. Consider the function fz defined below

fz : PSL(2,C)n −→ R+

ξ 7−→ max{dγz | γ ∈ Γ∗(ξ)}.

Let GF denote the subset of elements of PSL(2,C)n whose components form a set of free generators of a purely
loxodromic free subgroup of PSL(2,C) that is geometrically finite. As the image fz(GF) is bounded below and
f is continuous, there exists a ξ ∈ GF such that

fz(ξ) = inf{fz(ξ) | ξ ∈ GF}.

However, it has been shown in the proofs of [18, Theorem 5.1], [19, Theorem 4.1] and finally in [20, Theorem
4.2] that any such optimal point must satisfy ξ ∈ GF − GF. Moreover, the subset of elements of PSL(2,C)n

whose components are generating purely loxodromic and geometrically infinite groups is dense in GF−GF as
was shown in [8, Propositions 8.2 and 9.3], [6, Main Theorem], and [5]. Hence, the geometrically finite case
folds into the geometrically infinite case, completing the proof.

The final theorem of this paper is more general and in appearance more complicated than its counterpart
in [20]. However, most of the complications in the proof have been handled by the previous lemmas and theorems
in this paper and the arguments inside the proof is largely identical to that of the counterpart.

Theorem 8 Let Γ and α be as in Theorem 7. Assume that there exist i0, j0 such that the inequalities
dξi0ξj0ξ

−1
i0

z2 ≤ dξi0ξj0ξ
−1
i0

z1 and dγz2 <
1
2 logα for every γ ∈ Φ = Γ∗ − {ξi0 , ξtj0ξ

s
i0
ξ−tj0 } hold, where z1 and
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z2 are the midpoints of the shortest geodesic segments connecting the axis of ξj0 to the axes of ξi0ξj0ξ
−1
i0

and

ξ−1
i0
ξj0ξi0 , respectively. Then, we have

|trace2(ξj0)− 4|+ |trace(ξj0ξi0ξ
−1
j0
ξ−1
j0

)− 2| ≥ 2 sinh2
(
1

4
logα

)
.

Proof We shall make use of the following facts. The first one is a straightforward exercise to the teachings of
[2] and the second one is due to Lemma 9. The theorem remains invariant under conjugation. The subgroup
〈ξi0 , ξj0〉 must be nonelementary as it is free, Kleinian, and purely loxodromic.

Since the theorem remains invariant under conjugation, we may assume without loss of generality that
ξi0 fixes 0 and ∞ . This gives us some useful matrix presentations

ξi0 =

[
u 0
0 1/u

]
for some u = |u|eiθ and ξj0 =

[
a b
c d

]
with ad− bc = 1

so that we can write

∣∣trace2(ξi0)− 4
∣∣+ ∣∣trace(ξj0ξi0ξ

−1
j0
ξ−1
j0

)− 2
∣∣ = (

u− 1

u

)2

(1 + |bc|) = 4 sinh2
1

2
Tξi0 + 4 sin(θ),

where the last equation is due to [2, equations 5.4.8 and 5.4.10].

By [2, proof of Theorem 5.1.3 case(i)], ξi0 and ξj0ξi0ξ
−1
j0

have no common fixed point. This implies
a, b, c, d 6= 0 . Consider the cross-ratio equation [1,−1, w,−w] = [0,∞, b/d, a/c] which is true for any w that
satisfies the following equation

bc =
(1− w)2

4w
. (17)

This equation has a unique solution for w with norm greater than 1. Let w = e2z0 (for z0 = x0 + iy0 ) be
that solution. Replacing w in (17) yields bc = sinh2 z0 which we can use to obtain the following chain of
(in)equalities

4 |bc|2 =
∣∣cosh2 z0 − 1

∣∣2 = (cosh 2x0 − cos 2y0)
2 ≥ (cosh 2x0 − 1)

2 ≥
(
cosh2 x0 − 1

)2
. (18)

Using the above inequality and number of simplifications give

1 + |bc| ≥ cosh2 x0
2

. (19)

Let A be the translation axis of ξi0 and B be the translation axis of ξj0ξi0ξ
−1
j0

. Also notice that B = ξj0A .
Since trace squared, translation length and the square of the sine square of translation angle are all invariant
under conjugation, we have the following inequalities for all z ∈ H3

sin2
1

2
dξi0 z = sinh

1

2
Tξi0 cosh d(z,A) + sin2 θξi0 sinh

2 d(z,A) ≤
(
sinh2

1

2
Tξi0 + sin2 θξi0

)
cosh2 d(z,A) (20)
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and

sin2
1

2
d
ξj0

ξi0
ξ
−1
j0

z = sinh
1

2
Tξi0 cosh d(z,B) + sin2 θξi0 sinh

2 d(z,B) (21)

≤
(
sinh2

1

2
Tξi0 + sin2 θξi0

)
cosh2 d(z,B).

By using the above inequalities and the fact that the hyperbolic sine and cosine are increasing for x ≥ 0 , we
conclude that

sinh2
1

2
max

{
dξi0 z, dξj0ξi0ξ

−1
j0

z

}
≤ 1

4

∣∣∣∣u− 1

u

∣∣∣∣2 cosh2 max {dzA, dzB} . (22)

Let Ψ ∈ M be defined by taking [0,∞, h0, h∞] to [1,−1, w,−w] , where w is defined in (17). Under this
setting ΨA will be the geodesic from −1 to 1 and ΨB will be the geodesic from −w to w so that we have

d(A,B) = d(j, |w|j) = log |w| = 2x0.

By the above equality and the definition of z1 given in theorem hypothesis, we can establish the fact that
d(z1,A) = x0 = d(z1,B) . Applying this fact to the equations in (20) and (21) gives us another fact dξi0 z1 =

dξj0ξi0ξ
−1
j0

z1 . These two facts can be used to simplify (22) into the first of the following inequalities. Using (19)

gives us the second one, which is

sinh2
1

2
dξi0 z1 ≤ 1

4

∣∣∣∣u− 1

u

∣∣∣∣2 cosh2 x0 ≤ 1

2

∣∣∣∣u− 1

u

∣∣∣∣2 (1 + |bc|) . (23)

Finally, assume that the opposite of the theorem is true. In other words, assume that we have the
inequality ∣∣trace2(ξj0)− 4

∣∣+ ∣∣trace(ξj0ξi0ξ
−1
j0
ξ−1
j0

)− 2
∣∣ < 2 sinh2

(
1

4
logα

)
.

Because we have dξi0ξj0ξ
−1
i0

z2 ≤ dξi0ξj0ξ
−1
i0

z1 and dγz2 <
1
2 logα for every γ ∈ Φ by the hypothesis, we get

dγz2 <
1
2 logα for all γ ∈ Γ∗ by (23) and Lemma 10. This is a contradiction to Theorem 7.
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