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Abstract: The paper deals with the twisted Sasaki metric on the unit tangent bundle of n—dimensional Riemannian
manifold M™. The main purpose of the research is to find deformations that preserve the existence harmonic left-invariant
unit vector fields on 3-dimensional unimodular Lie groups G with the left invariant metric and harmonic maps G — Th G
in case of twisted Sasaki metric on the unit tangent bundle. The necessary and sufficient conditions for harmonicity
of left-invariant unit vector field and map M™ — TiM" are obtained. The necessary and sufficient conditions for
harmonicity of left-invariant unit vector field and map M? — TiM? with respect to some orthonormal frame are
obtained. Left-invariant harmonic unit vector fields and harmonic maps G — T1G, where G is a three-dimensional
unimodular Lie group with left-invariant metric, using some orthonormal frame are described. Left-invariant harmonic
unit vector fields which determine harmonic maps G — T1G, where G is a three-dimensional unimodular Lie group

with left-invariant metric in the particular case of twisted Sasaki metric, namely the vertical rescaled metric are classified.

Key words: Twisted Sasaki metric, vertical rescaled metric, unit tangent bundle, Lie group, harmonic vector field,

harmonic map

1. Introduction
Let (M™,g) be an n-dimensional Riemannian manifold, TM™ be its tangent bundle, X(M™) be the Lie algebra
of smooth vector fields of a Riemannian manifold (M™,g), V be the Levi-Civita connection on M™. The
standard metric on the tangent bundle of Riemannian manifold (M™,g) is the Sasaki metric [17, 18]. It can
be completely defined by scalar products of various combinations of vertical and horizontal lifts of vector fields.
The Sasaki metric weakly inherits the base manifold properties [16]. That is why the rigidity of the Sasaki
metric motivates many authors to consider various deformations of the Sasaki metric (see [1, 9, 10, 14, 20, 22]
and others).

Belarbi L. and El Hendi H. introduce in [2] the twisted Sasaki metric on the tangent bundle TM as a
new natural metric nonrigid on T'M . The authors were motivated by the studies of Cheeger J. and Gromoll
D. (see [7]), Dida H.M., Hathout F., Azzouz A. (see [8]), and others. The twisted Sasaki metric is defined as

follows.

Definition 1.1 [2] Let (M",g) be a Riemannian manifold and d,e : M™ — R be strictly positive smooth
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functions. On the tangent bundle TM™ , we define a twisted Sasaki metric noted G>° by

I (XY™ = @ g, (X, V),
Glre (X" Y =0,
Gl (X1 YH) =g, (X,Y),

for all vector fields X, Y € X(M™) and (z,§) € TM™.

Note that, if § =& =0, then G* is the Sasaki metric [18]. If § = 0, then G*¢ is the vertical rescaled metric
(see [3, 7, 8]).
For a unit vector field £ on a compact Riemannian manifold (M™, g), Gerrit Weigmink [19] considered

a very natural geometric functional
| aelFaveiam),
M

where ||A4¢|| is a norm of the Nomizu operator A¢X = —Vx&, i.e. [|A¢]|> = Y1, g(Age;, Age;) relative to
some orthonormal frame (eq,...,e,). It was proved, that this functional is unbounded from above. The critical
points of this functional were called harmonic unit vector fields (see [5, 19] and others for more details). Gerrit

Wigmink proved, that a unit vector field £ on a compact Riemannian manifold is harmonic if and only if
A = || A¢llP,

where A¢ is rough Laplacian (or Bochner Laplacian) of the field & defined as A¢ = —traceV?¢, where
V%Y =VxVy —Vy,v.

On the other hand (see [11]), the energy of a map ¢ : (M™, g) — (N*, h) between Riemannian manifolds

is defined as

1
Blp) = /M \dip|2dV ol e

The mapping ¢ s called harmonic if it the critical point of the energy functional. It was proved that the
mapping ¢ is harmonic if and only if the divergence of its differential vanishes, or equivalently its tension
field 7(¢) = div(dy) vanishes identically, where |dp| is a norm of 1-form dy in the cotangent bundle T*M™.
Supposing on Ty M"™ the Sasaki metric gg, a unit vector field £ as a mapping £ : (M"™,g) — (TAM",gs)
defines a harmonic map if and only if it is harmonic and, in addition, > ;| R(, A¢e;)e; = 0 relative to some
othonormal frame {e;}}.

Gonzalez-Dévila J.C. and Vanhecke L. completely described left-invariant harmonic unit vector fields
& and ones that define a harmonic map on 3-dimensional Lie groups equipped with Sasaki metric on the
unit tangent bundle T3 M3 (see [12]). The authors describe and classify ones, using orthonormal frame and
classification of Milnor J. in [15].

In the present research, we consider the twisted Sasaki metric on the unit tangent bundle T3 M"™ of
n-dimensional Riemannian manifold. A particular case of a twisted Sasaki metric, namely the vertical rescaled
metric (if 6 = 0) on the unit tangent bundle, requires special attention because such deformation is a more

natural generalization of the Sasaki metric than the twisted Sasaki metric. Namely, geometrically, the vertical
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rescaled metric performs point-wise homothetic deformation in the fibers. The main purpose of the research is
to find deformations that preserve the existence harmonic left-invariant unit vector fields £ on 3-dimensional
unimodular Lie groups G with the left invariant metric and harmonic maps £ : G — T1G in case of twisted
Sasaki metric on the unit tangent bundle 717G, using orthonormal frame and classification of Milnor J. in [15].
Moreover, we want to describe and classify ones according to the classification of Gonzéalez-Dévila J.C. and

Vanhecke L. in [12] for vertical rescaled metric. As the main results,

« we obtain the necessary and sufficient conditions for harmonicity of unit vector field £ and map &: (M™, g)

— (TYM™,G%%) (Theorem 3.4);

e we obtain the necessary and sufficient conditions for harmonicity of unit vector field £ and map &:
(M?,9) — (TyM? ,G%%) with respect to orthonormal frame {e;,es} on M? such as e; = &, ey = 1,
where 7 € X(M?), g(n,n) =1, g(&§,7) =0 (Theorem 4.1);

« we describe left-invariant harmonic unit vector fields ¢ and harmonic maps &: (G,g) — (TvG, G%9),
where G is a three-dimensional unimodular Lie group with left-invariant metric ¢, using orthonormal
frame of Milnor J. [15] (Theorem 5.1);

o we classify left-invariant harmonic unit vector fields £ which determine harmonic maps &: (G,g9) —
(TG, G%¢), where G is a three-dimensional unimodular Lie group with left-invariant metric g according
to the classification of Gonzélez-Dévila J.C. and Vanhecke L. [12] (Theorem 5.3-5.8).

