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Abstract: Let Xn denote the chain {1, 2, . . . , n} under its natural order. We denote the semigroups consisting of all
order-preserving transformations and all orientation-preserving transformations on Xn by On and OPn , respectively.
We denote by E(U) the set of all idempotents of a subset U of a semigroup S . In this paper, we first determine the
cardinalities of

Er(On) = {α ∈ E(On) : |im(α)| = |fix(α)| = r},

E∗
r (On) = {α ∈ Er(On) : 1, n ∈ fix(α)},

Er(OPn) = {α ∈ E(OPn) : |fix(α)| = r},

E∗
r (OPn) = {α ∈ Er(OPn) : n ∈ fix(α)}

(1 ≤ r ≤ n) and then, by using these results, we determine the numbers of idempotents in On and OPn by a new
method. Let OP−

n denote the semigroup of all orientation-preserving and order-decreasing transformations on Xn .
Moreover, we determine the cardinalities of OP−

n , OP−
n,Y = {α ∈ OP−

n : fix(α) = Y } for any nonempty subset Y of

Xn and OP−
n,r = {α ∈ OP−

n : |fix(α)| = r} for 1 ≤ r ≤ n . Also, we determine the number of idempotents in OP−
n and

the number of nilpotents in OP−
n .

Key words: Order-preserving transformation, order-decreasing transformation, orientation-preserving transformation

1. Introduction
For n ∈ Z+ , let Tn be the (full) transformation semigroup on the chain Xn = {1, 2, . . . , n} under its natural
order. A transformation α ∈ Tn is called order-preserving if x ≤ y implies xα ≤ yα for all x, y ∈ Xn , and
order-decreasing (order-increasing) if xα ≤ x (xα ≥ x) for all x ∈ Xn . The subsemigroup of Tn consisting
of all order-preserving transformations is denoted by On , and the subsemigroup of Tn consisting of all order-
decreasing (order-increasing) transformations is denoted by Dn (D+

n ). Also, the subsemigroup of Tn consisting
of all order-preserving and order-decreasing (order-increasing) transformations is denoted by Cn (C+

n ) and called
the Catalan monoid. A finite sequence A = (a1, a2, . . . , at) (t ∈ Z+, a1, . . . , at ∈ Xn) is called cyclic if there
exists no more than one subscript i such that ai > ai+1 , and anticyclic if there exists no more than one
subscript i such that ai < ai+1 where at+1 = a1 . A transformation α in Tn is called orientation-preserving
if the sequence (1α, 2α, . . . , nα) is cyclic. The subsemigroup of Tn consisting of all orientation-preserving

∗Correspondence: agonca@cu.edu.tr
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transformations is denoted by OPn . Moreover, the subsemigroup of OPn consisting of all order-decreasing
(order-increasing) transformations is denoted by OP−

n (OP+
n ). The fix and image sets of a transformation

α ∈ Tn are defined and denoted by

fix(α) = {x ∈ Xn : xα = x} and im(α) = {xα : x ∈ Xn},

respectively. The set of all idempotents in any subset U of a semigroup S is denoted by E(U) , that is
E(U) = {e ∈ U : e2 = e} . It is clear that a transformation α ∈ Tn is idempotent if and only if fix(α) = im(α) .
The set of all nilpotents in a semigroup S with zero is denoted by N(S) , that is N(S) = {s ∈ S : sm =

0, for some m ∈ Z+} where 0 denotes the zero element of S . For a nonempty subset A of a semigroup S ,
the smallest subsemigroup of S containing A is called the subsemigroup generated by A , and denoted by 〈A 〉 .
If there exists a finite subset A of S such that S = 〈A 〉 , then S is called a finitely generated semigroup,
and the rank of a finitely generated semigroup S is defined by rank(S) = min{ |A| : 〈A 〉 = S} . Moreover, if
S = 〈A 〉 and |A| = rank(S) , then A is called a minimal generating set of S . Similarly, the idempotent rank of
a semigroup S is defined by idrank(S) = min{ |A| : A ⊆ E(S) and 〈A 〉 = S} . A minimal generating set (which
is unique) and the rank of N(Cn) , which is the nilpotent subsemigroup of Cn , were determined in [6] and [14].
It is also clear that

η =

(
1 2 · · · n
1 1 · · · 1

)
and ε =

(
1 2 · · · n
n n · · · n

)
,

are the zero elements of OP−
n and OP+

n , respectively.
Some cardinalities of various kinds of transformation semigroups have been studied over a long period.

