Combinatorial results for semigroups of orientation-preserving transformations

AYŞEGÜL DAĞDEVİREN
adagdeviren@cu.edu.tr

GONCA AYIK
agonca@cu.edu.tr

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://journals.tubitak.gov.tr/math/vol48/iss2/2

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact pinar.dundar@tubitak.gov.tr.
Combinatorial results for semigroups of orientation-preserving transformations

Ayşegül DAĞDEVİREN©, Gonca AYIK©

Department of Mathematics, Faculty of Arts and Science, Çukurova University, Adana, Turkey

Received: 30.05.2023 • Accepted/Published Online: 22.12.2023 • Final Version: 08.03.2024

Abstract: Let X_n denote the chain $\{1, 2, \ldots, n\}$ under its natural order. We denote the semigroups consisting of all order-preserving transformations and all orientation-preserving transformations on X_n by \mathcal{O}_n and \mathcal{OP}_n, respectively. We denote by $E(U)$ the set of all idempotents of a subset U of a semigroup S. In this paper, we first determine the cardinalities of

\[
\begin{align*}
E_r(\mathcal{O}_n) &= \{ \alpha \in E(\mathcal{O}_n) : |\text{im}(\alpha)| = |\text{fix}(\alpha)| = r \}, \\
E_r(\mathcal{OP}_n) &= \{ \alpha \in E(\mathcal{OP}_n) : |\text{fix}(\alpha)| = r \}, \\
E_r^*(\mathcal{OP}_n) &= \{ \alpha \in E(\mathcal{OP}_n) : n \in \text{fix}(\alpha) \}, \\
E_r(\mathcal{OP}_n) &= \{ \alpha \in E_r(\mathcal{OP}_n) : n \in \text{fix}(\alpha) \}
\end{align*}
\]

(1 \leq r \leq n) and then, by using these results, we determine the numbers of idempotents in \mathcal{O}_n and \mathcal{OP}_n by a new method. Let \mathcal{OP}_n^- denote the semigroup of all orientation-preserving and order-decreasing transformations on X_n. Moreover, we determine the cardinalities of \mathcal{OP}_n^-, $\mathcal{OP}_n^-, Y = \{ \alpha \in \mathcal{OP}_n^- : \text{fix}(\alpha) = Y \}$ for any nonempty subset Y of X_n and $\mathcal{OP}_n^-, Y = \{ \alpha \in \mathcal{OP}_n^- : |\text{fix}(\alpha)| = r \}$ for 1 \leq r \leq n. Also, we determine the number of idempotents in \mathcal{OP}_n^- and the number of nilpotents in \mathcal{OP}_n^-. Key words: Order-preserving transformation, order-decreasing transformation, orientation-preserving transformation

1. Introduction

For $n \in \mathbb{Z}^+$, let \mathcal{T}_n be the (full) transformation semigroup on the chain $X_n = \{1, 2, \ldots, n\}$ under its natural order. A transformation $\alpha \in \mathcal{T}_n$ is called order-preserving if $x \leq y$ implies $x\alpha \leq y\alpha$ for all $x, y \in X_n$, and order-decreasing (order-increasing) if $x\alpha \leq x$ ($x\alpha \geq x$) for all $x \in X_n$. The subsemigroup of \mathcal{T}_n consisting of all order-preserving transformations is denoted by \mathcal{O}_n, and the subsemigroup of \mathcal{T}_n consisting of all order-decreasing (order-increasing) transformations is denoted by \mathcal{D}_n (\mathcal{D}_n^+). Also, the subsemigroup of \mathcal{T}_n consisting of all order-preserving and order-decreasing (order-increasing) transformations is denoted by \mathcal{C}_n (\mathcal{C}_n^+) and called the Catalan monoid. A finite sequence $A = (a_1, a_2, \ldots, a_t)$ ($t \in \mathbb{Z}^+$, $a_1, \ldots, a_t \in X_n$) is called cyclic if there exists no more than one subscript i such that $a_i > a_{i+1},$ and anticyclic if there exists no more than one subscript i such that $a_i < a_{i+1}$ where $a_{t+1} = a_1$. A transformation α in \mathcal{T}_n is called orientation-preserving if the sequence $(1\alpha, 2\alpha, \ldots, n\alpha)$ is cyclic. The subsemigroup of \mathcal{T}_n consisting of all orientation-preserving

Correspondence: agonca@cu.edu.tr

© 2024 TÜBİTAK

2010 AMS Mathematics Subject Classification: 20M20.
transformations is denoted by \mathcal{OP}_n. Moreover, the subsemigroup of \mathcal{OP}_n consisting of all order-decreasing (order-increasing) transformations is denoted by $\mathcal{OP}_n^−$ (\mathcal{OP}_n^+). The fix and image sets of a transformation $\alpha \in \mathcal{T}_n$ are defined and denoted by

$$\text{fix}(\alpha) = \{x \in X_n : x\alpha = x\} \text{ and } \text{im}(\alpha) = \{x\alpha : x \in X_n\},$$

