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Abstract: This paper is devoted to defining the delayed analogue of the Mittag-Leffler type function with three
parameters and investigating a representation of a solution to Langevin delayed equations with Prabhakar derivatives
involving two generalized fractional distinct orders, which are first introduced and investigated, by means of the Laplace
integral transform. It is verified by showing the solution satisfies the introduced system. Special cases which are also
novel are presented as examples. The findings are illustrated with the help of the RLC circuits.

Key words: Fractional Langevin type equation, Mittag-Leffler type function, Prabhakar fractional derivative, RLC
circuit

1. Introduction
Fractional calculus is an extension of integer calculus. This difference (extension) creates great opportunities,
that integer calculus does not have, for fractional calculus, such as modeling social and physical problems
more adequately. This and reasons like this have encouraged many researchers to study in this area. In
a very short time like about 30 years, it has become the center of attention. This has led to the use of
fractional calculus in many fields such as signal, electrochemistry, engineering, control theory, biophysics,
mathematical physics, etc; see[25][8][15][30][9][21][32]. A fractional differential equation, which is a differential
equation with fractional orders, is the most important subject of fractional calculus, and it has two major
aspects; theoretical analysis[9][32] and numerical simulations[4][6][17][18][29][31]. It is easily noticed that
Riemann-Liouville and Caputo fractional derivatives are mostly used in the literature even though there are
lots of definitions of fractional derivatives. This makes working with the Prabhakar fractional derivative more
reasonable because the Prabhakar fractional derivative contains both Caputo and Riemann-Liouville derivatives.
The fractional operator which was described in [26], and profoundly examined in [20] causes the Prabhakar
fractional derivative[13] to emerge as of late. Properties of Prabhakar fractional derivative and integral such
as the semi-group, the inverse, the commutativity, the linearity, and more information are discussed in the
articles[12][13][20][27]. In a short period, it has started to be used in several applications[11][33] and applied and
pure mathematical subjects[14][28]. In addition, the Prabhakar fractional derivative includes many available
derivatives such as the Gorenflo-Minardi, the Miller-Ros, Riemann-Liouville, Caputo, the Lorenzo–Hartley
fractional derivatives, etc; which makes it stand out.
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Paul Langevin gave an elaborative description, under the name of the Langevin equation, of Brownian
motion in the 1900s. Langevin equations[5],[7] can describe many of the stochastic problems in fluctuating envi-
ronments. But, today the traditional Langevin-type equation could not adequately formulate some sophisticated
physical phenomena[19]. This creates the need to generalize the classical Langevin equation in order to better
describe the sophisticated physical problems. There is no doubt that one of them is the fractional Langevin
type system acquired from the traditional Langevin equation by using a fractional-order derivative instead of
an integer-order derivative. As seen in the works[37][22][23][2][1][35], many researchers have tried to both in-
troduce and examine the Langevin-type systems consisting of two different fractional-order derivatives. In this
context, although there are several studies about fractional Langevin-type systems, there is no study about frac-
tional Langevin-type delayed systems excluding a small number of studies. For instance, Mahmudov[24] defines
the delayed Mittag-Leffler type function generated by λ1 , λ2 of two parameters by drawing inspiration from
Mittag-Leffler function with two parameters in order to solve Langevin delayed equations with Riemann- Liou-
ville fractional derivatives as shown in (1.1) replacing Prabhakar fractional derivatives by Riemman- Liouville
fractional derivatives. Huseynov et al.[16] solve Langevin delayed equations with Caputo fractional derivatives
with the help of the same delayed Mittag-Leffler type function generated by λ1 , λ2 of two parameters. The
above explanations and the pioneer works[16][24] inspire us to consider the following inhomogeneous linear frac-
tional Langevin delayed equations with Prabhakar fractional derivatives of Caputo type involving two distinct
general fractional orders{

PCDw,δ
η,α1

z (x)− λ2
PCDw,δ

η,α2
z (x)− λ1z (x− h) = ζ(x), x ∈ (0, T ], h > 0,

z(x) = ψ(x), x ∈ [−h, 0] (1.1)

where PCDw,δ
η,α1

and PCDw,δ
η,α2

stand for the Prabhakar derivative of Caputo type of fractional orders α1 and α2

in distinct intervals m− 1 < α1 ≤ m and m− 2 < α2 ≤ m− 1 with m ≥ 2 , ψ : [−h, 0] → R is (m− 1) -times
continuously differentiable, the disturb function ζ : [0, T ] → R , λ1, λ2 ∈ R , and T = nh for a fixed natural
number n ∈ N .

2. Preliminaries
In the present section, we will remind basic notions to help the readers easily understand all of the details of
this paper.

