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Abstract: In this paper, we deal with a singular super-critical Trudinger-Moser inequality on a unit ball of Rn , n ≥ 3 .
For any p > 1 , we set

λp(B) = inf
u∈W

1,n
0 (B),u ̸≡0

∫
B |∇u|ndx

(
∫
B |u|pdx)n/p

as an eigenvalue related to the n -Laplacian. Let S be a set of radially symmetric functions. Precisely, if β ≥ 0 and
α < (1 + p

n
β)n−1+n/pλp(B) , then there exists a positive constant ϵ0 such that when λ ≤ 1 + ϵ0 ,

sup

u∈W
1,n
0 (B)∩S ,

∫
B |∇u|ndx−α(

∫
B |u|p|x|pβdx)

n
p ≤1

∫
B
|x|pβ

(
eαn(1+ p

n
β)|u|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
n
β)u

n
n−1 |k

k!

)
dx

is attained, where αn = nω
1/(n−1)
n−1 , ωn−1 is the surface area of the unit ball in Rn . The proof is based on the method of

blow-up analysis. The case λ = 0 was studied by Yang-Zhu in [38]. de Figueiredo [11] considered the case p = 2 , β ≥ 0 ,
and α = 0 in two dimension. The case λ = 0, p = n,−1 < β < 0 , and α = 0 was considered by Adimurthi-Sandeep [1].
Our results extend those of the above cases.

Key words: Trudinger-Moser inequality, extremal functions, blow-up analysis

1. Introduction

Let Ω be a bounded smooth domain in Rn , n ≥ 3 , and W 1,n
0 (Ω) be the completion of C∞

0 (Ω) in the norm
∥u∥n

W 1,n
0 (Ω)

=
∫
Ω
|∇u|ndx . The study of sharp constant for Trudinger-Moser inequality traces back to the 1960s

and 1970s. In 1971, Moser [26] elegantly sharpened the results of Phohozaev [30] and Trudinger [33], then
established the classical Trudinger-Moser inequality:

sup
u∈W 1,n

0 (Ω),∥∇u∥n=1

∫
Ω

eα|u|
n

n−1
dx <∞ (1.1)

for any α ≤ αn = nω
1/(n−1)
n−1 , where ωn−1 is the surface area of the unit ball in Rn . Here and in the sequel, ∥·∥p

denotes the Lp -norm with respect to the Lebesgue measure. Also, there are fruitful results in the literature
dealing with the existence of extremal functions, such as Carleson-Chang [5], Flucher [15], and Lin [24].
∗Correspondence: zhaojuan0509@ruc.edu.cn
2010 AMS Mathematics Subject Classification: 35J15, 46E35
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The extensions of (1.1) are numerous. Yang [35] proved singular versions of (1.1) for some subspaces
of W 1,n(Rn) under the additional condition: ∇uk(x) → ∇u(x) . By using a symmetrization argument and a
change of variables, Adimurthi and Sandeep [1] generalized (1.1) to the singular case:

sup
u∈W 1,n

0 (Ω),∥u∥
W

1,n
0 (Ω)

≤1

∫
Ω

eαnγ|u|
n

n−1

|x|nβ
dx <∞, (1.2)

where 0 ≤ β < 1 and 0 < γ ≤ 1 − β . The inequality (1.2) was extended to the whole Euclidean space by
Adimurthi-Yang [2]. Various extensions of the inequality (1.2) were obtained in [7, 28, 39, 40]. The problem on
the existence of extremals for the singular Trudinger–Moser inequality was solved by Csató and Roy [7, 8], and
by Csató, Roy and the author [6] in any dimension n ≥ 3 .