Howie computed in [3] that the cardinality of On is
(
2n−1
n−1

)
, and Laradji and Umar computed in [9] that the

cardinality of Cn is Cn , where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number. For 1 ≤ r ≤ n , the numbers of

elements in On and Cn with r fixed points are r
n

(
2n
n+r

)
and r

2n−r

(
2n−r

n

)
, respectively (see, [5, 9]). In [1], the

cardinalities of the sets On,Y = {α ∈ On : fix(α) = Y } and Cn,Y = {α ∈ Cn : fix(α) = Y } were computed for
any nonempty subset Y of Xn . In [2], the set of all orientation-preserving transformations OPn was considered
and it is proven in [2, Theorem 2.2] that OPn is a submonoid of Tn containing On . Moreover, the authors of
[2] proved that

OPn = {akα : 0 ≤ k ≤ n− 1 and α ∈ On}

where a =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
, the n -cycle (1 2 · · · n) , and that |OPn| = n

(
2n−1
n−1

)
− n(n − 1) in [2,

Theorem 2.6 and Corollary 2.7], respectively. The semigroup of all orientation-preserving and order-increasing
transformations OP+

n was considered in [10] and the authors found a minimal (idempotent) generating set of
OP+

n in [10, Theorem 3.6] and [11]. We have not seen any information about the cardinality of OP+
n . For

any α ∈ OP−
n , consider the transformation α̂ : Xn → Xn , defined by iα̂ = n − (n − i + 1)α + 1 for each

i = 1, 2, . . . , n . As defined and shown in [12, Lemma 1.1], the function θ : OP−
n → OP+

n , defined by αθ = α̂
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for all α ∈ OP−
n , is an isomorphism. Hence, we consider only the subsemigroup OP−

n , for n ≥ 2 . Let

Er(On) = {α ∈ E(On) : |im(α)| = |fix(α)| = r},

E∗
r (On) = {α ∈ Er(On) : 1, n ∈ fix(α)},

Er(OPn) = {α ∈ E(OPn) : |fix(α)| = r} and

E∗
r (OPn) = {α ∈ Er(OPn) : n ∈ fix(α)}.

Let fn denote the nth Fibonacci number. For 1 ≤ r ≤ n , the cardinality of Er(On) is found in [9, Corollary
4.4]. Despite this fact, we first determine that |E∗

r (On)| =
(
n+r−3
2r−3

)
(for 2 ≤ r ≤ n− 1), and then we determine

that |Er(On)| =
(
n+r−1
2r−1

)
, and conclude that |E(On)| = f2n . By using a similar method, we first find that

|E∗
r (OPn)| =

(
n+ r − 1

2r − 1

)
and |Er(OPn)| =

n

r

(
n+ r − 1

2r − 1

)
for 2 ≤ r ≤ n , then we conclude that |E(OPn)| = f2n+1 + f2n−1 − n2 + n− 2 as in [2, Theorem 2.10]. In the
last section, we show that

|OP−
n | = −n+ 2 +

n∑
k=2

Ck and |E(OP−
n )| = −n+ 2n

for all n ≥ 1 . It is shown in [9, Proposition 2.3] that |N(Cn)| = |Cn−1| = Cn−1 , by using this result, we show
that

|N(OP−
n )| = |OP−

n−1| = −n+ 3 +

n−1∑
k=2

Ck

for all n ≥ 2 . In [1, 5, 9], the numbers of transformations in On and Cn with r fixed points were computed as
r
n

(
2n
n+r

)
and r

2n−r

(
2n−r

n

)
, respectively. By using a similar method as in [1, 13], the number of transformations

in OP−
n with r fixed points is computed as

n−r∑
k=0

r
2k+r

(
2k+r

k

)
for 2 ≤ r ≤ n− 1 .

2. Cardinalities related to OPn

We list some standard combinatorial results related to our studies. For natural numbers k and n , we have the
following:

Result 1 [8, Lemma 1.3].
n∑

i=0

(
k+i
k

)
=
(
n+k+1
k+1

)
.