Rn is an Euclidean space whose dimension is n ∈ N . ACn(a, T ) with T > a consists of such a real-valued
function g that it owns derivatives up to order n− 1 on (a, T ) , and g(n−1) is absolutely continuous.

For η, α1, δ, w ∈ C with Re(α1), Re(η) > 0 , the Prabhakar fractional integral[26][11][20] is given as noted
below (

Iw,δ
η,α1

ζ
)
(x) =

∫ x

0

(x− s)
α1−1

Eδ
η,α1

(w (x− s)
η
) ζ (s) ds (2.1)

where the famous Mittag-Leffler function with three parameters

Eδ
η,α1

(x) =

∞∑
i=0

(δ)i
Γ(iη + α1)

xi

i!
.

here Γ(.) is the well-known Gamma function and (δ)i is the Pochhammer symbol, that is, (δ)i =
Γ(δ+i)
Γ(δ) or

(δ)0 = 1, (δ)i = δ(δ + 1)...(δ + i− 1), i = 0, 1, 2, ... .
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Remark 2.1 The Mittag-Leffler function with three parameters Eδ
η,α1

(t) for δ = 0 is equal to 1
Γ(α1)

, that is,

E0
η,α1

(t) = 1
Γ(α1)

.

Remark 2.2 The Prabhakar fractional integral Iw,δ
η,α1

for δ = 0 reduces to Riemann-Liouville fractional integral
of order α1 .

In the work[13], the Prabhakar derivatives of Caputo types is given as follows

(
PCDw,δ

η,α1
ζ
)
(x) = Iw,−δ

η,m−α1

(
dm

dxm
ζ

)
(x) =

∫ x

0

(x− s)
m−α1−1

E−δ
η,m−α1

(w (x− s)
α1)

dm

dsm
ζ (s) ds, (2.2)

where η, α1, δ, w ∈ C with Re(η) > 0, Re(α1) ≥ 0 , and m = ⌊Re(α2)⌋ + 1 (here ⌊.⌋ is the floor function) and
ζ ∈ ACm(0, T ) .

Remark 2.3 The Prabhakar fractional derivative of Caputo type PCDw,δ
η,α1

for δ = 0 reduces to Caputo
fractional derivative of order α1 .

Definition 2.4 [36] If ζ is a both exponentially bounded and measurable function from [0,∞) to R , then the
Laplace transform of the function ζ ; L{ζ(x)} (s) , is defined by

L{ζ(x)} (s) =
∫ ∞

0

e−sxζ(x)dx, s ∈ C.

Lemma 2.5 [36] The shifting feature for the Laplace integral transform is given by

L{ζ(x− h)H(x− h)} (s) = e−hsL{ζ(x)} (s),

where the heaviside H : R → R is given by

H(x) =

{
1, x ≥ 0,
0, x < 0.

Lemma 2.6 [36] The Laplace integral transform of the convolution of ζ and ψ which are two functions on
[0,∞) is given by

L{(ζ ∗ ψ) (x)} (s) = L{ζ (x)} (s) ζL {ψ (x)} (s) , s ∈ C.

Lemma 2.7 [36] Suppose that B is an operator on a Banach space that is bounded and linear with ∥B∥ < 1 .
(I −B)

−1 is also so bounded and linear that

(I −B)
−1

=

∞∑
i=0

Bi,

where I is the identity operator.
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Lemma 2.8 [10] For any η, α1, w > 0 , the Laplace integral transform of the Mittag-Leffler function with three
parameters Eδ

η,α1
(wxη) is

L
{
xα1−1Eδ

η,α1
(wxη)

}
(s) = s−α1

(
1− ws−η

)−δ
,

which holds for Re(s) > ∥w∥
1

α1 .

Lemma 2.9 [10] The Laplace integral transform of Prabhakar fractional derivative of Caputo-type is represented
by

L
{
PCDw,δ

η,α1
ζ (x)

}
(s) = sα1

(
1− ws−η

)δ L{f (x)} (s)−
m−1∑
i=0

sα1−i−1
(
1− ws−η

)δ
ζ(i)(0).

where m− 1 ≤ Re(α1) < m .

From now on, all of the below sharing contributions will be novel.

3. A representation of a solution to system (1.1)

In this section, we will investigate a representation of a solution to the system (1.1). For this, we need to define
a new Mittag-Leffler type function and make new preparations.

Firstly, we will extend the Mittag-Leffler function with three parameters to shorten the coming notations.

Remark 3.1 The extended three-parameter Mittag-Leffler function Ew,δ
η,α1

(x) is given by

Ew,δ
η,α1

(x) = (x)α1−1
+ Eδ

η,α1
(wxη) ,

where η, α1, δ, w ∈ C , h > 0 , (x)+ = max{x, 0} .