2. Preliminaries

Let (M™,g) be n-dimensional Riemannian manifold with metric g. Denote by g(-,-) a scalar product with
respect to g. Denote by TM™ tangent bundle of (M™,g). It is well known that at each point (x,&) € TM™
the tangent space T, oyT'M™ splits into vertical and horizontal parts:

T(myg)TMn = 'H(I,&)TMn (&) V(myg)TMn.

The vertical part V(, ¢) is tangent to the fiber, while the horizontal part H, ) is transversal to it. Denote by
(... 2™ €L ... €") the natural induced local coordinate system on TM. Denote 9; = %, Onti = a%i'
Then for X € Tz,e)TM"™ we have X =X, + X""'ian_,_i.

Denote by 7 : TM — M™ the tangent bundle projection. The mapping 7. : Tz oTM™ — TM"™ acts
on X by m.X = X'0;. The mapping 7. defines a point-wise linear isomorphism between H(, ¢) (7'M ™) and
T, M". Remark that ker .|z ¢) = V(z,e). The connection mapping K : Tz o TM™ — T, M™ acts on X by
KX = (X"t + F;kfjf(k)@i, where ', are the Christoffel symbols of g. The connection mapping K defines
a point-wise linear isomorphism between V(g ¢)(T'M™) and T,M". Remark that ker K| ey = H(ze). The

images 7. X and KX are called horizontal and vertical projections of X, respectively. The operations inverse
to projections are called lifts (see [4]). Namely, if X € T,,M, then

XM= X10; - T%,.8 X* 0,44
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isin HoyTM™ and is called the horizontal lift of X, and
XU = X0,

is in Vi, )TM™ and is called the vertical lift of X .
Let X,Y ¢ Tiz,eyTM™. The standard Sasaki metric on TM™ is defined at each point (x,£) € TM™ by

the following scalar product

G(X’i/”(w,f) = g(W*X,W*)})L +g(K)~(,K)7)|w.

Horizontal and vertical subspaces are mutually orthogonal with respect to Sasaki metric. The Sasaki metric

can be completely defined by the scalar product of various combinations of lifts by
Gl (X" Y") = 0o(X)Y), Grg(X"Y") =0, Grg(X",Y") = gu(X,Y).

Let T1M™ be unit tangent bundle of (M™,g), X(M™) be the Lie algebra of smooth vector fields of a
Riemannian manifold (M",g), V be the Levi-Civita connection on M™. Note that the vertical lift of a vector
field is not tangent to 73 M™ in general. The lifted frame on T3 M™ at (z,&) € Ty M™ is formed by horizontal
lift and the tangential lift (see [6] for more details) defined by

X'=X"-g(X,¢".

Evidently, if X is orthogonal to &, then X® = X?. Nomizu operator A¢ : X(M™) — &+ C X(M™) for unit
smooth vector field ¢ is defined by

AeX = —VxE.
Note that norma of A¢ is given by
n
1Aell? =D g(Acer, Acey,), (2.1)
k=1

with respect to some orthonormal frame {ex}}_,. The tangent mapping & : X(M™) — TE(M™) is defined by
X = X" — (A:X)" (2.2)

The rough Hessian and the £ -harmonicity tensor (see [21]) are given by
1
H688§(X, Y) = 5((VxA§)Y + (VYAg)X), (23)

1
2
where (VxAe)Y = Vx(A4Y) — A:(VxY) and R is the curvature tensor of the base manifold (M7, g). The
rough Laplacian of the field £ is given by

Hme(X)Y) = -(R(§, A X)Y + R(§, AY)X), (2.4)

A& = trace(Hessg) = Z(VeiA.g)eu (2.5)

i=1
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with respect to some orthonormal frame {e;}? ;. The equivalent definition of the rough Laplacian of the field

£ is given by
A& = —traceV>3¢ (2.6)

where V%@Y = VxVy — Vy,y. Second fundamental form of the mapping ¢ : (M",g) — (N*,h) between

Riemannian manifolds is defined as

where V¥ is induced Levi-Civita connection on ¢(M™) and V¥ is Levi-Civita connection on M™. Tension
field of the mapping £: M™ — Ty M™ is given by

7(&) = trace(Bg). (2.8)
Denote hB¢(X,Y) = . (Be(X,Y)) and vBe(X,Y) = K(Be(X,Y)). Then
7(€) = (trace(hBe))" + (trace(vBe))".
Unit vector field £ is harmonic if and only if
IX € C°(M") : trace(vBg) = AE. (2.9)
Unit vector field £ defines a harmonic map &: M™ — Ty M™ if and only if ¢ is harmonic and
trace(hB¢) = 0. (2.10)

3. Twisted Sasaki metric on unit tangent bundle

Definition 3.1 Let (M™,g) be a Riemannian manifold and §,e : M™ — R be smooth functions. On the

unit tangent bundle Ty M™ , we define a twisted Sasaki metric noted G by

i (XM YT = g, (X,Y),
s,

Glro (XY =0,

Gle (XY = g, (X,Y).

for all vector fields X, Y € X(M™) and (z,§) € ThM™, where g(&,£) =1.
Note that, if § = ¢ = 0, then G®° is the Sasaki metric on TyM™. If ¢ = 0, then G%0 is the rescaled

Sasaki metric on TyM™. If § =0, then G°¢ is the vertical rescaled metric on TyM™.

The following lemma contains Kowalski-type formulas [13].

Lemma 3.2 Let (M™,g) be the Riemannian manifold. The Levi-Civita connection V of the unit tangent
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bundle TyM™ equipped with twisted Sasaki metric G is completely defined by

Vxn Y= (VxY + F5(X,Y))" — % (R(X,Y)¢)", (3.1)
Vn V= 62—_6 (R(&,YV)X)" + (vxy X ;5) Y) : (3.2)
VY = 682_ ' (R(&, X)Y)" + @X& (3.3)
Taevt =~ g (X, ¥)(Ve) — g(,6)X, (34)

where V is the Levi-Civita connection on (M"™,g), R is the curvature tensor of V, and
1
F5(X,Y) = §(X<5)Y +Y(0)X — g(X,Y)VI).