respectively. The set of all idempotents in any subset U of a semigroup S is denoted by $E(U)$, that is $E(U) = \{e \in U : e^2 = e\}$. It is clear that a transformation $\alpha \in \mathcal{T}_n$ is idempotent if and only if $\text{fix}(\alpha) = \text{im}(\alpha)$. The set of all nilpotents in a semigroup S with zero is denoted by $N(S)$, that is $N(S) = \{s \in S : s^m = 0, \text{ for some } m \in \mathbb{Z}^+\}$ where 0 denotes the zero element of S. For a nonempty subset A of a semigroup S, the smallest subsemigroup of S containing A is called the subsemigroup generated by A, and denoted by $\langle A \rangle$. If there exists a finite subset A of S such that $S = \langle A \rangle$, then S is called a finitely generated semigroup, and the rank of a finitely generated semigroup S is defined by $\text{rank}(S) = \min \{ |A| : \langle A \rangle = S \}$. Moreover, if $S = \langle A \rangle$ and $|A| = \text{rank}(S)$, then A is called a minimal generating set of S. Similarly, the idempotent rank of a semigroup S is defined by $\text{idrank}(S) = \min \{ |A| : A \subseteq E(S) \text{ and } \langle A \rangle = S \}$. A minimal generating set (which is unique) and the rank of $N(C_n)$, which is the nilpotent subsemigroup of C_n, were determined in [6] and [14]. It is also clear that

$$\eta = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 1 & \cdots & 1 \end{pmatrix} \text{ and } \varepsilon = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & n & \cdots & n \end{pmatrix},$$

are the zero elements of $\mathcal{OP}_n^−$ and \mathcal{OP}_n^+, respectively.

Some cardinalities of various kinds of transformation semigroups have been studied over a long period. Howie computed in [3] that the cardinality of O_n is $\binom{2n-1}{n-1}$, and Laradji and Umar computed in [9] that the cardinality of C_n is C_n, where $C_n = \frac{1}{n+1}\binom{2n}{n}$ is the nth Catalan number. For $1 \leq r \leq n$, the numbers of elements in O_n and C_n with r fixed points are $\frac{r}{n}\binom{2n}{n+r}$ and $\frac{r}{2n-r}\binom{2n}{n-r}$, respectively (see, [5, 9]). In [1], the cardinalities of the sets $O_n, Y = \{\alpha \in O_n : \text{fix}(\alpha) = Y\}$ and $C_n, Y = \{\alpha \in C_n : \text{fix}(\alpha) = Y\}$ were computed for any nonempty subset Y of X_n. In [2], the set of all orientation-preserving transformations \mathcal{OP}_n was considered and it is proven in [2, Theorem 2.2] that \mathcal{OP}_n is a submonoid of \mathcal{T}_n containing O_n. Moreover, the authors of [2] proved that

$$\mathcal{OP}_n = \{a^k\alpha : 0 \leq k \leq n-1 \text{ and } \alpha \in O_n\}$$

where $a = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix}$, the n-cycle $(1\ 2\ \cdots\ n)$, and that $|\mathcal{OP}_n| = n\binom{2n-1}{n-1} - n(n-1)$ in [2, Theorem 2.6 and Corollary 2.7], respectively. The semigroup of all orientation-preserving and order-increasing transformations \mathcal{OP}_n^+ was considered in [10] and the authors found a minimal (idempotent) generating set of \mathcal{OP}_n^+ in [10, Theorem 3.6] and [11]. We have not seen any information about the cardinality of \mathcal{OP}_n^+. For any $\alpha \in \mathcal{OP}_n^−$, consider the transformation $\hat{\alpha} : X_n \rightarrow X_n$, defined by $i\hat{\alpha} = n - (n - i + 1)\alpha + 1$ for each $i = 1, 2, \ldots, n$. As defined and shown in [12, Lemma 1.1], the function $\theta : \mathcal{OP}_n^− \rightarrow \mathcal{OP}_n^+$, defined by $\alpha\theta = \hat{\alpha}$
for all $\alpha \in \mathcal{OP}_n^-$, is an isomorphism. Hence, we consider only the subsemigroup \mathcal{OP}_n^- for $n \geq 2$. Let
\[
E_r(\mathcal{O}_n) = \{ \alpha \in E(\mathcal{O}_n) : |\text{im}(\alpha)| = |\text{fix}(\alpha)| = r \},
\]
\[
E_r^*(\mathcal{O}_n) = \{ \alpha \in E_r(\mathcal{O}_n) : 1, n \in \text{fix}(\alpha) \},
\]
\[
E_r(\mathcal{OP}_n) = \{ \alpha \in E(\mathcal{OP}_n) : |\text{fix}(\alpha)| = r \}
\]
and
\[
E_r^*(\mathcal{OP}_n) = \{ \alpha \in E_r(\mathcal{OP}_n) : n \in \text{fix}(\alpha) \}.
\]
Let f_n denote the nth Fibonacci number. For $1 \leq r \leq n$, the cardinality of $E_r(\mathcal{O}_n)$ is found in [9, Corollary 4.4]. Despite this fact, we first determine that $|E_r(\mathcal{O}_n)| = \binom{n+r-3}{2r-3}$ (for $2 \leq r \leq n-1$), and then we determine that $|E_r(\mathcal{O}_n)| = \binom{n+r-1}{2r-1}$, and conclude that $|E(\mathcal{O}_n)| = f_{2n}$. By using a similar method, we first find that
\[
|E_r^*(\mathcal{O}_n)| = \binom{n+r-1}{2r-1}
\]
and
\[
|E_r(\mathcal{OP}_n)| = \frac{n}{r} \binom{n+r-1}{2r-1}
\]
for $2 \leq r \leq n$, then we conclude that $|E(\mathcal{OP}_n)| = f_{2n+1} + f_{2n-1} - n^2 + n - 2$ as in [2, Theorem 2.10]. In the last section, we show that
\[
|\mathcal{OP}_n^-| = -n + 2 + \sum_{k=2}^{n} C_k \quad \text{and} \quad |E(\mathcal{OP}_n^-)| = -n + 2^n
\]
for all $n \geq 1$. It is shown in [9, Proposition 2.3] that $|\mathcal{C}_n| = |\mathcal{C}_{n-1}| = C_{n-1}$, by using this result, we show that
\[
|N(\mathcal{OP}_n^-)| = |\mathcal{OP}_n^-| = -n + 3 + \sum_{k=2}^{n-1} C_k
\]
for all $n \geq 2$. In [1, 5, 9], the numbers of transformations in \mathcal{O}_n and \mathcal{C}_n with r fixed points were computed as $\frac{r}{n} \binom{2n}{n+r}$ and $\frac{r}{2n-r} \binom{2n-r}{n}$, respectively. By using a similar method as in [1, 13], the number of transformations in \mathcal{OP}_n^- with r fixed points is computed as
\[
\sum_{k=0}^{n-r} \frac{r}{2k+r} \binom{2k+r}{k}
\]
for $2 \leq r \leq n-1$.