Definition 3.2 Delayed analogue of Mittag-Leffler type function generated by λ1 , λ2 of three parameters
Ew,δ,θ
η,α1,α2,γ (λ1, λ2; .) : R → R is defined by

Ew,δ,θ
η,α1,α2,γ (λ1, λ2;x) =

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+θ

η,iα1+jα2+γ (x− ih)H (x− ih)

for η, α1, θ, γ, δ, w ∈ C , λ1, λ2 ∈ R , and h > 0 .

Lemma 3.3 The delayed analogue of the three-parameter Mittag-Leffler type function produced by λ1 , λ2 under
the choices δ = 0 reduces to the delayed two-parameter Mittag-Leffler type function produced by λ1 , λ2 of [16,
Definition 3.1.] and [24, Definition 2].

Remark 3.4 Delayed Mittag-Leffler type function generated by λ1 , λ2 of three parameters in Definition 3.2 is
in the closed form. It is understandable that the keystone of the delayed Mittag-Leffler type function generated
by λ1 , λ2 of three parameters is the three-parameter Mittag-Leffler function. If it is necessary to write it clearly,
one can write it down as follows, Ew,δ,θ

η,α1,α2,γ (λ1, λ2;x) :

Ew,δ,θ
η,α1,α2,γ (λ1, λ2;x) =

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
j (x− ih)

iα1+jα2+γ−1
Eiδ+θ

η,iα1+jα2+γ (w (x− ih)
η
)H (x− ih) .
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Lemma 3.5 The following expression is true:

1(
sα1 (1− ws−η)

δ − λ2sα2 (1− ws−η)
δ
)i+1

=

∞∑
j=0

(
i+ j

j

)
λ2

j

s(i+1)α1+j(α1−α2) (1− ws−η)
(i+1)δ

,

provided that |λ2| < |sα1−α2 | .

Proof If |λ2| < |sα1−α2 | , according to the Taylor series representation, we have

1(
sα1 (1− ws−η)

δ − λ2sα2 (1− ws−η)
δ
)i+1

=
1(

sα1 (1− ws−η)
δ
)i+1

1(
1− λ2

sα1−α2

)i+1

=
1(

sα1 (1− ws−η)
δ
)i+1

∞∑
j=0

(
i+ j

j

)(
λ2

sα1−α2

)j

=

∞∑
j=0

(
i+ j

j

)
λ2

j

s(i+1)α1+j(α1−α2) (1− ws−η)
(i+1)δ

.

2

Lemma 3.6 The following inverse Laplace transform expression is true:

L−1

{(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ − λ1e
−sh
)−1

}
(x) = Ew,δ,δ

η,α1,α1−α2,α1
(λ1, λ2;x) ,

provided that |λ1(sα1 (1− ws−η)
δ − λ2s

α2 (1− ws−η)
δ
)−1e−sh| < 1 .

Proof If the stated condition holds, according to the Neumann Series we have(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ − λ1e
−sh
)−1

=
(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ)−1

×
(
1− λ1

(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ)−1

e−sh

)−1

=
(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ)−1

×
∞∑
i=0

λ1
i
(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ)−i

e−ish

=

∞∑
i=0

λ1
i
(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ)−(i+1)

e−ish.

If Lemma 3.5 is applied, one can get(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ − λ1e
−sh
)−1

=

∞∑
i=0

λ1
i

∞∑
j=0

(
i+ j

j

)
λ2

j

s(i+1)α1+j(α1−α2) (1− ws−η)
(i+1)δ

e−ish

=

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
j 1

s(i+1)α1+j(α1−α2) (1− ws−η)
(i+1)δ

e−ish.
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If Lemmas 2.5 and 2.8 are employed, one can get

L−1

{(
sα1

(
1− ws−η

)δ − λ2s
α2
(
1− ws−η

)δ − λ1e
−sh
)−1

}
(x)

=

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− ih)H (x− ih) ,

which is the desired result. 2

Lemma 3.7 The following inverse Laplace transform expression is true:

L−1

{
sk+1e−sh

sα1 (1− ws−η)
δ − λ2sα2 (1− ws−η)

δ − λ1e−sh

}
(x) = Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h) ,

for k=0,1, …, provided that |λ1(sα1 (1− ws−η)
δ − λ2s

α2 (1− ws−η)
δ
)−1e−sh| < 1 .

Proof By receiving help from the proof of Lemma 3.6, we get

sk+1e−sh

sα1 (1− ws−η)
δ − λ2sα2 (1− ws−η)

δ − λ1e−sh

=

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
j 1

s(i+1)α1+j(α1−α2)+k+1 (1− ws−η)
(i+1)δ

e−(i+1)sh.