Proof Remark, first, that the following formulas are independent on the choice of tangent bundle metric and
are analogous to Dombrowski formulas [4] in terms of horizontal and tangential lifts: at each point (x, &) € Ty M™
the brackets of lifts are

(X" Y = X Y]~ (RX,Y)E)',  [XM Y] = (VxY),
(X5 Y] =g(X, V" —g(V,§)X".
Using Definition 3.1, note that derivative of twisted Sasaki metric G%¢ along the lifts of vector fields are
XMGoe (Y ZM) = e X (8)g(Y, Z) + °g(VxY, Z) + °g(Y,Vx Z),
XMoY' Zh) = e X (e)g(Y, Z) + e“g(VxY, Z) + e°g(Y,Vx Z),
X'@ (Yt Z2h = X'GoE (Y, 2t = 0.
Now we can use Koszul formula. Prove formula (3.4).
2G5 (Vxi Y, Zh) = XPGOS (Y'Y, ZM) + YIGHe (Xt, Zh) — ZhGo(Xt, YY)
— GO (XYY, ZM) - GOE(Y (XY, Z2M) + GOE (2 (X, YY)

=—€e"Z(e)g(X,Y) = —€e°g(Ve, 2)g(X,Y) = g(—€e°g(X,Y)Ve, Z)

e—d

= 2¢%g (—;eég(x,YWe,Z) = 2G%* (—e 9(X, Y)(va’zzh) :

26O (Vx: Y, 20 = XIGM (Y, 2') + Y'Go* (X', Z') — Z'G>* (X', Y")
— GO (X' [V, ZY) - GO (Y (X Z1) + GO (2, [ X, YY)
= —e*g(Y:)9(X, Z) + e°9(Z,§)g9(X, Y) — ¢g(X, €)g(Y, Z)
+e79(Z,8)9(Y, X) +e79(X,6)9(2,Y) — (Y, £)9(Z, X)
=2eg(g(X,Y)§ — g(Y,§)X, Z) = 2G**(—g(Y, ) X", Z").

Thus, we obtain (3.4). In a similar way we can obtain formulas (3.1)—(3.3). O
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Theorem 3.3 Let (M",g) be n-dimensional Riemannian manifold equipped with twisted Sasaki metric G%°

on the unit tangent bundle TyM™. Tension field of the map &: (M™, g) — (TyM™,G%%) is given by

e—40
r(e) = - & . (2 trace(Hme) + (n — 2)ed V5 + \|A5||2Vs)h - (Ag + Ag(VS))t.

Proof  Consider some orthonormal frame {ex}}_,. According to (2.8), we have 7(§) = trace(Be) =

>oh_i Be(eg,ex). At first, we find the second fundamental form of the mapping £: M™ — Ty M™. Substituting
X = X" — (A X)) in Be(X,Y) = Ve, x(6.Y) — £.(VxY), we get
&(VxY) = (VxY)" — (A(VxY))",
using (2.4), (2.3) and Lemma 3.2, we have
Ve x(6Y) = ViV = Vi (AY) = Viaxy Y 4+ Via x) (AeY)

= VxnY" + Vxn(Vy €)' + Vi V" + Vivcer (Vyé)'

e—d

(R(&, Vy &) X)"

h
LX@OY +Y ()X - g(X, Y)V(S)) — SROCYIO +

(VXy-i- 5

t e—9 e—9d
+(VaTrer TPve) + e Vxom) + T - C (Ve Ty (7!

h
(VXY — e O Hme(X,Y) + %(X(é)Y +Y(0)X —g(X,Y)V6 — e 0g(Ac X, AJ)W))

_ (Ag(VXY) + Hesseg(X,Y) + %(Y(e)AgX + X(e)A5Y>t :
Thus, the second fundamental form of the mapping &: M™ — Ty M™ is defined as
Be(X,Y) = ( — O Hme(X,Y) + %(X(é)Y FY(6)X — g(X,Y)V — e g(Ac X, AgY)Vs)>h
- (Hessf(X, V) + %(Y(e)AgX n X(e)Agy))t. (3.5)
Substituting (3.5) in (2.8), using (2.5) and (2.1), we obtain

ZBf €k, ek) Z ( — es_‘sng(ek, er) + 5(2ek(5)ek - Vé— ee_ég(Afek,Agek)V€)>
k=1

3

t 1 h
- Z (Hesss(ek, er) + Ag(ek(a)ek)) = ( — e Otrace(Hme) + 5(2V(5 —nV§— 65_5||A5H2V6))
k=1

- t ec— 0 s ) h _ t
- (Af + Af(vs)) = -5 (2 trace(Hme) + (n — 2)e55V§ + || A¢]| Ve) - (Ag + Ag(Vs)) .
This completes the proof of Theorem 3.3. O

As a consequence of the Theorem 3.3, we have the following theorem.
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Theorem 3.4 Let (M",g) be n-dimensional Riemannian manifold equipped with twisted Sasaki metric G®°
on the unit tangent bundle Ty M™ . Unit vector field & is harmonic on (M™, g) if and only if

A&+ Ag(Ve) = [|Ae| €. (3.6)
Harmonic unit vector field & defines a harmonic map €: (M",g) — (T1M™, G%%) if and only if
2 - trace(Hme) + (n — 2)e’ V8 + || A¢||*Ve = 0. (3.7
Proof Using (2.9), we have that unit vector field £ is harmonic if and only if
INE€ C®(M™) : —A¢ — A¢(Ve) = AE.

Note that A = —g(AE, €), and, using (2.6), we get A = —||A¢||?>. Thus, we obtain (3.6). Using (2.10), we obtain
(3.7). O

Note, that if V.,£€ =0 for i = 1,7, then the Riemannian manifold (M",g) equipped with twisted Sasaki
metric on the unit tangent bundle T3 M"™ admits harmonic unit vector fields which determine the harmonic
maps regardless of the deformation function e(x), if V6 =0 or n = 2. On the contrary, if Vo =0 or n = 2,
and the Riemannian manifold (M",g) equipped with twisted Sasaki metric on the unit tangent bundle 77 M™
admits harmonic unit vector fields which determine the harmonic maps regardless of the deformation function

e(x), then V.,& =0 for i = 1,n. Therefore, we have the following corollary.

Corollary 3.5 The Riemannian manifold (M™, g) equipped with twisted Sasaki metric G on the unit tangent
bundle TyM™ admits harmonic unit vector field & which determines the harmonic map regardless of the
deformation function e(x) if and only if V6 = 0 or n = 2, and vector field & is parallel, that is M™ = M" ' xE!.

4. Two-dimensional Riemannian manifolds
Consider orthonormal frame {ej, ez} on two-dimensional Riemannian manifold M? is given by
Ve, €1 = kea, Ve, 62 = —keq, Ve, €1 = —xeg, Ve, €2 = xeq, (4.1)

where k and s are oriented geodesic curvatures of the integral curves of the fields e; and ey, respectively.