Result 2 [9, Corollary 4.5].
n∑

r=0

(
n+r
2r

)
= f2n+1 .

Result 3 [9, Corollary 4.6].
n∑

r=1

(
n+r−1
2r−1

)
= f2n .

Since E1(On) consists of all the constant transformations in On , and En(On) consists of only the
identity, first we have |E1(On)| = n and |En(On)| = 1 .
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Proposition 1 For n ≥ 3 , we have |E∗
2 (On)| = n− 1 and |E2(On)| =

(
n+1
3

)
.

Proof For any i, j ∈ Xn with i < j , we first notice that there exist j − i many idempotents in E(On) such
that their image sets are the same and equal to {i, j} . Therefore, |E∗

2 (On)| = n − 1 , and moreover, it follows
from Result 1 that

|E2(On)| =

∣∣∣∣∣∣
⋃

1≤i<j≤n

{α ∈ E(On) : im(α) = {i, j} }

∣∣∣∣∣∣ =
∑

1≤i<j≤n

(j − i)

=

n−1∑
i=1

n∑
j=i+1

(
j − i

1

)
=

n−1∑
i=1

n−i−1∑
j=0

(
1 + j

1

)
=

n−1∑
i=1

(
n− i+ 1

2

)

=

n−2∑
i=0

(
2 + i

2

)
=

(
n+ 1

3

)
,

as required.

Now recall that
n∑

k=1

kak =
n∑

j=1

n∑
k=j

ak , which will be used in the proof of the following proposition.

Proposition 2 For 2 ≤ r ≤ n− 1 , we have |E∗
r (On)| =

(
n+r−3
2r−3

)
.

Proof We prove the claim by induction on r . For r = 2 , the result follows from Proposition 1. Suppose
that 2 ≤ r ≤ n − 2 and α ∈ E∗

r+1(On) . Then there exist 1 < i1 < · · · < ir−1 < n such that fix(α) =

{1, i1, . . . , ir−1, n} . If we define the following maps

α1 =

(
1 2 · · · i1 − 1 i1
1 2α · · · (i1 − 1)α i1

)
and (1)

α2 =

(
1 2 · · · n− i1 n− (i1 − 1)
1 (i1 + 1)α− (i1 − 1) · · · (n− 1)α− (i1 − 1) n− (i1 − 1)

)
, (2)

then it is easy to see that α1 and α2 are two idempotents with the sets of fix points {1, i1} and {1, i2 − i1 +

1, . . . , ir−1 − i1 + 1, n− i1 + 1} , respectively. Next let i = i1 and consider the function

f : E∗
r+1(On) →

n−r+1⋃
i=2

(
E∗

2 (Oi)× E∗
r (On−i+1)

)
which maps each α ∈ E∗

r+1(On) to the ordered pair (α1, α2) . For any α, β ∈ E∗
r+1(On) , if αf = βf , then both

α1 = β1 and α2 = β2 , and so it follows from the definitions given in Equations 1 and 2 that α = β . Moreover,

for (γ1, γ2) ∈
n−r+1⋃
i=2

(
E∗

2 (Oi)× E∗
r (On−i+1)

)
, if we consider the following map

γ =

(
1 2 · · · i− 1 i 2 + (i− 1) · · · n− i+ (i− 1) n
1 2γ1 · · · (i− 1)γ1 i 2γ2 + (i− 1) · · · (n− i)γ2 + (i− 1) n

)
,
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then it is easy to see that γ ∈ E∗
r+1(On) and γf = (γ1, γ2) , and so f is a bijection. Thus, from Proposition 1

and the induction hypothesis, we have

|E∗
r+1(On)| =

n−r+1∑
i=2

(i− 1)

(
n− i+ 1 + r − 3

2r − 3

)
=

n−r∑
i=1

i

(
n− i+ r − 3

2r − 3

)

=

n−r∑
j=1

n−r∑
i=j

(
n− i+ r − 3

2r − 3

)
=

n−r∑
j=1

n−j−r∑
i=0

(
2r − 3 + i

2r − 3

)

=

n−r∑
j=1

(
n+ r − 2− j

2r − 2

)
=

n−r−1∑
j=0

(
2r − 2 + j

2r − 2

)

=

(
n+ r − 2

2r − 1

)
=

(
n+ (r + 1)− 3

2(r + 1)− 3

)
,

as required.