If Lemmas 2.5 and 2.8 are employed, one can get

L−1

{
sk+1e−sh

sα1 (1− ws−η)
δ − λ2sα2 (1− ws−η)

δ − λ1e−sh

}
(x)

=

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1+k+1 (x− (i+ 1)h)H (x− (i+ 1)h) ,

which is the desired result. 2

Lemma 3.8 The following inverse Laplace transform expression is true:

L−1

{
sγ (1− ws−η)

δ

sα1 (1− ws−η)
δ − λ2sα2 (1− ws−η)

δ − λ1e−sh

}
(x) = Ew,δ,0

η,α1,α1−α2,α1−γ (λ1, λ2;x) ,

provided that |λ1(sα1 (1− ws−η)
δ − λ2s

α2 (1− ws−η)
δ
)−1e−sh| < 1 .

Proof Since the proof is similar to the proofs of Lemma 3.6 and 3.7, we omit it. 2

Now, we especially calculate the Laplace integral transform of the delayed term z(x − h) . Based on the
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substitution ε = x− h , we have

L{z (x− h)} (s) =
∫ ∞

0

e−sxz (x− r) dx

= e−sh

∫ ∞

−h

e−sεz (ε) dε

= e−sh

(∫ 0

−h

e−sεz (ε) dε+

∫ ∞

0

e−sεz (ε) dε

)

= e−shL{z (x)} (s) +
∫ 0

−h

e−s(ε+h)ψ (ε) dε.

In the light of the substitution ε+ h = x , one can obtain

L{z (x− h)} (s) = e−shL{z (x)} (s) +
∫ h

0

e−sxψ (x− h) dx

= e−shL{z (x)} (s) +
∫ ∞

0

e−sxψ̃ (x− h) dx

= e−shL{z (x)} (s) + L
{
ψ̄ (x− h)

}
(s) , (3.1)

where the unit-step ψ̃ : R → R is defined as follows

ψ̃(x) =

{
ψ(x), −h ≤ x ≤ 0,
0, x > 0.

It is time to offer the first main theorem.

Theorem 3.9 Under the condition that the Laplace transforms of all terms in (1.1) exist, an analytical solution
to system (1.1) is given by

z(t) =

m−2∑
k=0

(
xk

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

+ Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x)ψ

(m−1)(0)

+ λ1

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds

+

∫ x

0

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− s) ζ(s)ds.

Proof If the Laplace integral function is applied to both sides of the system (1.1)

sα1
(
I − ws−η

)δ
Z (s)−

m−1∑
i=0

sα1−i−1
(
I − ws−η

)δ
ψ(i)(0)

− λ2

(
sα2

(
I − ws−η

)δ
Z (s)−

m−2∑
i=0

sα2−i−1
(
I − ws−η

)δ
ψ(i)(0)

)

− λ1
(
e−shZ (s) + L

{
ψ̄ (x− h)

}
(s)
)
= L{ζ (x)} (s) .
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One can rearrange the just-above equation as follows(
sα1

(
I − ws−η

)δ − λ2s
α2
(
I − ws−η

)δ − λ1e
−sh
)
Z (s)

=

m−2∑
i=0

(
sα1−i−1

(
I − ws−η

)δ − λ2s
α2−i−1

(
I − ws−η

)δ)
ψ(i)(0)

sα1−m
(
I − ws−η

)δ
ψ(m−1)(0) + λ1L

{
ψ̄ (x− h)

}
(s) + L{ζ (x)} (s) .

Divide the whole equation by the coefficient of Z (s) ,

Z (s) =

m−2∑
i=0

sα1−i−1 (I − ws−η)
δ − λ2s

α2−i−1 (I − ws−η)
δ

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
ψ(i)(0)

+
sα1−m (I − ws−η)

δ

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
ψ(m−1)(0)

+
λ1

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
L
{
ψ̄ (x− h)

}
(s)

+
1

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
L{ζ (x)} (s) .

By adding and subtracting λ1e
−sh in the nominator of the first term, we get

Z (s) =

m−2∑
i=0

(
sα1−i−1 +

sα1−i−1λ1e
−sh

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh

)
ψ(i)(0)

+
sα1−m (I − ws−η)

δ

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
ψ(m−1)(0)

+
λ1

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
L
{
ψ̄ (x− h)

}
(s)

+
1

sα1 (I − ws−η)
δ − λ2sα2 (I − ws−η)

δ − λ1e−sh
L{ζ (x)} (s) .

Now if one takes the inverse of the Laplace transform and uses Lemmas 2.6 3.5, 3.6, and 3.7, the following is
acquired

z(t) =

m−2∑
k=0

(
xk

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

+ Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x)ψ

(m−1)(0) + λ1

∫ x−h

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s) ψ̃(s)ds

+

∫ x

0

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− s) ζ(s)ds.