Trudinger-Moser inequalities were discussed in the unit ball as well. Let S be a set of all radially
symmetric functions. In 1982, Ni [29] showed that Sobolev spaces of radially symmetric functions defined in
the unit ball B ⊂ Rn , can be embedded into weighted Lebesgue spaces, i.e. W 1,n

0 (B) ∩S can be embedded in

Lp(B, |x|α) with α > 0 and p = 2(n+α)
n−2 greater than 2∗ = 2n

n−2 . Based on the works of Bonheure et al. [3] and
Calanchi [4], de Figueiredo [10, 11] proved that for any α ≤ 4π(1 + γ) ,

sup
u∈W 1,2

0 (B)∩S ,∥u∥
W

1,2
0 (B)

≤1

∫
B
eαu

2

|x|2γdx <∞. (1.3)

In [38], Yang-Zhu generalized (1.3) to a version involving λp(B) in the unit ball: for any given p > 1 , if β ≥ 0

and α < (1 + p
nβ)

n−1+n
p λp(B) ,

sup
u∈W 1,n

0 (B)∩S ,
∫
B |∇u|ndx−α(

∫
B |u|p|x|pβdx)

n
p ≤1

∫
B
eγ|u|

n
n−1 |x|pβdx <∞, γ ≤ αn(1 +

pβ

n
), (1.4)

where λp(B) = inf
u∈W 1,n

0 (B),u ̸≡0

∫
B |∇u|

ndx/(
∫
B |u|

pdx)
n
p is an eigenvalue related to the n -Laplacian. Furthermore,

the supremum in (1.4) can be attained. Nguyen [27] extended (1.4) to more general cases of the nonlinearity
function F and the weight function h . In [9], de Figueiredo et al. gave a generalized result which states that

sup
u∈H1,n

0 (B1(0)),∥∇u∥Ln(B1(0))=1

∫
B1(0)

(eαn|u|
n

n−1 − λ|u|
n

n−1 )dx

is attained for any λ < αn . In [22], Li proved a counter-example to the conjecture of de Figueiredo and Ruf in
[9]:

f(λ) = I(M,λ,m) = sup
u∈H1,n

0 (M),
∫
M

|∇u|ndV=1

∫
Ω

(
eαn|u|

n
n−1 − λ

m∑
k=1

|αnu
n

n−1 |k

k!

)
dV (1.5)

is continuous for a fixed integer m , where M is a compact manifold with boundary. Then he proved there is a
constant λ0 > 1 such that I(M,λ,m) can be attained on [0, λ0] .
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In this paper, we consider a singular super-critical Trudinger-Moser inequality in the unit ball, which is
a combination of (1.4) and (1.5). To state the main result of the paper, we introduce some relevant notations:

Hα,β(u) = ∥∇u∥nn − α∥u∥np,β =

∫
B
|∇u|ndx− α

(∫
B
|u|p|x|pβdx

)n
p

,

where ∥u∥p,β = (
∫
B |u|

p|x|pβdx)
1
p . We use the symbol Bx(r) to represent a ball with x as the center and r as

the radius. If x = 0 , the symbol B(r) to represent a ball with 0 as the center and r as the radius. Then we
state the following:

Theorem 1.1 Let B be the unit ball in Rn , n ≥ 3 , for any β ≥ 0 and α < (1 + p
nβ)

n−1+n
p λp(B) , there exists

a positive constant ϵ0 such that if λ ≤ 1 + ϵ0 , then

sup
u∈H

∫
B
|x|pβ

(
eαn(1+

p
nβ)|u|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ)u

n
n−1 |k

k!

)
dx

can be attained, where H = {u ∈W 1,n
0 (B) ∩ S : Hα,β(u) ≤ 1} .

The case λ = 0 was studied by Yang-Zhu in [38]. de Figueiredo [11] considered the case p = 2 , β ≥ 0 , and
α = 0 in two dimension. The case λ = 0, p = n,−1 < β < 0 , and α = 0 was considered by Adimurthi-Sandeep
[1].

The remaining part of this paper is organized as follows: In section 2, we obtain the maximizer of
the subcritical function. Section 3 provides the method of blow-up analysis, which was extensively used by
[12, 13, 18–20, 36]. An upper bound of Λλ,αn is derived in section 4. In section 5, we construct a sequence of
functions which contradicts the upper bound.