In the above proof, f : E∗
r+1(On) →

n−r+1⋃
i=2

(
E∗

2 (Oi) × E∗
r (On−i+1)

)
is defined similar to the function

defined in the proof of Lemma 7 in [1].

Theorem 1 For 1 ≤ r ≤ n , we have |Er(On)| =
(
n+r−1
2r−1

)
.

Proof Since we know that |E1(On)| = n and |En(On)| = 1 , we consider the case 2 ≤ r ≤ n−1 . If α ∈ Er(On)

with fix(α) = {i1 < i2 < · · · < ir} , then α has the following tabular form:

α =

(
1 · · · i1 · · · ir · · · n
i1 · · · i1 · · · ir · · · ir

)
,

where 1 ≤ i1 ≤ n− r + 1 and i1 + r − 1 ≤ ir ≤ n . Let i = i1 and j = ir . Then, since

|Er(On)| =
n−r+1∑
i=1

n∑
j=i+r−1

|E∗
r (Oj−i+1)|,

it follows from Proposition 2 and Result 1 that

|Er(On)| =

n−r+1∑
i=1

n∑
j=i+r−1

(
j − i+ r − 2

2r − 3

)
=

n−r+1∑
i=1

n−i−r+1∑
j=0

(
2r − 3 + j

2r − 3

)

=

n−r+1∑
i=1

(
n− i+ r − 1

2r − 2

)
=

n−r∑
i=0

(
2r − 2 + i

2r − 2

)
=

(
n+ r − 1

2r − 1

)
,

as required.
Now we are able to give the result obtained in [3, Theorem 2.3] as an immediate result of Theorem 1 and

Result 3:

Corollary 1 For n ≥ 2 , we have |E(On)| =
n∑

r=1

(
n+r−1
2r−1

)
= f2n .
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Now, we examine the cardinalities of E∗
r (OPn) and Er(OPn) . Similarly, it is clear that |E∗

1 (OPn)| = 1 ,
|E1(OPn)| = n and |E∗

n(OPn)| = |En(OPn)| = 1 . For a nonconstant α ∈ OPn , it is stated and proved in [2,
Proposition 2.3] that α is order-preserving if and only if 1α < nα .

Proposition 3 For 2 ≤ r ≤ n , we have |E∗
r (OPn)| =

(
n+r−1
2r−1

)
.

Proof For 2 ≤ r ≤ n− 1 , suppose that α ∈ E∗
r (OPn) with fix(α) = {i1 < · · · < ir−1 < n} . Then α has the

following tabular form:

α =

(
1 · · · i1 − 1 i1 · · · ir−1 · · · n− 1 n
1α · · · (i1 − 1)α i1 · · · ir−1 · · · (n− 1)α n

)
where 1 ≤ i1 ≤ n− r + 1 . Now let

α1 =

(
n 1 · · · i1 − 1 i1
n 1α · · · (i1 − 1)α i1

)
and

α2 =

(
i1 i1 + 1 · · · n− 1 n
i1 (i1 + 1)α · · · (n− 1)α n

)
.

Since i1α = i1 < n = nα , it follows from [2, Proposition 2.3] that α2 is an order-preserving idempotent
on the set {i1, i1 + 1, . . . , n} with the standard order. Moreover, if we consider the set {n, 1, 2, . . . , i1} with
the order n < 1 < 2 < · · · < i1 , then it is clear that α1 is an order-preserving idempotent on the chain
{n < 1 < 2 < · · · < i1} with fix(α1) = {n, i1} . Next, let i = i1 and E(Oi+1) be the set of all order-preserving
idempotents on the chain {n < 1 < 2 < · · · < i} , and let E∗(Oi+1) = {α ∈ E(Oi+1) : fix(α) = {n, i} } . Then
consider the function

g : E∗
r (OPn) →

n−r+1⋃
i=1

(
E∗(Oi+1)× E∗

r (On−i+1)
)

defined by g : α 7→ (α1, α2) for every α ∈ E∗
r (OPn) . Similarly, g is also a bijection. Therefore, since

1 ≤ i ≤ n− r + 1 , it follows from Propositions 1 and 2 that

|E∗
r (OPn)| =

n−r+1∑
i=1

i

(
n− r − i+ 1 + 2r − 3

2r − 3

)