2. Cardinalities related to \mathcal{OP}_n

We list some standard combinatorial results related to our studies. For natural numbers k and n, we have the following:

Result 1 [8, Lemma 1.3]. \[
\sum_{i=0}^{n} \binom{k+i}{k} = \binom{n+k+1}{k+1}.
\]

Result 2 [9, Corollary 4.5]. \[
\sum_{r=0}^{n} \binom{n+r}{2r} = f_{2n+1}.
\]

Result 3 [9, Corollary 4.6]. \[
\sum_{r=1}^{n} \binom{n+r-1}{2r-1} = f_{2n}.
\]

Since $E_1(\mathcal{O}_n)$ consists of all the constant transformations in \mathcal{O}_n, and $E_n(\mathcal{O}_n)$ consists of only the identity, first we have $|E_1(\mathcal{O}_n)| = n$ and $|E_n(\mathcal{O}_n)| = 1$. 108
Proposition 1 For \(n \geq 3 \), we have \(|E_2^*(\mathcal{O}_n)| = n - 1 \) and \(|E_2(\mathcal{O}_n)| = \binom{n+1}{3} \).

Proof For any \(i, j \in X_n \) with \(i < j \), we first notice that there exist \(j - i \) many idempotents in \(E(\mathcal{O}_n) \) such that their image sets are the same and equal to \(\{i, j\} \). Therefore, \(|E_2^*(\mathcal{O}_n)| = n - 1 \), and moreover, it follows from Result 1 that

\[
|E_2(\mathcal{O}_n)| = \left| \bigcup_{1 \leq i < j \leq n} \{ \alpha \in E(\mathcal{O}_n) : \text{im}(\alpha) = \{i, j\} \} \right| = \sum_{1 \leq i < j \leq n} (j - i)
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (j - i) = \sum_{i=1}^{n-1} \sum_{j=0}^{n-i-1} \binom{1+j}{1} = \sum_{i=1}^{n-1} \binom{n-i+1}{2}
\]

\[
= \sum_{i=0}^{n-2} \left(\frac{2+i}{2} \right) = \binom{n+1}{3},
\]
as required.

Now recall that \(\sum_{k=1}^{n} ka_k = \sum_{j=1}^{n} \sum_{k=j}^{n} a_k \), which will be used in the proof of the following proposition.

Proposition 2 For \(2 \leq r \leq n - 1 \), we have \(|E_r^*(\mathcal{O}_n)| = \binom{n+r-3}{2r-3} \).

Proof We prove the claim by induction on \(r \). For \(r = 2 \), the result follows from Proposition 1. Suppose that \(2 \leq r \leq n - 2 \) and \(\alpha \in E_{r+1}^*(\mathcal{O}_n) \). Then there exist \(1 < i_1 < \cdots < i_{r-1} < n \) such that \(\text{fix}(\alpha) = \{1, i_1, \ldots, i_{r-1}, n\} \). If we define the following maps

\[
\alpha_1 = \begin{pmatrix} 1 & 2 & \cdots & i_1 - 1 & i_1 \\ 1 & 2\alpha & \cdots & (i_1 - 1)\alpha & i_1 \end{pmatrix} \quad \text{and}
\]

\[
\alpha_2 = \begin{pmatrix} 1 & 2 & \cdots & n - i_1 & n - (i_1 - 1) \\ 1 & (i_1 + 1)\alpha - (i_1 - 1) & \cdots & (n-1)\alpha - (i_1 - 1) & n - (i_1 - 1) \end{pmatrix},
\]