We consider that if x ≥ h , then∫ x−h

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds =

∫ 0

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds,
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and if x < h , then∫ x−h

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds =

∫ x−h

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds,

which gives ∫ x−h

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds

=

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds.

This is the last point for this lemma, which means the proof is completed. 2

Remark 3.10 The condition that the Laplace transforms of all terms in (1.1) exist is a setback for this theorem.
Theorem 3.16 shows that this condition could be removed.

Theorem 3.11 An explicit solution to the system (1.1) with ζ = 0 is given by

z(t) =

m−2∑
k=0

(
xk

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

+ Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x)ψ

(m−1)(0)

+ λ1

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds.

In order to prove this theorem shortly and understandably, we calculate some expressions we will face in
the proof.

Lemma 3.12 The Prabhakar fractional derivative of Caputo type PCDw,δ
η,α1

of Ew,θ
η,α2

(x) is given as follows:

PCDw,δ
η,α1

Ew,θ
η,α2

(x) = Ew,θ−δ
η,α2−α1

(x) .

Proof We will use the related definition and the properties of the gamma functions,
PCDw,δ

η,α1
Ew,θ
η,α2

(x) = PCDw,δ
η,α1

xα2−1Eθ
η,α2

(wxη)

=

∞∑
i=0

(θ)i w
i

Γ(iη + α2)i!
Iw,−δ
η,m−α1

(
dm

dxm
xiη+α2−1

)
= Iw,−δ

η,m−α1
xα2−m−1Eθ

η,α2−m (wxη) .

From [20, Theorem 2], one can obtain

PCDw,δ
η,α1

Ew,θ
η,α2

(x) = xα2−α1−1Eθ−δ
η,α2−α1

(wxη)

= Ew,θ−δ
η,α2−α1

(x) .

2
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Corollary 3.13 We note that

PCDw,δ
η,α1

Ew,θ
η,α2

(x) =

(
m−2∑
k=0

xk

Γ(k + 1)
ψ(k)(0)

)

=

∫ x

0

(x− s)
m−α1−1

E−δ
η,m−α1

(w (x− s)
α1)

dm

dsm

m−2∑
k=0

sk

Γ(k + 1)
dsψ(k)(0)

= 0.

Lemma 3.14 The following equation holds true:

∞∑
l=0

∞∑
k=0

(
l + k

k

)
blk = b00 +

∞∑
l=0

∞∑
k=1

(
l + k − 1

k − 1

)
blk +

∞∑
l=1

∞∑
k=0

(
l + k − 1

k

)
blk

where blk ∈ R for each l, k ∈ N .

Proof It can be easily proved based on these known information
(
0
0

)
= 1 ,

(
l
k

)
= 0 , for k > l , and(

l
k

)
=
(
l−1
k

)
+
(
l−1
k−1

)
, for 0 < k < l . 2

Proof of Theorem 3.11: We will calculate the Prabhakar fractional derivatives of Caputo type PCDw,δ
η,α1

of
all terms one by one in order to simplify the proof. Applying Lemma 3.12 and Corollary 3.13 to the just-above
expression, we get

PCDw,δ
η,α1

m−2∑
k=0

(
xk

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

=λ1

m−2∑
k=0

Ew,δ,0
η,α1,α1−α2,k+1 (λ1, λ2;x− h)ψ(k)(0)

=λ1

m−2∑
k=0

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+k+1 (x− (i+ 1)h)H (x− (i+ 1)h)ψ(k)(0).

From Lemma 3.14 one can easily acquire

PCDw,δ
η,α1

m−2∑
k=0

(
xk

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

=λ1

m−2∑
k=0

(x− h)k

Γ(k + 1)
ψ(k)(0)

+ λ1

m−2∑
k=0

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+k+1 (x− (i+ 1)h)H (x− (i+ 1)h)ψ(k)(0)

+ λ1

m−2∑
k=0

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+k+1 (x− (i+ 1)h)H (x− (i+ 1)h)ψ(k)(0)
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=λ1

m−2∑
k=0

(x− h)k

Γ(k + 1)
ψ(k)(0)

+ λ1λ2

m−2∑
k=0

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+α1−α2+k+1 (x− (i+ 1)h)H (x− (i+ 1)h)ψ(k)(0)

+ λ1
2
m−2∑
k=0

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1+k+1 (x− (i+ 2)h)H (x− (i+ 2)h)ψ(k)(0)

=λ1

m−2∑
k=0

(x− h)k

Γ(k + 1)
ψ(k)(0) + λ1λ2

m−2∑
k=0

Ew,δ,0
η,α1,α1−α2,α1−α2+k+1 (λ1, λ2;x− h)ψ(k)(0)