=

n−r+1∑
j=1

n−r+1∑
i=j

(
n− r − i+ 1 + 2r − 3

2r − 3

)

=

n−r+1∑
j=1

n−r−j+1∑
i=0

(
i+ 2r − 3

2r − 3

)

=

n−r+1∑
j=1

(
n− r − j + 1 + 2r − 2

2r − 2

)
=

n−r∑
j=0

(
j + 2r − 2

2r − 2

)

=

(
n− r + 2r − 1

2r − 1

)
=

(
n+ r − 1

2r − 1

)
,

as required.
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Theorem 2 For 2 ≤ r ≤ n , we have

|Er(OPn)| =
(
n+ r

2r

)
+

(
n+ r − 1

2r

)
=

n

r

(
n+ r − 1

2r − 1

)
.

Proof Since |En(OPn)| = 1 , we consider the case 2 ≤ r ≤ n− 1 . If α ∈ Er(OPn) with fix(α) = {i1 < i2 <

· · · < ir} , then α has the following tabular form:

α =

(
1 · · · i1 · · · ir · · · n
1α · · · i1 · · · ir · · · nα

)
,

where 1 ≤ i1 ≤ n− r + 1 and i1 + r − 1 ≤ ir ≤ n . If we consider the following maps:

α1 =

(
ir · · · n 1 · · · i1
ir · · · nα 1α · · · i1

)
and α2 =

(
i1 · · · i2 · · · ir
i1 · · · i2 · · · ir

)
,

then it is clear that α2 is an order-preserving idempotent on the set {i1, i1 + 1, . . . , ir} with the standard
order. If we consider the set {ir, . . . , n, 1, . . . , i1} with the order ir < · · · < n < 1 < · · · < i1 , then α1 is an
order-preserving idempotent on the chain {ir < · · · < n < 1 < · · · < i1} with fix(α1) = {ir, i1} . We denote i1

and ir by i and j , respectively. Since there exist (n− j + i) many order-preserving idempotent on the chain
{j < · · · < n < 1 < · · · < i} with fix(α1) = {j, i} , similarly, it follows from Proposition 2 that

|Er(OPn)| =
n−r+1∑
i=1

n∑
j=i+r−1

(n− j + i)

(
j − i+ 1 + r − 3

2r − 3

)
.
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By replacing j − i by j , we have

|Er(OPn)| =

n−r+1∑
i=1

n−i∑
j=r−1

(n− j)

(
j + 1 + r − 3

2r − 3

)

=

n−r+1∑
i=1

n

n−i∑
j=r−1

(
j + 1 + r − 3

2r − 3

)
−

n−i∑
j=r−1

j

(
j + 1 + r − 3

2r − 3

)
=

n−r+1∑
i=1

n

n−i−r+1∑
j=0

(
j + 2r − 3

2r − 3

)
−

n−i−r+1∑
j=0

(j + r − 1)

(
j + 2r − 3

2r − 3

)
=

n−r+1∑
i=1

(n− r + 1)

n−i−r+1∑
j=0

(
j + 2r − 3

2r − 3

)
−

n−i−r+1∑
j=1

j

(
j + 2r − 3

2r − 3

)
=

n−r+1∑
i=1

(
(n− r + 1)

(
n− i− r + 1 + 2r − 2

2r − 2

)

−(n− i− r + 1)

(
n− i− r + 1 + 2r − 2

2r − 2

)
+

(
n− i− r + 1 + 2r − 2

2r − 1

))

=

n−r+1∑
i=1

(
i

(
n− i− r + 1 + 2r − 2

2r − 2

)
+

(
n− i− r + 1 + 2r − 2

2r − 1

))

=

n−r∑
i=0

(n− r + 1− i)

(
i+ 2r − 2

2r − 2

)
+

n−r−1∑
i=0

(
i+ 2r − 1

2r − 1

)

=

(
n+ r − 1

2r − 1

)
+

(
n+ r − 1

2r

)
+

(
n+ r − 1

2r

)
=

(
n+ r

2r

)
+

(
n+ r − 1

2r

)
=

n

r

(
n+ r − 1

2r − 1

)
,

as required.

It is shown in [2, Theorem 2.10] that |E(OPn)|= f2n+1 + f2n−1 − n2 + n − 2 . We also state and prove
this result as a consequence of Theorem 2.