then it is easy to see that \(\alpha_1 \) and \(\alpha_2 \) are two idempotents with the sets of fix points \(\{1, i_1\} \) and \(\{1, i_2 - i_1 + 1, \ldots, i_{r-1} - i_1 + 1, n - i_1 + 1\} \), respectively. Next let \(i = i_1 \) and consider the function

\[
f : E_{r+1}^*(\mathcal{O}_n) \to \bigcup_{i=2}^{n-r+1} (E_2^*(\mathcal{O}_i) \times E_r^*(\mathcal{O}_{n-i+1}))
\]

which maps each \(\alpha \in E_{r+1}^*(\mathcal{O}_n) \) to the ordered pair \((\alpha_1, \alpha_2) \). For any \(\alpha, \beta \in E_{r+1}^*(\mathcal{O}_n) \), if \(\alpha f = \beta f \), then both \(\alpha_1 = \beta_1 \) and \(\alpha_2 = \beta_2 \), and so it follows from the definitions given in Equations 1 and 2 that \(\alpha = \beta \). Moreover, for \((\gamma_1, \gamma_2) \in \bigcup_{i=2}^{n-r+1} (E_2^*(\mathcal{O}_i) \times E_r^*(\mathcal{O}_{n-i+1})) \), if we consider the following map

\[
\gamma = \begin{pmatrix} 1 & 2 & \cdots & i-1 & i & 2+i & \cdots & n-i+(i-1) & n \\ 1 & 2\gamma_1 & \cdots & (i-1)\gamma_1 & i & 2\gamma_2+(i-1) & \cdots & (n-i)\gamma_2+(i-1) & n \end{pmatrix},
\]

109
then it is easy to see that $\gamma \in E^*_{r+1}(O_n)$ and $\gamma f = (\gamma_1, \gamma_2)$, and so f is a bijection. Thus, from Proposition 1 and the induction hypothesis, we have

$$|E^*_{r+1}(O_n)| = \sum_{i=2}^{n-r+1} (i-1) \left(\frac{n-i+1+r-3}{2r-3} \right) = \sum_{i=1}^{n-r} \left(\frac{n-i+r-3}{2r-3} \right)$$

$$= \sum_{j=1}^{n-r} \sum_{i=j}^{n-r} \left(\frac{n-i+r-3}{2r-3} \right) = \sum_{j=1}^{n-r} \sum_{i=0}^{n-j-r} \left(\frac{2r-3+i}{2r-3} \right)$$

$$= \sum_{j=1}^{n-r} \left(\frac{n+r-2-j}{2r-2} \right) = \sum_{j=0}^{n-r-1} \left(\frac{2r-2+j}{2r-2} \right)$$

$$= \left(\frac{n+r-2}{2r-1} \right) = \left(\frac{n+(r+1)-3}{2(r+1)-3} \right),$$

as required.

In the above proof, $f : E^*_{r+1}(O_n) \to \bigcup_{i=2}^{n-r+1} (E^*_2(O_i) \times E^*_r(O_{n-i+1}))$ is defined similar to the function defined in the proof of Lemma 7 in [1].

Theorem 1 For $1 \leq r \leq n$, we have $|E_r(O_n)| = \binom{n+r-1}{2r-1}$.

Proof Since we know that $|E_1(O_n)| = n$ and $|E_n(O_n)| = 1$, we consider the case $2 \leq r \leq n-1$. If $\alpha \in E_r(O_n)$ with $\text{fix}(\alpha) = \{i_1 < i_2 < \cdots < i_r\}$, then α has the following tabular form:

$$\alpha = \left(\begin{array}{cccc} 1 & \cdots & i_1 & \cdots \ i_r & \cdots & n \\ i_1 & \cdots & i_1 & \cdots & i_r & \cdots & i_r \end{array} \right),$$

where $1 \leq i_1 \leq n-r+1$ and $i_1 + r - 1 \leq i_r \leq n$. Let $i = i_1$ and $j = i_r$. Then, since

$$|E_r(O_n)| = \sum_{i=1}^{n-r+1} \sum_{j=i+1}^{n-r} |E^*_r(O_{r-i+1})|,$$

it follows from Proposition 2 and Result 1 that

$$|E_r(O_n)| = \sum_{i=1}^{n-r+1} \sum_{j=i+1}^{n-r+1} \left(\frac{j-i+r-2}{2r-3} \right) = \sum_{i=1}^{n-r+1} \sum_{j=0}^{n-i-r-1} \left(\frac{2r-3+j}{2r-3} \right)$$

$$= \sum_{i=1}^{n-r+1} \left(\frac{n-i+r-1}{2r-2} \right) = \sum_{i=0}^{n-r-1} \left(\frac{2r-2+i}{2r-2} \right) = \left(\frac{n+r-1}{2r-1} \right),$$

as required.

Now we are able to give the result obtained in [3, Theorem 2.3] as an immediate result of Theorem 1 and Result 3:

Corollary 1 For $n \geq 2$, we have $|E(O_n)| = \sum_{r=1}^{n} \binom{n+r-1}{2r-1} = f_{2n}$.