Then nonzero components of the curvature tensor are given by
R(eq,ez)es = Key, R(eq,e1)e; = Kea,
where K is Gaussian curvature of M?,
K = e1(5) +ea(k) — k* — 52
Consider e; = £, ea = n, where n € X(M?), g(n,n) =1, g(&,n) = 0. Then
Acer = —kea, Ages = ey,

and, using (2.1), we have
Aell? = k2 + 522
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Theorem 4.1 Let (M?,g) be a two-dimensional Riemannian manifold equipped with twisted Sasaki metric G%¢
on the unit tangent bundle TyM?. Let & and n, where n € X(M?), g(n,n) =1, g(€,m) = 0 be orthonormal
frame on M?. Let k and » be oriented geodesic curvatures of the integral curves of the fields & and 1,

respectively. Then unit vector field & is harmonic on (M?,g) if and only if
k€(e) — »m(e) = n(>) — &(k). (4.2)

Unit vector field & defines a harmonic map &: (M?,g9) — (TyM?,G%%) if and only if

k&(e) — 2m(e) =0,
{ (13)
§(k) —n(s¢) = 0.
Proof Using (2.3), (2.5) and orthonormal frame (4.1), we have
(Ve, Ag)er = k%ey — (e1(k) + ksc)ea, (Ve,Ag)ea = ser + (ea(3¢) + ksc)ea,
AE = (Ve Ag)er + (Vey Ag)ez = (K + 3%)er + (e2 () — ex(k))ez,
Ae(Ve) = (seea(e) — kei(e))es.
Using Theorem 3.4, we have
(% + 3®)eq + (ea(50) — e1(k))ea + (seea(e) — key(€))ea = (k2 + »%)ey,

keq(g) — »ea(e) = ea(32) — e1 (k). (4.4)

Using (2.4) and orthonormal frame (4.1), we have
trace(Hme) = K(xe1 + kes).
Using Theorem 3.4, we have
2K (req + keg) 4 (k2 + %) (e1(e)er + ex(e)es) = 0,
(2K 3 + (K% + 3*)e1(e))er + (2Kk + (k* + »%)ea(€))es = 0,
2K 3+ (k? 4 3)e1(e) = 0
2Kk + (k? + »*)ea(e) = 0
If k2 + 52 #0, then ey(e) = —% and ex(e) = —%. Substituting these ones in (4.4), we get
e1(k) —ea(s¢) =0 for any k and .

This completes the proof of Theorem. O

Example 4.2 If integral curves of the field & are geodesic, i.e. k=0, then unit vector field £ is harmonic and

defines a harmonic map €: (M?,9) — (T1M? G%%) if and only if integral curves of the field n are Darboux
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circles and deformation function € does not depend on the points on integral curves of the field n, that is
n(»x) =0 and n(e) =0.
For example, let M? be a surface of revolution with the first fundamental form ds?® = du® + f(u)?dv?,

where u s the arclength parameter of a meridional section f(u). Take £ = 8‘%, then n = %% and k=0,

> = —%, n(») = 0. Thus, & is harmonic and defines a harmonic map €: (M?,g) — (TyM?,G%®) if and

only if e = e(u).

Remark 4.3 Using Corollary 5.5, two-dimensional Riemannian manifold M? admits harmonic unit vector
fields & which determine harmonic maps &: (M?,g) — (T1M?,G%%) regardless of the deformation function
e(r) if k = =0, that is if M? is a flat manifold.

5. Three-dimensional unimodular Lie groups

Let G be a three-dimensional unimodular Lie group, g be a left-invariant metric on G. Let {e;}3_; be an

orthonormal frame of the Lie algebra of a Lie group G satisfying [15]
le2, €3] = Arer,  [es,en] = Agea,  [e1, e2] = Ases, (5.1)

where A1, Ao, A3 are structure constants and A; > Ay > A3. Following [15] and according to the signs of

A1, A2, A3, we have six kinds of Lie algebras as described in Table 1.
Denote connection numbers by ; = (A1 + A2 + A3) — A;. Consider any left-invariant unit vector field

&€ =¢ter + &%y + E3e3. The matrix of the operator A has the form

0 —p2&® s’
A5 = ,114153 0 7,“361
—m& pegt 0

Therefore,

1 Aell® = (13 + p3)(€1)” + (u] + 13) (€)% + (T + p3)(€%)* (5.2)
Using Theorem 3.4, we have the following theorem.
Theorem 5.1 Let G be a three-dimensional unimodular Lie group with left-invariant metric g equipped with

twisted Sasaki metric G on the unit tangent bundle T\G . Left-invariant unit vector fields € is harmonic on

(G, g) with respect to orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1) if and only if

§pses(e) — E3pgea(e) = ((uf — p3) (%)% + (uf — p3)(£%))E
Eper(e) — ' pses(e) = ((u3 — p3) (%)% + (3 — p3)(€H)HE . (5.3)
' pgea(e) — Eprer(e) = ((u3 — p3) (€)% + (43 — p3)(£%)%)€
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Harmonic left-invariant unit vector field & defines a harmonic map &: (G, g) — (T1G, G%¢) with respect
to orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1) if and only if

e’ Fe1(0) + || Ae|*er () = 26763 (2 — p3)oas
2 fe(0) + [|Ael[Pea(e) = 2636  (us — pa)os1 s (5.4)
" Ce3(6) + [|Acl[Pes(e) = 2613 (1 — p2)ona

where 05 = fifbr + itk — ity and (5.2).

Proof Using (2.3), (2.5) and orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1), we have

3

3
A¢ = Z Hess¢(ex, ex) Z Ve, Ae)er = pi(§%eq + Ees) + p3 (e + Ees) + p3(Eler + es)
k=1 k=1

= &M(p3 + pi)er + E2(pF + p)es + (1T + pd)es,
Ae(Ve) = (Euzes(e) — Epzea(e))er + (Emer(e) — € paea(e))es + (€ pzea(e) — Emer(e))es.
Using Theorem 3.4, we have
E (13 + p3)er + € (uf + p3)ez + € (ui + ph)es + (E2pzes(e) — Expzea(e))er
+ (Emei(e) — ' pzes(e))ea + (' poea(e) — Eprer(e))es = ||Agl[P(Eer + e + Eey),
Euaeale) ~ Eacale) = (14ell> = (43 + 1)e!