Corollary 2 For n ≥ 1 , |E(OPn)|=
n∑

r=1
|Er(OPn)| = f2n+1 + f2n−1 − n2 + n− 2.

Proof First recall that |E1(OPn)| = n . Since |Er(OPn)| =
(
n+r
2r

)
+
(
n+r−1

2r

)
for every 2 ≤ r ≤ n , it follows
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from Result 2 that

|E(OPn)| =

n∑
r=1

|Er(OPn)| = n+

n−1∑
r=2

|Er(OPn)|+ 1

= n+

n−1∑
r=2

(
n+ r

2r

)
+

n−1∑
r=2

(
n+ r − 1

2r

)
+ 1

= n+

(
n∑

r=0

(
n+ r

2r

)
−
(
n

0

)
−
(
n+ 1

2

)
−
(
2n

2n

))

+

(
n−1∑
r=0

(
n− 1 + r

2r

)
−
(
n− 1

0

)
−
(
n

2

))
+ 1

= n+ f2n+1 − 1− (n+ 1)n

2
− 1 + f2(n−1)+1 − 1− n(n− 1)

2
+ 1

= f2n+1 + f2n−1 + n− n

2
((n+ 1) + (n− 1))− 2

= f2n+1 + f2n−1 − n2 + n− 2,

as required

3. Cardinalities related to OP−
n

In [2, Corollary 2.7], it is shown that |OPn| = n
(
2n−1
n−1

)
− n2 + n . In [10], it is shown that OP−

n , the set
of all orientation-preserving and order-decreasing transformations on the chain Xn , is a submonoid of OPn

containing the Catalan monoid Cn . Next, we find the cardinalities of OP−
n and E(OP−

n ) in the following
theorem. Recall that |Cn| = Cn , where Cn = 1

n+1

(
2n
n

)
is the nth Catalan number, and that |E(Cn)| = 2n−1

(see, for examples [5, Theorems 3.1 and 3.19] and [7, Corollaries 3.9 and 3.11]).

Theorem 3 For each n ≥ 1 , we have

(i) |OP−
n | = −n+ 2 +

n∑
k=2

Ck , and

(ii) |E(OP−
n )| = −n+ 2n .

Proof (i) Since 1α = 1 for all α ∈ OP−
n , it is clear that |OP−

1 | = 1 and |OP−
2 | = 2 . Suppose that n ≥ 3 .

Then we show that for any α ∈ OP−
n \ Cn , there exists 2 ≤ k ≤ n− 1 such that (k+ 1)α = · · · = nα = 1 , that

is α has the following tabular form:

α =

(
1 · · · k − 1 k k + 1 · · · n
1 · · · (k − 1)α kα 1 · · · 1

)
.

Since α is not constant, then it is different from the zero element of Cn , and since α is not order-preserving,
it follows from in [2, Proposition 2.3] that nα ≤ 1α = 1 , and so nα = 1 . Thus, there exists 2 ≤ k ≤ n − 1

such that 1 = (k + 1)α < kα 6= 1 , as required. Moreover, it is clear that α|Xk
: Xk → Xk is a nonconstant,
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order-preserving and order-decreasing transformation on the chain Xk = {1 < 2 < · · · < k} . Therefore, we
have

|OP−
n | = |Cn|+ |OP−

n \ Cn| = Cn +

n−1∑
k=2

(Ck − 1) = −n+ 2 +

n∑
k=2

Ck.

(ii) Similarly, we have

|E(OP−
n )| = |E(Cn)|+ |E(OP−

n \ Cn)| = 2n−1 +

n−1∑
k=2

(
2k−1 − 1

)
= −n+ 2 +

n∑
k=2

2k−1 = −n+ 2n,

as required.
Recall that the transformation η , which is defined by xη = 1 for all x ∈ Xn , is the zero element of

OP−
n . Also recall that an element α of OP−

n is nilpotent if αk = η for some k ≥ 1 . Let N(OP−
n ) denotes the

set of all nilpotent elements in OP−
n . Since OP−

n is a subsemigroup of Dn , from [12, Lemma 1.6], we have the
following immediate lemma.

Lemma 1 For α ∈ OP−
n , α is nilpotent if and only if fix(α) = {1} .