110
Now, we examine the cardinalities of $E^*_t(\mathcal{OP}_n)$ and $E_r(\mathcal{OP}_n)$. Similarly, it is clear that $|E^*_1(\mathcal{OP}_n)| = 1$, $|E_1(\mathcal{OP}_n)| = n$ and $|E^*_n(\mathcal{OP}_n)| = |E_n(\mathcal{OP}_n)| = 1$. For a nonconstant $\alpha \in \mathcal{OP}_n$, it is stated and proved in [2, Proposition 2.3] that α is order-preserving if and only if $1 \alpha < n \alpha$.

Proposition 3 For $2 \leq r \leq n$, we have $|E^*_r(\mathcal{OP}_n)| = \binom{n+r-1}{2r-1}$.

Proof For $2 \leq r \leq n - 1$, suppose that $\alpha \in E^*_r(\mathcal{OP}_n)$ with $\text{fix}(\alpha) = \{i_1 < \cdots < i_{r-1} < n\}$. Then α has the following tabular form:

$$
\alpha = \begin{pmatrix}
1 & \cdots & i_1 - 1 & i_1 & \cdots & n - 1 & n \\
1 \alpha & \cdots & (i_1 - 1) \alpha & i_1 & \cdots & (n - 1) \alpha & n
\end{pmatrix}
$$

where $1 \leq i_1 \leq n - r + 1$. Now let

$$
\alpha_1 = \begin{pmatrix}
n & 1 & \cdots & i_1 - 1 & i_1 \\
n & 1 \alpha & \cdots & (i_1 - 1) \alpha & i_1
\end{pmatrix}
$$

and

$$
\alpha_2 = \begin{pmatrix}
i_1 & i_1 + 1 & \cdots & n - 1 & n \\
i_1 & (i_1 + 1) \alpha & \cdots & (n - 1) \alpha & n
\end{pmatrix}.
$$

Since $i_1 \alpha = i_1 < n = n \alpha$, it follows from [2, Proposition 2.3] that α_2 is an order-preserving idempotent on the set $\{i_1, i_1 + 1, \ldots, n\}$ with the standard order. Moreover, if we consider the set $\{n, 1, 2, \ldots, i_1\}$ with the order $n < 1 < 2 < \cdots < i_1$, then it is clear that α_1 is an order-preserving idempotent on the chain $\{n < 1 < 2 < \cdots < i_1\}$ with $\text{fix}(\alpha_1) = \{n, i_1\}$. Next, let $i = i_1$ and $E(\mathcal{O}_{i+1})$ be the set of all order-preserving idempotents on the chain $\{n < 1 < 2 < \cdots < i\}$, and let $E^*_r(\mathcal{O}_{i+1}) = \{\alpha \in E(\mathcal{O}_{i+1}) : \text{fix}(\alpha) = \{n, i\}\}$. Then consider the function

$$
g : E^*_r(\mathcal{OP}_n) \rightarrow \bigcup_{i=1}^{n-r+1} (E^*_r(\mathcal{O}_{i+1}) \times E^*_r(\mathcal{O}_{n-i+1}))
$$

defined by $g : \alpha \mapsto (\alpha_1, \alpha_2)$ for every $\alpha \in E^*_r(\mathcal{OP}_n)$. Similarly, g is also a bijection. Therefore, since $1 \leq i \leq n - r + 1$, it follows from Propositions 1 and 2 that

$$
|E^*_r(\mathcal{OP}_n)| = \sum_{i=1}^{n-r+1} i \binom{n-r-i+1+2r-3}{2r-3} = \sum_{j=1}^{n-r+1} \sum_{i=j}^{n-r+1} \binom{n-r-i+1+2r-3}{2r-3} = \sum_{j=1}^{n-r+1} \sum_{i=0}^{n-r-j+1} \binom{i+2r-3}{2r-3} = \sum_{j=1}^{n-r+1} \binom{n-r-j+1+2r-2}{2r-2} = \sum_{j=0}^{n-r} \binom{j+2r-2}{2r-2} = \binom{n-r+2r-1}{2r-1} = \binom{n+r-1}{2r-1},
$$

as required.
Theorem 2 For $2 \leq r \leq n$, we have

$$|E_r(\mathcal{OP}_n)| = \binom{n+r}{2r} + \binom{n+r-1}{2r} = \frac{n}{r} \binom{n+r-1}{2r-1}.$$

Proof Since $|E_n(\mathcal{OP}_n)| = 1$, we consider the case $2 \leq r \leq n - 1$. If $\alpha \in E_r(\mathcal{OP}_n)$ with $\text{fix}(\alpha) = \{i_1 < i_2 < \cdots < i_r\}$, then α has the following tabular form:

$$\alpha = \begin{pmatrix} 1 & \cdots & i_1 & \cdots & i_r & \cdots & n \\ 1\alpha & \cdots & i_1 & \cdots & i_r & \cdots & n\alpha \end{pmatrix},$$

where $1 \leq i_1 \leq n - r + 1$ and $i_1 + r - 1 \leq i_r \leq n$. If we consider the following maps:

$$\alpha_1 = \begin{pmatrix} i_r & \cdots & n & 1 & \cdots & i_1 \\ i_r & \cdots & n\alpha & 1\alpha & \cdots & i_1 \end{pmatrix} \quad \text{and} \quad \alpha_2 = \begin{pmatrix} i_1 & \cdots & i_2 & \cdots & i_r \\ i_1 & \cdots & i_2 & \cdots & i_r \end{pmatrix},$$

then it is clear that α_2 is an order-preserving idempotent on the set $\{i_1, i_1 + 1, \ldots, i_r\}$ with the standard order. If we consider the set $\{i_r, \ldots, n, 1, \ldots, i_1\}$ with the order $i_r < \cdots < n < 1 < \cdots < i_1$, then α_1 is an order-preserving idempotent on the chain $\{i_r, \cdots, n, 1, \cdots, i_1\}$ with $\text{fix}(\alpha_1) = \{i_r, i_1\}$. We denote i_1 and i_r by i and j, respectively. Since there exist $(n - j + i)$ many order-preserving idempotent on the chain $\{j < \cdots < n < 1 < \cdots < i\}$ with $\text{fix}(\alpha_1) = \{j, i\}$, similarly, it follows from Proposition 2 that

$$|E_r(\mathcal{OP}_n)| = \sum_{i=1}^{n-r+1} \sum_{j=i+r-1}^{n} (n - j + i) \binom{j - i + 1 + r - 3}{2r - 3}.$$
By replacing $j - i$ by j, we have

$$|E_r(\mathcal{OP}_n)| = \sum_{i=1}^{n-r+1} \sum_{j=r-1}^{n-i} (n-j) \left(\frac{j+1+r-3}{2r-3} \right)$$

$$= \sum_{i=1}^{n-r+1} \left(n \sum_{j=r-1}^{n-i} \left(\frac{j+1+r-3}{2r-3} \right) - \sum_{j=r-1}^{n-i} j \left(\frac{j+1+r-3}{2r-3} \right) \right)$$

$$= \sum_{i=1}^{n-r+1} \left(n \sum_{j=0}^{n-i-r+1} \left(\frac{j+2r-3}{2r-3} \right) - \sum_{j=0}^{n-i-r+1} (j+r-1) \left(\frac{j+2r-3}{2r-3} \right) \right)$$

$$= \sum_{i=1}^{n-r+1} \left((n-r+1) \sum_{j=0}^{n-i-r+1} \left(\frac{j+2r-3}{2r-3} \right) - \sum_{j=1}^{n-i-r+1} j \left(\frac{j+2r-3}{2r-3} \right) \right)$$

$$= \sum_{i=1}^{n-r+1} \left(\frac{n-i-r+1+2r-2}{2r-2} \right)$$

$$-(n-i-r+1) \left(\frac{n-i-r+1+2r-2}{2r-2} \right) + \left(\frac{n-i-r+1+2r-2}{2r-1} \right)$$

$$= \sum_{i=1}^{n-r} \left(\frac{i+2r-2}{2r-2} \right) + \sum_{i=0}^{n-r-1} \left(\frac{i+2r-1}{2r-1} \right)$$

$$= \frac{n+r-1}{2r-1} + \frac{n+r-1}{2r} + \frac{n+r-1}{2r}$$

$$= \frac{n+r}{2r} + \frac{n+r-1}{2r} = \frac{n}{2r} \left(n+r-1 \right),$$

as required.

It is shown in [2, Theorem 2.10] that $|E(\mathcal{OP}_n)| = f_{2n+1} + f_{2n-1} - n^2 + n - 2$. We also state and prove this result as a consequence of Theorem 2.

Corollary 2 For $n \geq 1$, $|E(\mathcal{OP}_n)| = \sum_{r=1}^{n} |E_r(\mathcal{OP}_n)| = f_{2n+1} + f_{2n-1} - n^2 + n - 2$.

Proof First recall that $|E_1(\mathcal{OP}_n)| = n$. Since $|E_r(\mathcal{OP}_n)| = \binom{n+r}{2r} + \binom{n+r-1}{2r}$ for every $2 \leq r \leq n$, it follows
from Result 2 that

\[|E(OP_n)| = \sum_{r=1}^{n} |E_r(OP_n)| = n + \sum_{r=2}^{n} |E_r(OP_n)| + 1 \]

\[= n + \sum_{r=2}^{n-1} \left(\frac{n + r}{2r} \right) + \sum_{r=2}^{n-1} \left(\frac{n + r - 1}{2r} \right) + 1 \]

\[= n + \left(\sum_{r=0}^{n} \left(\frac{n + r}{2r} \right) - \left(\frac{n}{0} \right) - \left(\frac{n + 1}{2} \right) - \left(\frac{2n}{2n} \right) \right) \]

\[+ \sum_{r=0}^{n-1} \left(\frac{n - 1 + r}{2r} \right) - \left(\frac{n - 1}{0} \right) - \left(\frac{n}{2} \right) + 1 \]

\[= n + f_{2n+1} - 1 - \frac{(n + 1)n}{2} - 1 + f_{2(n-1)+1} - 1 - \frac{n(n - 1)}{2} + 1 \]

\[= f_{2n+1} + f_{2n-1} + n - \frac{n}{2}((n + 1) + (n - 1)) - 2 \]