Eprei(e) — Epses(e) = (||Ael]? — (T + 13))€*
& pgea(e) — E2prer(e) = (||Ael]® — (1 + p3))&?

where [|A¢|? — (13 + 1) = (1 — p3) (&) + (uf — 13)(€F)?, because of (5.2), and we obtain the system (5.3).
Using (2.4) and orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1), we have
trace(Hme) = €26 (3 — pa)ozser + 7€' (1 — pz)osies + €€ (2 — m)ozes.
Using Theorem 3.4, we have
2(6%€% (3 — p2)oser + €3¢ (1 — pz)osren + 1€ (2 — p)orzes)
+e" % (er(8)er + ea(d)ea + es(d)es) + || Ael[*(er(e)er + eale)es + ea(e)es) =0,
26767 (us — p2)oas + €~ “e1(6) + || A¢l[Per(e) = 0

263¢M (1 — ps)osr + €9 %ex(8) + || Ael[Pea(e) =0,
261 €% (g — pa)o12 + €2 Ces(6) + || Ael|Pes(e) =

o

and we obtain the system (5.4). This completes the proof of the theorem. O

Note that for Sasaki metric G%°, we have e1(d) = e2(8) = e3(d) = 0 and e1(g) = ea(e) = e3(e) = 0.
But if on the contrary, e;(0) = e2(d) = e3(d) = 0 and e;(e) = es(e) = e3(e) = 0, then Theorem 5.1 is also
held for all left-invariant harmonic unit vector fields ¢ and harmonic map ¢: (G,g9) — (T1G,G%°) on three-

dimensional unimodular Lie groups G equipped with Sasaki metric G%° on the unit tangent bundle (see Table

2). Moreover, we obtain the following corollary.
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Corollary 5.2 Let G be three-dimensional unimodular Lie group with left-invariant metric g equipped with
twisted Sasaki metric G (Sasaki metric GO° for § = ¢ = 0) on the unit tangent bundle T1G . Let ¢ be a left-
invariant harmonic unit vector field on (G, g) equipped G®° on TyG with respect to orthonormal frame {e;}3_,
of the Lie algebra of a Lie group G satisfying (5.1). Then twisted Sasaki metric G preserves the property of
harmonicity of the vector field £ if e1(e) = ea(e) = es(e) = 0. Moreover, let £ define also a harmonic map & :
(G,g) = (T1G,G%%). Then the map £: (G,g9) — (TvG,G%%) is also harmonic if e1(8) = ex(8) = e3(d) =0
and e1(e) = ea(e) = e3(e) =0.

Consider each three-dimensional unimodular Lie group separately in more detail for vertical rescaled metric
G%¢, namely, find out when the group G admits left-invariant harmonic unit vector fields & which determine
harmonic maps &: (G,g) — (T1G,G%¢) with respect to orthonormal frame of the Lie algebra of a Lie group
G satisfying (5.1).

Theorem 5.3 Let the groups SU(2) and SO(3) equip with vertical rescaled metric G%¢ on the unit tangent
bundle T\G, where G = SU(2) or SO(3) with left-invariant metric g. Then the groups SU(2) and SO(3)
admit left-invariant harmonic unit vector fields € which determine harmonic maps €: (G,g) — (ThG,G%)
with respect to orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1) if and only if one of the

following cases is held.
e M =Xa=X3, e1(e) =ea(e) =e3(e) =0, £€S;
o A1 > Ay = A3, 61(6) = 62(6) = 63(6) =0, € {:I:el} U (Sﬁ {62,63}R),'

o M >Xa=A3, w1 >0, pt —2u1p® +pf >0, e1(e) =0, ea(e) = const, ez(e) = const, ea(c)? +es(c)? =

2p1 (p—pa) (=201 p® +pf) €=+ \//t4—2/t1u3+u‘1‘e - e3(e)py/pt —2p1 pd+pi e + ez(s)u\/u“—2u1u3+/t‘1‘e where
(W2 =42 ’ w3 ! IV pI=2pp i
H= 2 = 35

. Al = )\2 > )\3, 61(6) = 62(5) = 63(5) = O, § S {:l:@g} U (Sﬁ {61,62}R),'
o« A1 > Ay > )\3, 61(6) = 62(6) = 63(6) =0, f S {:|:61,:|:62,:|:€3},'

VP q /P ex+./q e
© A >N > A, 1023 >0, pros,qras >0, ea(e) =es(e) =0, ex(e) = Ly, =+ 000

_ A/P1,23G1,23 f _

o A > A > A3, pioes > 0, pios,qiez > 0, exe) = ez(e) = 0, ei(e) = p1(u3—pd) -

:t\/pl ,23€2— \/th 23€3

n3—p3 ’

VP q Va e1+./D e
e M >A> A3, 031 >0, pagigea >0, ei(e) =es(e) =0, 62(5):# §= imul—ul“la;
o A > A > A3, 031 >0, pagiges >0, er(e) =es(e) =0, 62(5)2—%, £= iW;

\/D3,1293,12 5 i\/m 12€1+\/43 12€2 |

o A > X > A3, 012 >0, p3i2,q3,12 >0, e1(e) =ea(e) =0, ez(e) = WG —p2) 722 ;

\/]73 1243,12 E :l:\/p?: 1251_\/‘13 12€2 |
7

© M > > A3, 012 >0, p3az,gsie >0, eife) = eae) =0, e3(e) = —7Ta— e ;
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where p; i = (117 =3 ) (g — 113) = 2w fa por (i —15) » Qe = (i —pd) (i —13) +2pi g pur (e — 1) » 0, 5, k = 1,2, 3.

Proof According to Table 1, we have A\; > 0, Ay > 0, A3 > 0, then ps > 0, ug >0, p3 < ps < pus. Note
that, using (5.2), we have ||A¢|| # 0. Consider the systems (5.3) and (5.4).

Let Ay = Ay = A3, that is, u3 = po = 3 # 0. Then e1(e) = e2(e) = e3(e) =0 and £ € S.

Let Ay > Ay = A3, that is p; < po = p3. Denote p = ps = p3. Using the system (5.4), we have

263¢1(y — 2 2617 (g — °
e1(e) =0, e2<e>=W’ €3<€>:W

Hence, e3(e) = const and es(e) = const. Using the system (5.3), we have

2/¢1\2¢3 2p° 1\2¢3
1Al[7(€7)°¢ _u1+u(§)£’
2ie1y2g2 _ 210 1ia
IAelP(Ee? = (e

If £ € {Fe1}U(SN{ea,e3}r), then e1(c) = e2(e) = e3(e) = 0. Let & # 0 and (£2)% + (£3)2 # 0, then

3

2p
|1 4¢ll* = :
M1+
On the other hand, using (5.2), we have |[A¢||? = p? + p? + (u? — p3)(€)?. Therefore, if yy > 0 and
pt —2pp® + pd > 0, then

- Vit =23 +

p? — i

)

€ = es(e) v/t = 2p1p® + i ¢ Le@uypt = 2mp® +
= 2u1 3 + pi it = 2p1 3 +

where

2 _ 4 2 3 + 4
e2(e)? + e3(c)? = i (o ugigu_ MZ)gw K1)
1

Let A1 = A2 > A3, that is, u1 = po < ps. Denote p = py = pe > 0. In similar way, we get that if
€ € {£e3} U (SN {er,ea}r), then ei(e) = ea(e) = ez(e) = 0. Also, if €2 # 0 and (£1)2 + (€2)2 # 0, then
3 .
|| Ag]|? = u2sﬂ+u‘ However, on the other hand, using (5.2), we have ||A¢||? = (13 — p?)((€1)2 + (£2)?) + 2p2.
Therefore,

(51)2 + (52)2 — _2#2,&3(#3 — :u)

(13 — p?)? <0

but it is impossible.