+ λ1
2
m−2∑
k=0

Ew,δ,δ
η,α1,α1−α2,α1+k+1 (λ1, λ2;x− 2h)ψ(k)(0). (3.2)

Secondly, we will calculate the following expression

PCDw,δ
η,α1

Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x)ψ

(m−1)(0)

=PCDw,δ
η,α1

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+m (x− ih)H (x− ih)ψ(m−1)(0)

=PCDw,δ
η,α1

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+m (x− ih)H (x− ih)ψ(m−1)(0)

+PCDw,δ
η,α1

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+m (x− ih)H (x− ih)ψ(m−1)(0)

=λ2
PCDw,δ

η,α1

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+α1−α2+m (x− ih)H (x− ih)ψ(m−1)(0)

+λ1
PCDw,δ

η,α1

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1+m (x− (i+ 1)h)

×H (x− (i+ 1)h)ψ(m−1)(0)

=λ2

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ−δ

η,iα1+j(α1−α2)+m−α2
(x− ih)H (x− ih)ψ(m−1)(0)

+λ1

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+m (x− (i+ 1)h)H (x− (i+ 1)h)ψ(m−1)(0)

=λ2Ew,δ,−δ
η,α1,α1−α2,m−α2

(λ1, λ2;x)ψ
(m−1)(0) + λ1Ew,δ,0

η,α1,α1−α2,m (λ1, λ2;x− h)ψ(m−1)(0). (3.3)

154



AYDIN/Turk J Math

Thirdly, we will calculate the Prabhakar fractional derivative of the last term in the solution equation

PCDw,δ
η,α1

(
λ1

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds

)

=λ1
PCDw,δ

η,α1

∫ min{x−h,0}

−h

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− (i+ 1)h− s)

×H (x− (i+ 1)h− s)ψ(s)ds

=λ1
PCDw,δ

η,α1

∫ min{x−h,0}

−h

∞∑
i=0

∞∑
j=1

(
i+ j − 1

j − 1

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− (i+ 1)h− s)

×H (x− (i+ 1)h− s)ψ(s)ds

+λ1
PCDw,δ

η,α1

∫ min{x−h,0}

−h

∞∑
i=1

∞∑
j=0

(
i+ j − 1

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− (i+ 1)h− s)

×H (x− (i+ 1)h− s)ψ(s)ds

=λ1λ2
PCDw,δ

η,α1

∫ min{x−h,0}

−h

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+2α1−α2
(x− (i+ 1)h− s)

×H (x− (i+ 1)h− s)ψ(s)ds

+λ1
2PCDw,δ

η,α1

∫ min{x−h,0}

−h

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+2δ

η,iα1+j(α1−α2)+2α1
(x− (i+ 2)h− s)

×H (x− (i+ 2)h− s)ψ(s)ds

=λ1λ2

∫ min{x−h,0}

−h

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+α1−α2
(x− (i+ 1)h− s)

×H (x− (i+ 1)h− s)ψ(s)ds

+λ1
2

∫ min{x−2h,0}

−h

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− (i+ 2)h− s)

×H (x− (i+ 2)h− s)ψ(s)ds

=λ1λ2

∫ min{x−h,0}

−h

Ew,δ,0
η,α1,α1−α2,α1−α2

(λ1, λ2;x− h− s)ψ(s)ds

+λ1
2

∫ min{x−2h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− 2h− s)H (x− (i+ 2)h− s)ψ(s)ds. (3.4)
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Lastly, one can easily calculate the following expressions

− λ2
PCDw,δ

η,α2
z(x)

=− λ2
PCDw,δ

η,α2

[m−2∑
k=0

(
(x− h)k

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

+ Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x)ψ

(m−1)(0)

+ λ1

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds

]

=− λ2λ1

m−2∑
k=0

Ew,δ,0
η,α1,α1−α2,k+1 (λ1, λ2;x− h)ψ(k)(0)− λ2Ew,δ,−δ

η,α1,α1−α2,m−α2
(λ1, λ2;x)ψ

(m−1)(0)

− λ2λ1

∫ min{x−h,0}

−h

Ew,δ,0
η,α1,α1−α2,α1−α2

(λ1, λ2;x− h− s)ψ(s)ds, (3.5)

and

−λ1z(x− h) = −λ1
m−2∑
k=0

(
(x− h)k

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− 2h)

)
ψ(k)(0)

− λ1Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x− h)ψ(m−1)(0)

− λ1
2

∫ min{x−2h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− 2h− s)ψ(s)ds. (3.6)

A linear combination of equations (3.2), (3.3), (3.4), (3.5), and (3.6) gives the desired equation

PCDw,δ
η,α1

z (x)− λ2
PCDw,δ

η,α2
z (x)− λ1z (x− h) = 0.