\[= f_{2n+1} + f_{2n-1} - n^2 + n - 2, \]

as required

3. Cardinalities related to \(OP_n^- \)

In [2, Corollary 2.7], it is shown that \(|OP_n| = n \left(\binom{2n-1}{n-1} \right) - n^2 + n \). In [10], it is shown that \(OP_n^- \), the set of all orientation-preserving and order-decreasing transformations on the chain \(X_n \), is a submonoid of \(OP_n \) containing the Catalan monoid \(C_n \). Next, we find the cardinalities of \(OP_n^- \) and \(E(OP_n^-) \) in the following theorem. Recall that \(|C_n| = C_n \), where \(C_n = \frac{1}{n+1} \left(\binom{2n}{n} \right) \) is the \(n \)th Catalan number, and that \(|E(C_n)| = 2^{n-1} \) (see, for examples [5, Theorems 3.1 and 3.19] and [7, Corollaries 3.9 and 3.11]).

Theorem 3 For each \(n \geq 1 \), we have

(i) \(|OP_n^-| = -n + 2 + \sum_{k=2}^{n} C_k \), and

(ii) \(|E(OP_n^-)| = -n + 2^n \).

Proof (i) Since \(1\alpha = 1 \) for all \(\alpha \in OP_n^- \), it is clear that \(|OP_1^-| = 1 \) and \(|OP_2^-| = 2 \). Suppose that \(n \geq 3 \). Then we show that for any \(\alpha \in OP_n^- \setminus C_n \), there exists \(2 \leq k \leq n - 1 \) such that \((k + 1)\alpha = \cdots = n\alpha = 1 \), that is \(\alpha \) has the following tabular form:

\[
\begin{array}{cccccccc}
1 & \cdots & k - 1 & k & k + 1 & \cdots & n \\
1 & \cdots & (k - 1)\alpha & k\alpha & 1 & \cdots & 1 \\
\end{array}
\]

Since \(\alpha \) is not constant, then it is different from the zero element of \(C_n \), and since \(\alpha \) is not order-preserving, it follows from in [2, Proposition 2.3] that \(n\alpha \leq 1\alpha = 1 \), and so \(n\alpha = 1 \). Thus, there exists \(2 \leq k \leq n - 1 \) such that \(1 = (k + 1)\alpha < k\alpha \neq 1 \), as required. Moreover, it is clear that \(\alpha|_{X_k} : X_k \rightarrow X_k \) is a nonconstant,
order-preserving and order-decreasing transformation on the chain $X_k = \{1 < 2 \leq \cdots < k\}$. Therefore, we have

$$|\mathcal{OP}_n^-| = |\mathcal{C}_n| + |\mathcal{OP}_n^- \setminus \mathcal{C}_n| = -n + 2 + \sum_{k=2}^{n-1} C_k.$$

(ii) Similarly, we have

$$|E(\mathcal{OP}_n^-)| = |E(\mathcal{C}_n)| + |E(\mathcal{OP}_n^- \setminus \mathcal{C}_n)| = 2^{n-1} + \sum_{k=2}^{n-1} (2^{k-1} - 1)$$

$$= -n + 2 + \sum_{k=2}^{n} 2^{k-1} = -n + 2^n,$$

as required.

Recall that the transformation η, which is defined by $x\eta = 1$ for all $x \in X_n$, is the zero element of \mathcal{OP}_n^-. Also recall that an element α of \mathcal{OP}_n^- is nilpotent if $\alpha^k = \eta$ for some $k \geq 1$. Let $N(\mathcal{OP}_n^-)$ denotes the set of all nilpotent elements in \mathcal{OP}_n^-. Since \mathcal{OP}_n^- is a subsemigroup of \mathcal{D}_n, from [12, Lemma 1.6], we have the following immediate lemma.

Lemma 1 For $\alpha \in \mathcal{OP}_n^-$, α is nilpotent if and only if $\text{fix}(\alpha) = \{1\}$.

In other words, we have $N(\mathcal{OP}_n^-) = \{\alpha \in \mathcal{OP}_n^- : \text{fix}(\alpha) = \{1\}\}$. In [12, Lemma 1.6], it is also shown that $N(\mathcal{D}_n)$ is an ideal of \mathcal{D}_n. Consequently, we have the following:

Lemma 2 $N(\mathcal{OP}_n^-)$ is an ideal of \mathcal{OP}_n^-.

From [9, Proposition 2.3] and [12, Lemma 4.2], it is known that $|N(\mathcal{C}_n)| = |\mathcal{C}_{n-1}| = C_{n-1}$ and $|N(\mathcal{D}_n)| = (n-1)!$, respectively. Now we have the following lemma.