Let A1 > Ay > As, that is, 1 < po < pus. Using the system (5.4), we have

2030,
o) = S,
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263¢ (us — p1)os es(e) = 261€2 (1 — pi2)o12
|| Ael[? ’ || Ael[?

62(8) =

Hence, e1(g) = const, es(e) = const and es(e) = const. If £ € {£e1,teq, tes}, then e1(e) = ea(e) = e3(e) =
0. Let €1 =0 and €2,£3 # 0, then es(e) = e3(e) = 0 and, using the system (5.3), we have

2110923
| Ag| | = ——.
W2 + 3

Hence, if p093 > 0, then

/J’% — /’L§€2§3

61(6) = "

On the other hand, using (5.2), we have |[A¢|[* = (1] +43) (&%) + (uf +13)(€%)?. Denote pi1 23 = (uf — pi3) (113 —
113) — 2p1 profis(ps — p2) and q1 93 = (3 — p7) (u3 — p3) + 2p1 popis (s — p2) . Therefore, if pi 23, q1,23 > 0, then

+ \/P1,2341,23

e1(e) = ,
1(e) (3 — p3)

¢e { VPr23e2 + \/iases  (/Prazea + \/fh 23€3 }
13 = ’ 13 =

Note that we can obtain similar results for €2 =0, £1,% # 0 and €3 =0, €1,62 # 0. Now let &,£2,€3 £ 0.
Using the system (5.3), we have

(11 = p3)(€3)” + (1T — 1) (E2)) | Ael|? = 2(&2)? s (i1 — p2)o12 — 2(€7)?p2(ps — pa)os1
(13 — 13)(€%)% + (13 — 1) (E)?)Ael1? = 2(8%)pa (p2 — p3) 023 — 2(61)pa(p1 — p2) o1
(13 — 11)(€)% + (13 — 13)(€2)?) | Ael1? = 2(8")p2ps — pa)os1 — 2(6%)pa (p2 — p3)o2s

Note that
pi(pe — p3)o2s + po(ps — p1)ost + ps(pr — pe)or2 =0, (5.5)

because of 031 — 012 = 201 (2 — p3), 012 — 023 = 2p2(p3 — pi1), 023 — 031 = 2p3(p1 — p2). Multiply the third

row by —1 and add to the second row of the system. Hence, using (5.5), we get ||A¢||> = 241725 However,

p2+ps
3 M3 2 _ 2pp0s 2 _ 2p3012 H1023 __ M2031 __ H3012 3
in the similar way we can get [|A¢][* = 5228 and [[A¢||" = 742512 Then [l = 2t — J822 that is

2 Hipop3 Hipo 3 H1p2 i3

T = s = =p3 - matpr = 13- prtpz Therefore,

papiaps = (p2 + p3) (s + pa) (1 + p2),

that is,

| Ael|? = —2(paps + papn + papa), where popis + pgpn + papg < 0.

Note that if y1 <0, then pypaps <0, but (po-+pus)(ua+p)(pa+p2) > 0. If pg > 0, then popz+pspn+pipe >
0. Thus, if &1,£2,63 £ 0, then there are no solutions of the systems. O
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Theorem 5.4 Let the groups SL(2,R) and O(1,2) equip with vertical rescaled metric G°¢ on the unit tangent
bundle T'G, where G = SL(2,R) or O(1,2) with left-invariant metric g. Then the groups SL(2,R) and O(1,2)
admit left-invariant harmonic unit vector fields & which determine harmonic maps €: (G,g) — (ThG,G%¥)
with respect to the orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1) if and only if one of

the following cases is held.
. /\1 = )\2, 61(6) = 62(6) = 63(6) e 0, f S {ieg} U (Sﬁ {61,62}R),'
o A1 >, e1(e) =ea(e) =ez(e) =0, € € {£e,teq, tes};

o A1 >N, 023 <0, pros,qios >0, e2(e) =es(e) =0, eg(e) = LEFER ¢ = y/Prascaty.ases

nr(ps—p3) 7 HE—p3 ’
VP q VP e2—./q e
o A1 > A, 023 <0, pr23,qi2s >0, ez(e) =es(e) =0, eife) = — M(llf v, €= i%;

\/D2,3192, 31 5 :l:\/qz 3181+\/p2 31€3 |

o A1 > Ao, poos1 >0, pasi ez >0, er(e) =es(e) =0, ex(e) 12 2—112) pE—” ;

V/P2,3192, 31 5 + V92, 31517,/;;2 31€3

o A > Ao, pi2031 >0, praisges >0, ei(e) = eale) =0, eale) = —17w=1a 22 ;

/D3,1293,12 5 £ /D3, 12€1+\/f13 12€2 |

o A >, 012 <0, p312,q3,12 >0, e1(e) =ea(e) =0, esz(e) = 11U —p3) e ;

\v/P3,1243,12 5 :t\/m 1261*\/% 12€2 |

o A > X, 012 <0, p312,q3,12 >0, ei(e) =ea(e) =0, e3(e) = — 15 (E—) 212 ;

o A > Ag, 2 >0, e1(e) = const, es(e) = const, es(e) = const,

13 (v2v3)? + 13 (v3m1)? + 13 (1172)? = (1 + p2 + p13)* 17273
(v273)% + (v371)? + (1172)* = 17278

€ = &ley + ey + 3¢5, where (£1)2 = 7273 (€22 = "Y3'Yl (€32 = 'y;;m’ vy = Zl';i;(g’ Yy = p;zerLEl)’

_ pses(e) |
3 N2—H2 )

where p; i = (1F — p2)(ug — 12) = 2pap ik (e — 115) 5 Giie = (g — ) (1 — 12) + 200150k (b — 115) -

Proof According to Table 1, we have Ay > 0, Ao > 0, A3 < 0, then p; <0, puz >0, uy < ps < uz. Note
that, using (5.2), we have [|A¢|| # 0. Consider the systems (5.3) and (5.4).

Let A\ = Ag, that is, y1 = p2 < ps. In similar way, as in the Theorem 5.3, we get £ € {+e3} U (SN
{e1,ea}r) and eq(e) = ea(e) = e3(e) = 0.