2

Theorem 3.15 An explicit solution to system (1.1) with zero initial condition is given by

z(x) =

∫ x

0

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− s) ζ(s)ds.

Proof Taking the Prabhakar fractional derivative of Caputo type PCDw,δ
η,α1

of
∫ x

0
Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− s) ζ(s)ds

as done in Theorem 3.11, one can easily acquire the result. 2

A combination of Theorems 3.11 and 3.15 provides the following result.

Theorem 3.16 An analytical whole solution to inhomogeneous linear fractional Langevin delayed equations
with Prabhakar fractional derivatives of Caputo type involving two distinct general fractional orders in (1.1) is
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given by

z(x) =

m−2∑
k=0

(
xk

Γ(k + 1)
+ λ1Ew,δ,δ

η,α1,α1−α2,α1+k+1 (λ1, λ2;x− h)

)
ψ(k)(0)

+ Ew,δ,0
η,α1,α1−α2,m (λ1, λ2;x)ψ

(m−1)(0)

+ λ1

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− h− s)ψ(s)ds

+

∫ x

0

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− s) ζ(s)ds.

Remark 3.17 This paper is a quite comprehensive study because it is novel and inholds quite different novel
results(see; special cases’ section) as well as containing results of the available works(see; Lemma 3.18 ) in the
literature.

Lemma 3.18 Under the special selections of the existent parameters, our findings correspond to some works
in the literature.

a) An analytical solution expressed in Theorem 3.16 for system (1.1) under the choices δ = 0 reduces to that
of [16, Theorem 4.2.].

b) An analytical solution expressed in Theorem 3.16 for system (1.1) under the choices δ = 0 , h = 0 , and
m = 2 corresponds to that of [3, Theorem 3.1.].

4. Examples
In this section, as examples, we offer a couple of special cases of our findings, which are also new.

Example 4.1 Let us consider inhomogeneous linear fractional Langevin delayed equations (1.1) with Prabhakar
fractional derivatives of Caputo type involving two fractional distinct orders 0 < α2 ≤ 1 , 1 < α1 ≤ 2 . In this
case, Theorem 3.16 can be reexpressed as follows.

Proposition 4.2 An explicit solution formula of the initial value system (1.1) with m = 2 has the following
form

z(x) = 1 + λ1Ew,δ,δ
η,α1,α1−α2,α1+1 (λ1, λ2;x− h)ψ(0) + Ew,δ,0

η,α1,α1−α2,2
(λ1, λ2;x)ψ

′
(0)

+ λ1

∫ min{x−h,0}

−h

Ew,δ,δ
η,α1,α1−α2α1

(λ1, λ2;x− h− s)ψ(s)ds

+

∫ x

0

Ew,δ,δ
η,α1,α1−α2,α1

(λ1, λ2;x− s) ζ(s)ds

Example 4.3 If h = 0 is taken, then the inhomogeneous linear fractional Langevin delayed equations (1.1)
with Prabhakar fractional derivatives of Caputo type involving two distinct general fractional orders transforms
to the inhomogeneous linear fractional Langevin equations with Prabhakar fractional derivatives of Caputo type
involving two distinct general fractional orders which is also not studied before. In this case, Theorem 3.16 can
be restated as noted below.
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Proposition 4.4 An explicit solution formula of the initial value system (1.1) with h = 0 transforms to the
following form

z(x) =

m−2∑
k=0

xk

Γ(k + 1)
ψ(k)(0)

=

m−2∑
k=0

λ1

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1+k+1 (x)ψ
(k)(0)

+

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+m (x)ψ(m−1)(0)

+

∫ x

0

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− s) ζ(s)ds.

Example 4.5 If h = 0 and m = 2 are taken, then the inhomogeneous linear fractional Langevin delayed
equations (1.1) with Prabhakar fractional derivatives of Caputo type involving two generalized fractional distinct
orders m − 2 < α2 ≤ m − 1 , m − 1 < α1 ≤ m transforms to the inhomogeneous linear fractional Langevin
equations with Prabhakar fractional derivatives of Caputo type involving two fractional distinct orders 0 < α2 ≤
1 , 1 < α1 ≤ 2 which is also not studied before. In this case, Theorem 3.16 can be restated as noted below.

Proposition 4.6 An explicit solution formula of the initial value system (1.1) with h = 0 transforms to the
following form

z(x) = 1 + λ1

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1+1 (x)ψ(0)

+

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ

η,iα1+j(α1−α2)+m (x)ψ(m−1)(0)

+

∫ x

0

∞∑
i=0

∞∑
j=0

(
i+ j

j

)
λ1

iλ2
jEw,iδ+δ

η,iα1+j(α1−α2)+α1
(x− s) ζ(s)ds.