2. The subcritical case
This section is devoted to the subcritical case of the singular Trudinger-Moser inequality. For the sake of
simplicity, we define

Λλ,αn(u) = sup
u∈H

∫
B
|x|pβ

(
eαn(1+

p
nβ)|u|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ)u

n
n−1 |k

k!

)
dx,

and

Λλ,n,ϵ(u) = sup
u∈H

∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|u|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1 |k

k!

)
dx.

Then we have the following result:

Lemma 2.1 For any ϵ > 0 , if α < (1 + p
nβ)

n−1+n
p λp(B) , then there exists uϵ ∈ C1(B) ∩W 1,n

0 (B) with

∫
B
|∇uϵ|ndx− α

(∫
B
|uϵ|p|x|pβdx

)n
p

= 1
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such that ∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!

)
dx = Λλ,n,ϵ(u). (2.1)

Proof We take a sequence of decreasing radially symmetric functions uj ∈ W 1,n
0 (B) such that ∥∇uj∥nn −

α∥uj∥np,β = 1 and

lim
j→+∞

∫
B
|x|pβ

eαn(1+
p
nβ−ϵ)|uj |

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1

j |k

k!

 dx = Λλ,n,ϵ(u). (2.2)

From the definition of λp(B) , we can get

1 ≥ ∥∇uj∥nn − α∥uj∥np,β ≥

(
1− α

(1 + p
nβ)

n−1+n
p
λp(B)

)
∥∇uj∥nn.

Since α < (1 + p
nβ)

n−1+n
p λp(B) , we obtain that uj is bounded in W 1,n

0 (B) , then we assume that

uj ⇀ uϵ weakly in W1, n
0 (B),

uj → uϵ strongly in Ln(B),

uj → uϵ a.e. in B.

We claim that uϵ ̸≡ 0 . Suppose not, there holds ∥uj∥W 1,n
0 (B) ≤ 1+ o(1) . Thus eαn(1+

p
nβ−ϵ)|uj |

n
n−1 converges to

1 in L1(B) , which implies that Λλ,n,ϵ(u) =
∫
B |x|

pβdx . But this is impossible. Therefore uϵ ̸≡ 0 . Then define
a function sequence

vj =
uj

(1 + α(
∫
B |x|pβu

p
jdx)

n
p )1/n

.

It follows that ∥vj∥W 1,n
0 (B) ≤ 1 and vj converges to vϵ = uϵ/(1 + α(

∫
B |x|

pβupϵdx)
n
p )1/n weakly in W 1,n

0 (B) .

One can easily check that(
1 + α(

∫
B
|x|pβupϵdx)

n
p

)(
1− ∥vϵ∥nW 1,n

0 (B)

)
= 1− (∥∇uϵ∥nn − α∥uϵ∥np,β) < 1.

By a result of Lions [25], we can know eαn(1+
p
nβ−ϵ)|uj |

n
n−1 is bounded in Lr(B) for some r > 1 . Thus

lim
j→+∞

∫
B
eαn(1+

p
nβ−ϵ)|uj |

n
n−1

dx =

∫
B
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1

dx.

Furthermore,

∫
B
λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1

j |k

k!
dx−

∫
B
λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!
dx = oj(1).
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Accordingly,

lim
j→+∞

∫
B
|x|pβ

eαn(1+
p
nβ−ϵ)|uj |

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1

j |k

k!

 dx

=

∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!

)
dx.

(2.3)

Combining (2.2) and (2.3), we have

∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!

)
dx = Λλ,n,ϵ(u).

2

Furthermore, one can check that the corresponding Euler-Lagrange equation of uϵ is

−∆nuϵ = α|x|pβ∥uϵ∥n−p
p up−1

ϵ + 1
λϵ
|x|pβu

1
n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ − λ

λϵ
|x|pβh′m(uϵ)

hm(uϵ) =
∑m

k=0
|αn(1+

p
nβ−ϵ)u

n
n−1
ϵ |k

k!