Let A\ > Ao, that is, pu1 < pa < pg. Therefore, we can obtain similar results for £ = 0, &7,¢F #£ 0,
i,7,k =1,2,3, as in the Theorem 5.3. Let &', £2,£3 £ 0. In similar way, as in the Theorem 5.3, we get

| Ag|2 = 211093 _ 242031 _ 213012
po+ s g3 tpn o pa e

that is |[A¢|[* = —2(paps + pspn + pap2), where popz + papn + pape < 0, and pipops = (2 + p3)(ps +
p1)(pr + p2). If po <0, then pypops > 0, but (ue + ps)(us + p1) (1 + p2) < 0, hence there are no solutions
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of the systems. Let ps > 0. Using (5.2) and (£1)2 + (£2)% + (£3)2 = 1, we can get
1Al = pd + 413 + i — i1 (€1)° = p3(€%)7 — p3(€%)%.

Therefore, because of (p1+pa+ps)® = pf+u3+p3+2(paps+papn +p1pe) , we have i (€1)2+p5(€2)? +p3(€%)? =
(1 + p2 + p3)?. Because of p3 < (p1 + pa + u3)? < p3, there are vector fields ¢ such as

PE(EN)? + u5(6%)% + p3(8%)? = (i + p2 + pis)? (5.6)
(€)% +(£2)* + (&)
Using the system (5.4), we have e1(g) = const, ea(e) = const, ez(e) = const and
2 _ 2 2 2 2 2
15— p B — 1 —p
e1(e) = 22827, eg(e) = 22—, es(e) = —2£1¢%
pa 2 3
Denote
piei(e) p2e2(e) pzes(e)
= y Y2 = y V3= .
13 = pj p3 = i pE = ph
Then &2¢° = 71, ¢! = 72, {162 = 3, that is, (§')* = 22, (£%)? = 21+, (£%)* = 212, Therefore, using
(5.6), we get
13 (v273)? + p3(v371)? + 13 (2)? = (w1 + p2 + p3)* 17273
(1278)? + (13m1)2 + (1172)* = M1273
This completes the proof of the theorem. O

Theorem 5.5 Let the group E(2) equip with vertical rescaled metric G%¢ on the unit tangent bundle TG,
where G = E(2) with left-invariant metric g. Then the group E(2) admits left-invariant harmonic unit vector
fields & which determine harmonic maps €: (G,g) — (T1G,G%) with respect to orthonormal frame of the
Lie algebra of a Lie group G satisfying (5.1) if and only if one of the following cases is held.

e A1 = A2, € is any smooth function, £ = tes;
. Al = )\2, 61(5) = 62(5) = 63(5) = 0, f € {:‘:63} @] (Sﬁ {el,eg}R);
o A1 > Ay, e1(e) =ea(e) =e3(e) =0, € € {£e1,Leq, tes};

e A1 > X2, q123 >0, ez(e) =e3(e) =0, ere) = 7\/@, ¢ = $YPLmCt v aEes

p1(p3—p3 n3—p3 ’

o A > A2, qi23 >0, e2(e) =e3(e) =0, ei(e) = —7171 Lo, = FYRRRa LN

w1 (p3—p3) H3—H3 ’

+
o A1 > X2, P31 >0, ei(e) =es(e) =0, eae) = M; R

p2(p3—pt) Hw3—u3 ’

e A1 > X2, p231 >0, e1(e) =e3(e) =0, exe) = _7\/m , € = £ YEAG VPnC

w2 (p3—p3 u3—pi ’
where pi ji. = (uF —p3) (3 —115) = 2pipg i (i —13) s Qi = (g — 13 (3 — 105) + 2pipg i (i —pz) 5 4,5, k = 1,2, 3.
2% 7 5 k 5 il lE\PUE—15) 5 Qi,5k Mo — 1457 )\ p’] o g peie\ e — 5 ) 5 25 75 y 4y

138



LOTARETS/Turk J Math

Proof According to Table 1, we have A;,A2 > 0, A3 = 0, then puy = —po, puz > 0 pus # p1, iz # pe-
Consider the systems (5.3) and (5.4).

Let A\; = Ag, that is, u1 = pp = 0. Then ||A¢||* = p3((£1)? + (£%)?) and

Pes(e) = —ps(€)%¢ 1 4¢|[Pex(e) =0
les(e) = n3(€%)%6 QI A¢lPea(e) =0
(€ +(€))e =0 14¢][%es() =0

If £ € {£es}, then [|A¢||> =0 and ¢ is any smooth function. If £ € SN {e1,ea}r, then ||A¢||> = p3 # 0 and
e1(e) = ex(e) = es(e) =0.

Let A1 > Ao, that is, u1 < p2, pe = —p1 > 0. Note that ||A¢]|> # 0. Denote p = po, then py = —p.
If € € {£ey,Fes, +e3}, then e1(c) = ea(e) = e3(e) = 0. It is easy to verify that if €2 =0 and &', €2 # 0, then
there are no solutions. Note that we can obtain similar results for &' =0, €2,62 #0 and €2 =0, £1,&3 £0 as

in the Theorem 5.3. Let £',£2,€3 # 0, then in similar way as in the Theorem 5.3, we can get

{(M2 — u3)(E3)?]| Al = 2(€2)%us(p1 — p2)orz — 2(&%)? pa(ps — pa)os
(12 — 13)(E3)21| Ael|? = 2(€3)2 1 (p2 — p3)o2s — 2(61)2p3(p1 — p2)orz

Multiply the second row by —1 and add to the first row of the system. Hence, using (5.5), we get ps(u1 —
p2)o1z = 0. However, pz(py — po)ore = —2u3us # 0. Thus, if €1, £2,€3 # 0, then there are no solutions. O

Theorem 5.6 Let the group E(1,1) equip with vertical rescaled metric G%¢ on the unit tangent bundle TG,
where G = E(1,1) with left-invariant metric g. Then the group E(1,1) admits left-invariant harmonic unit
vector fields & which determine harmonic maps &: (G,g) — (T1G,G%¥) with respect to orthonormal frame of

the Lie algebra of a Lie group G satisfying (5.1) if and only if one of the following cases is held.
e e1(e) =ex(e) =e3(e) =0, £ € {£eq,Leq, +ez};
o p2 =0, e1(e) = es(e) =0, eae) = const, 0 < ex(e)? < 4p?, & = ey + €3, where (€1)* =

2/_L:|:\/4,U, —ea( )2 (63) _ 2uF/4pP—ea(e)? |
=

\V/P1,2341,23 5 + VP1, 2362-"—\/(11 23€3
J

o 3 <pz <0, praz>0, exe) =ez(e) =0, er(e) = 11 (B —112) 242 ;