5. An application to the RLC circuits

RLC circuits are exploited for radio receivers, signal processing, the tuning process of television, etc. Due to its
widespread usage, we illustrate our findings with the help of RLC circuits.

RLC circuits as seen in Figure 1 have four main elements: the resistance(R), the inductance(L), the
capacitance(C), and the voltage(E) in addition to the current(I). The voltage drops of resistor, inductor, and
capacitor in series are equal to VR = IR , VL = LdI

dt , and VC = Q
C which are acquired from experimental data

and physics, here Q stands for the charge of the capacitor so that d
dtQ(t) = I(t) .

Based on Kirchoff’s law, one can get

VL + VR + VC = E(t)
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Figure 1. An RLC series circuit.

where E(t) is the voltage. Thus, the differential equation is as follows

L
d

dt
I(t) +RI(t) +

1

C
Q(t) = E(t).

Then, the second-order linear ordinary differential equation is noted below

L
d2

dt2
I(t) +R

d

dt
I(t) +

1

C
I(t) =

d

dt
E(t).

We will examine an initial value problem for a fractional Langevin delayed equation with fractional orders
1 < α1 ≥ 2 , 0 < α2 ≥ 1 as a special case. The main principle needs to formalize an initial value problem for a
fractional Langevin delayed equation that models the RLC circuits in series in the following form of{

LPCDw,δ
η,α1

I (t) +RPCDw,δ
η,α2

I (t) 1
C I (t− h) = ζ(t), t ∈ (0, T ], h > 0,

I(t) = ψ(t), t ∈ [−h, 0]. (5.1)

In order to find the current I(t) , we use Theorem 3.16, it can be written as noted below

I(t) = 1− 1

RL
Ew,δ,δ
η,α1,α1−α2,α1+1

(
− 1

RL
,−R

L
; t− h

)
ψ(0)

+

∫ t

0

Ew,δ,δ
η,α1,α1−α2,α1

(
− 1

RL
,−R

L
; t− s

)
E

′
(s)ds

+
1

L
Ew,δ,0
η,α1,α1−α2,2

(
− 1

RL
,−R

L
; t

)
ψ

′
(0)

− 1

RL

∫ min{t−h,0}

−h

Ew,δ,δ
η,α1,α1−α2,α1

(
− 1

RL
,−R

L
; t− h− s

)
ψ(s)ds.

For common parameters α1 = 1, 4 , α2 = 0.7 , η = 1 , δ = 1 , L = 2 , R = 40 , C = 16 × 10−4 , ψ(t) = 2t2 ,
w = 1 , h = 0.5 , T = 2 , the graphs of the currents I for different frequencies θ = 5, 10, 25 in E(t) = 20 sin(θt)

are plotted in Figure 2.

Remark 5.1 In Figure 1, there are four components in an RLC series circuit: the resistance (R) , the inductance
(L) , the capacitance (C) , and the voltage (E) . There are two types of voltages, alternating voltage and direct
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voltage. The alternating voltage changes the polarity of the connections at regular intervals, but the direct voltage
does not. The alternating voltage E is chosen in this paper because it is more widely used in various applications
of houses, office buildings, etc.

Remark 5.2 As seen in Figure 2, in the considered RLC circuit with the alternating voltage E, the current I
is the alternating current which describes the flow of charge that changes direction periodically. The alternating
current is of a sinusoidal structure. The corresponding peak currents for the alternating voltage E(t) = 20 sin(θt)

with θ = 5 , θ = 10 , and θ = 25 in the discussed system are approximately equal to Iθ=5 = 10 , Iθ=10 = 7 ,
and Iθ=25 = 4 , respectively. This shows that the increases in the frequencies of the system cause the decreases
in the corresponding peak currents. It is also easily observed that the corresponding wavelengths of the currents
decrease as the frequencies increase.

for θ=5

for θ=10

for θ=25

0.5 1.0 1.5 2.0
t

-10

-5

5

10

i(t)

Figure 2. Graphs of the currents I(t) for θ = 5, 10, 25 in E(t) = 20 sin(θt) .

6. Conclusion
We introduce the Langevin delayed equations with Prabhakar derivatives involving two distinct general frac-
tional orders and investigate its explicit solution using the Laplace transform. It is shown that the obtained
solution satisfies the introduced system. A couple of special cases which are also new are offered. Lastly, we
exemplify our theoretical results via RLC circuits.

As a next work, one can investigate not only the system’s stabilities such as Lyapunov, finite-time,
Ulam-Hyers stabilities, etc; but also the system’s controllability such as approximate controllability, relative
controllability, iterative learning controllability, etc.
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