Lemma 3 For each $n \geq 2$, we have

$$|N(\mathcal{OP}_n^-)| = |\mathcal{OP}_{n-1}^-| = -n + 3 + \sum_{k=2}^{n-1} C_k.$$

Proof For $\alpha \in N(\mathcal{OP}_n^-) \setminus N(\mathcal{C}_n)$, we know that there exists $2 \leq k \leq n - 1$ such that $k\alpha \neq 1$ and $(k+1)\alpha = \cdots = n\alpha = 1$. Similarly, by defining $\alpha|_{X_k} : X_k \rightarrow X_k$ as in the proof Theorem 3 (i), we have

$$|N(\mathcal{OP}_n^-)| = |N(\mathcal{C}_n)| + |N(\mathcal{OP}_n^+ \setminus \mathcal{C}_n)|$$

$$= C_{n-1} + \sum_{k=2}^{n-1} (C_{k-1} - 1) = -n + 3 + \sum_{k=2}^{n-1} C_k = |\mathcal{OP}_{n-1}^-|,$$

as required.
For any \(2 \leq r \leq n-1\), let \(Y = \{m_1, m_2, \ldots, m_r\}\) with \(1 = m_1 < m_2 < \cdots < m_r \leq n\) and let
\[
\mathcal{C}_{n,Y} = \{\alpha \in \mathcal{C}_n : \text{fix}(\alpha) = Y\}, \quad \mathcal{C}_{n,r} = \{\alpha \in \mathcal{C}_n : |\text{fix}(\alpha)| = r\},
\]
\[
\mathcal{OP}_{n,Y} = \{\alpha \in \mathcal{OP}_n^- : \text{fix}(\alpha) = Y\} \quad \text{and} \quad \mathcal{OP}_{n,r} = \{\alpha \in \mathcal{OP}_n^- : |\text{fix}(\alpha)| = r\}.
\]
It is shown in [1, Theorem 10] that \(|\mathcal{C}_{n,Y}| = \prod_{j=1}^r C_{s_j-1}\) where \(s_j = m_{j+1} - m_j \quad (1 \leq j \leq r-1)\) and \(s_r = n-m_r+1\).

It is also shown in [1, Theorem 11] that
\[
|\mathcal{C}_{n,r}| = \frac{r}{2n-r} \left(\frac{2n-r}{n}\right).
\]

Next, we examine the cardinalities of \(\mathcal{OP}_{n,Y}^{-}\) and \(\mathcal{OP}_{n,r}^{-}\). From Lemma 1, we have \(|\mathcal{OP}_{n,(1)}^{-} = N(\mathcal{OP}_{n}^{-})\), and so from Lemma 3, \(|\mathcal{OP}_{n,(1)}^{-} = |\mathcal{OP}_{n-1}^{-}|\). Now we suppose that \(2 \leq |Y| \leq n-1\).

Lemma 4 Let \(Y = \{1, m_2, \ldots, m_r\}\) be a proper subset of \(X_n\) with \(1 = m_1 < m_2 < \cdots < m_r\). Then
\[
|\mathcal{OP}_{n,Y}^{-} = \sum_{k=m_r}^n |\mathcal{C}_{k,Y}| = \sum_{k=m_r}^n \left(\prod_{j=1}^r C_{s_j-1}\right)
\]
where \(s_j = m_{j+1} - m_j \quad (1 \leq j \leq r-1)\) and \(s_r = k-m_r+1 \quad (m_r \leq k \leq n)\).

Proof Suppose that \(\alpha \in \mathcal{OP}_{n,Y}^{-} \setminus \mathcal{C}_n\). As stated in the proof of Theorem 3 (i), there exists \(2 \leq k \leq n-1\) such that \(k\alpha \neq 1\) and \((k+1)\alpha = \cdots = n\alpha = 1\), and so \(Y \subseteq \{1, 2, \ldots, k\} = X_k\). Similarly, by defining \(\alpha_{|X_k} : X_k \rightarrow X_k\) as in the proof of Theorem 3 (i), it follows from [1, Theorem 10] that
\[
|\mathcal{OP}_{n,Y}^{-} = \mathcal{C}_{n,Y} + \sum_{k=m_r}^{n-1} |\mathcal{C}_{k,Y}| = \sum_{k=m_r}^n |\mathcal{C}_{k,Y}| = \sum_{k=m_r}^n \left(\prod_{j=1}^r C_{s_j-1}\right)
\]
where \(s_j = m_{j+1} - m_j \quad (1 \leq j \leq r-1)\) and \(s_r = k-m_r+1 \quad (m_r \leq k \leq n)\).

It follows from [1, Theorem 11] that \(|\mathcal{C}_{k,r}| = \frac{r}{2k-r} \left(\frac{2k-r}{k}\right)\) for \(2 \leq r \leq k\).

Theorem 4 For \(2 \leq r \leq n-1\), we have
\[
|\mathcal{OP}_{n,r}^{-} = \sum_{k=r}^{n-r} \frac{r}{2k-r} \left(\frac{2k+r}{k}\right).
\]

Proof Similarly, from [1, Theorem 11], for each \(2 \leq r \leq n-1\), we have
\[
|\mathcal{OP}_{n,r}^{-} = \mathcal{C}_{n,r} + \sum_{k=r}^{n-1} |\mathcal{C}_{k,r}|
\]
\[
= \sum_{k=r}^{n} \frac{r}{2k-r} \left(\frac{2k-r}{k}\right) = \sum_{k=0}^{n-r} \frac{r}{2k+r} \left(\frac{2k+r}{k}\right),
\]
as required.
Acknowledgment
We would like to thank the referee for careful reading and for correcting the functions defined in Propositions 2.5 and 2.8.

References