/PL5T1.5: /Piases—/Tizse
o 3 <pz <0, praz>0, ese) =ez(e) =0, er(e) = B e O i e

\/P3,1293,12 5 4 \/P3, 12€1+\/Q3. 12€2 |

e 0< 2 < %M37 q3,12 > 07 61(5) = 62(5) - 0) 63(5) - NS(H%_I@) ’ 2 _N1 s

V/P3,1243,12 5 :tx/pa 1261—\/613 12€2 |
pa(u3—p3) ’ n3—pi ’

o 0<pi2<ips, gzaz>0, e(e) =eae) =0, ez(e) = —
where ps g = (12— 42) (5~ 12)— 2ustugie 1 —113) e = (2 —122) )+ 2pspo ) 63, = 1,2,3.
Pi.jk g — 15 ) (K — 15 Mg o\l — 5 ) 5 i, 5k i — 15 )\ — 15 Miflg i\ ke — 5 ) 5 5 75 y 4y
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Proof According to Table 1, we have Ay > 0, A2 =0, A3 < 0 then pus = —p1 > 0, po # p1, p2 # ps and
[|A¢|| # 0. Consider the systems (5.3) and (5.4). Denote p = pg, then py = —p. If £ € {£e1, e, +es}, then

e1(e) = ea(e) = e3(e) = 0. Let €2 =0, €163 #0, then

43
[ A¢ll?

e1(e) =e3(e) =0, poea(e) =0, ese) = e3¢t

If e5(¢) = 0, then there are no solutions. If po = 0, then [|A¢||* = p? and ex(e) = 4p&3¢!, that is ea(g) = const.
Therefore, if 0 < ez(e)? < 4u?, then

(€1)? = 2u £ \/4p? — es(e)? (€9)? = 2u F J4p? — 62(5)2.

4pu ’ 4

Note that we can obtain similar results for &' = 0, £€2,63 £ 0 and €3 =0, ¢',6%2 # 0 as in the Theorem 5.3.
Let &1,£2,63 £ 0, then in similar way as in the Theorem 5.5, there are no solutions, if po # 0. Also, if us =0,
then we get (€2)%2 =1, ¢! = ¢3 =0, but it is impossible. Thus, if £!,£2,£3 # 0, then there are no solutions. O

Theorem 5.7 Let the Heisenberg group equip with vertical rescaled metric GO¢ on the unit tangent bundle
171G, where G is Heisenberg group with left-invariant metric g. Then the Heisenberg group admits left-
invariant harmonic unit vector fields & which determine harmonic maps &: (G,g) — (T1G, G%¥) with respect
to orthonormal frame of the Lie algebra of a Lie group G satisfying (5.1) if and only if e1(e) = ea(e) = e3(e) =0,
Ee{ter} U(SN{ez,e3}r)-

Proof According to Table 1, we have Ay > 0, Ay = A3 = 0, then —p1 = po = p3 > 0 and |[|A¢|| # 0.
Therefore, using the systems (5.3) and (5.4), we get e1(e) = ea(e) =e3(e) =0, £ € {£e1} U (SN {ez,es}r). O

Theorem 5.8 Let the group ROERDR equip with vertical rescaled metric GO on the unit tangent bundle TG,
where G = R®R & R with left-invariant metric g. Then the group R®R ® R admits left-invariant harmonic
unit vector fields & which determine harmonic maps £: (G,g) — (T1G,G%¢) with respect to orthonormal

frame of the Lie algebra of a Lie group G satisfying (5.1) if and only if e(x) is any smooth function and £ € S.

Proof According to Table 1, we have A1 = Ag = A3 = 0, then p1 = po = p3 = 0 and ||A¢|| = 0. Using the
systems (5.3) and (5.4), we have ¢(z) is any smooth function and £ € S. O

Using Corollary 3.5, we obtain the following result.

Corollary 5.9 Let the groups E(2) and RO®RGR equip with vertical rescaled metric G%¢ on the unit tangent
bundle T\G, where G = E(2) or R&ER @R with left-invariant metric g. Then the groups RGEROR and E(2)
admit left-invariant harmonic unit vector fields & which determine harmonic maps &: (G,g) — (T1G,G%¢)

regardless of the deformation function e(x).

Example 5.10 Consider the Fuclidean motion group E(2) given explicitly by

cosxz® —sinad® 2!
E(2) = sinz®  cosz® 22| |zl 2? eR, 23 e St
0 0 1
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Consider A\, = g, Ag = %, A3 =0 and

\/10( N ) \/6( N ) V15 0
er = cos x® —— +sinz® — ey = ~—(—sina® — + cosz® — e3 = ——-—=.
T s Ozt ox2 273 dx’ 022”7 T 2 9a®
Therefore, ey, ez, ez satisfy (5.1) and i1 = —%, po = 3, p3 =2, pag1 = %f’ >0, ¢a31 =
e1(e) =e3(e) =0, ea(e) = @, that is

cos x‘3 e+ sin z‘5 9 =0

@( 3 3 ¢ ) = V7

3 6

[SH—

227 =0

The solution of the system is e(x!,2?) = —V:;)H(—xl sinx® + 2% cosz®) + C'. Then, using Theorem

invariant unit vector fields £ = il—ls(Q\/ 10e; + v/185e3) are harmonic and determine harmonic maps & :

— (TlG, GO’E) .

Similarly, we can construct examples for all other cases with Theorem

5.3-5.8.

Table 1. Three-dimensional unimodular Lie groups

Signs of A\, A2, A3 | Associated Lie group G
+,+,+ SU(2) or SO(3)

+,+, = SL(2,R) or O(1,2)

+,+,0 E(2)

+,0, — E(1,1)

+,0,0 Heisenberg group

0,0,0 ReRaR

Table 2. The sets of left-invariant harmonic unit vector fields and harmonic maps (G,g) — (T1G,G*°). [12]

Lie group G conditions for )\; | vector fields maps (G,g) — (T1G,G"?)
SU(2) or SO(3) AL == A3 S S
AL > A= A3 {xe1} U (SN {es,ez}tr) | {L£e1} U (SN {ez, e5}r)
Al = A2 > A3 {fest U (SNn{er,eatr) | {£est U(SN{er,e2}r)
A1 > A > A3 {te1, tey, +es} {te1, tey, +es}
SL(2,R) or O(1,2) | A\ = Ao {xes} U (SN {e1,ea}r) | {£est U (SN {e1,ea}r)
A1 > Ao {te1, £eq, +es} {te1, £eq, +es}
E(2) A=Ay {xest U (Sn{er,ealr) | {£est U(SN{er,ea}r)
A1 > Ao {xes} U (SN {e1,ea}r) | {Le1,Leq,+es}
E(1,1) {£e2} U (SN {e1,es}tr) | {£e1,Lea, Les}
Heisenberg group S {£e1} U (SN {ez2, e5}r)
ReReR S S

%. Find € such as

5, left-
G,9)
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