In other words, we have N(OP−
n ) = {α ∈ OP−

n : fix(α) = {1}} . In [12, Lemma 1.6], it is also shown
that N(Dn) is an ideal of Dn . Consequently, we have the following:

Lemma 2 N(OP−
n ) is an ideal of OP−

n .

From [9, Proposition 2.3] and [12, Lemma 4.2], it is known that |N(Cn)| = |Cn−1| = Cn−1 and
|N(Dn)| = (n− 1)! , respectively. Now we have the following lemma.

Lemma 3 For each n ≥ 2 , we have

|N(OP−
n )| = |OP−

n−1| = −n+ 3 +

n−1∑
k=2

Ck.

Proof For α ∈ N(OP−
n ) \ N(Cn) , we know that there exists 2 ≤ k ≤ n − 1 such that kα 6= 1 and

(k + 1)α = · · · = nα = 1 . Similarly, by defining α|Xk
: Xk → Xk as in the proof Theorem 3 (i), we

have

|N(OP−
n )| = |N(Cn)|+ |N(OP−

n \ Cn)|

= Cn−1 +

n−1∑
k=2

(Ck−1 − 1) = −n+ 3 +

n−1∑
k=2

Ck = |OP−
n−1|,

as required.
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For any 2 ≤ r ≤ n− 1 , let Y = {m1,m2, . . . ,mr} with 1 = m1 < m2 < · · · < mr ≤ n and let

Cn,Y = {α ∈ Cn : fix(α) = Y }, Cn,r = {α ∈ Cn : |fix(α)| = r},

OP−
n,Y = {α ∈ OP−

n : fix(α) = Y } and OP−
n,r = {α ∈ OP−

n : |fix(α)| = r}.

It is shown in [1, Theorem 10] that |Cn,Y | =
r∏

j=1

Csj−1 where sj = mj+1−mj (1 ≤ j ≤ r−1) and sr = n−mr+1 .

It is also shown in [1, Theorem 11] that

|Cn,r| =
r

2n− r

(
2n− r

n

)
.

Next, we examine the cardinalities of OP−
n,Y and OP−

n,r . From Lemma 1, we have OP−
n,{1} = N(OP−

n ) , and

so from Lemma 3, |OP−
n,{1}| = |OP−

n−1| . Now we suppose that 2 ≤ |Y | ≤ n− 1 .

Lemma 4 Let Y = {1,m2, . . . ,mr} be a proper subset of Xn with 1 = m1 < m2 < · · · < mr . Then

|OP−
n,Y | =

n∑
k=mr

|Ck,Y | =
n∑

k=mr

 r∏
j=1

Csj−1


where sj = mj+1 −mj (1 ≤ j ≤ r − 1) and sr = k −mr + 1 (mr ≤ k ≤ n) .

Proof Suppose that α ∈ OP−
n \ Cn . As stated in the proof of Theorem 3 (i), there exists 2 ≤ k ≤ n − 1

such that kα 6= 1 and (k + 1)α = · · · = nα = 1 , and so Y ⊆ {1, 2, . . . , k} = Xk . Similarly, by defining
α|Xk

: Xk → Xk as in the proof of Theorem 3 (i), it follows from [1, Theorem 10] that

|OP−
n,Y | = |Cn,Y |+

n−1∑
k=mr

|Ck,Y | =
n∑

k=mr

|Ck,Y | =
n∑

k=mr

 r∏
j=1

Csj−1


where sj = mj+1 −mj (1 ≤ j ≤ r − 1) and sr = k −mr + 1 (mr ≤ k ≤ n) .

It follows from [1, Theorem 11] that |Ck,r| = r
2k−r

(
2k−r

k

)
for 2 ≤ r ≤ k .

Theorem 4 For 2 ≤ r ≤ n− 1 , we have

|OP−
n,r| =

n−r∑
k=0

r

2k + r

(
2k + r

k

)
.

Proof Similarly, from [1, Theorem 11], for each 2 ≤ r ≤ n− 1 , we have

|OP−
n,r| = |Cn,r|+

n−1∑
k=r

|Ck,r| =
n∑

k=r

|Ck,r|

=

n∑
k=r

r

2k − r

(
2k − r

k

)
=

n−r∑
k=0

r

2k + r

(
2k + r

k

)
,

as required.
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