λϵ =
∫
B |x|

pβ(u
n

n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ − λuϵh

′
m(uϵ))dx.

(2.4)

According to the regularity theory for degenerate elliptic equations, see (Serrin [31], page 269, Theorem 8),
(Tolksdorf [32], page 127, Theorem 1), and (Lieberman [23], page 1203, Theorem 1), we are able to attain
uϵ ∈ C1(B) . By the inequality et ≤ 1+ tet and the definition of λϵ , we can easily get lim inf

ϵ→0
λϵ > 0 . From the

equality (2.1), it is not difficult to see that

lim
ϵ→0

∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!

)
dx = Λλ,αn

(u). (2.5)

Since
∫
B |∇uϵ|

ndx−α(
∫
B |uϵ|

p|x|pβdx)
n
p = 1 , without loss of generality, we can assume that uϵ converges to u0

weakly in W 1,n
0 (B) , strongly in Ls(B) for any s > 1 , and almost everywhere in B . Let cϵ = uϵ(0) = maxB uϵ .

If cϵ is bounded, then applying the Lebesgue-dominated convergence theorem to (2.5), we know that u0 is the
desired extremal function for the supremum Λλ,αn

(u) . In the following, we assume

cϵ → +∞ as ϵ→ 0.

The following concentration phenomenon is useful in our subsequent blow-up analysis:

Lemma 2.2 Under the assumption that cϵ → +∞ , we have u0 ≡ 0 and |∇uϵ|ndx ⇀ δ0 in sense of measure,
where δ0 is the Dirac measure at 0.

Proof Suppose u0 ̸≡ 0 , we can easily get −∆nuϵ is bounded in Lq(Ω) for some q > 1 provided that ϵ is
sufficiently small. Applying the elliptic estimates to the Euler-Lagrange equation (2.4), one gets cϵ is bounded,
which contradicts cϵ → +∞ . Therefore, u0 ≡ 0 .
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Assume |∇uϵ|ndx ⇀ µ in sense of measure. We can choose a cut-off function φ ∈ C1
0 (B) , which is

supported in B(r0) ⊂ B and equals to 1 in B(r0/2) for some small r0 > 0 . So∫
B(r0)

|∇(φuϵ)|ndx ≤ 1− η

for some η > 0 provided that ϵ is sufficiently small. By the classical Trudinger-Moser inequality (1.1), we can

know eαϵ(φuϵ)
n

n−1 is bounded in Ls(Ω) for some s > 1 . Then applying the elliptic estimates ([16], Chapter 9)
to equation (2.4), we obtain ∥uϵ∥W 1,n(B) ≤ C , this together with the compact embedding theorem lead that uϵ
is bounded in L∞(B(r0/2)) , which contradicts the assumption that cϵ → +∞. Therefore, |∇uϵ|ndx ⇀ δ0 . 2

3. Blow-up analysis
In this section, we will use the method of blow-up analysis to investigate the asymptotic behaviour of uϵ near
the blow-up point x0 = 0 . We set

rϵ = λ
1
n
ϵ c

− 1
n−1

ϵ e−
αn(1+

p
n

β−ϵ)

n c
n

n−1
ϵ .

By Lemma 2.2 and the classical Trudinger-Moser inequality (1.1), one can easily check that lim
ϵ→0

rnϵ e
δc

n
n−1
ϵ = 0

for any 0 < δ < αn(1 +
p
nβ) . Define two sequences of functions

ψϵ(x) =
1

cϵ
uϵ(r

n
n+pβ
ϵ x), φϵ(x) = c

1
n−1
ϵ (uϵ(r

n
n+pβ
ϵ x)− cϵ),

where ψϵ and φϵ are defined on B(r−1
ϵ ) . By equation (2.4), we have

−∆nψϵ(x) = c−n
ϵ ψ

1
n−1
ϵ eαn(1+

pβ
n −ϵ)(u

n
n−1
ϵ (r

n
n+pβ
ϵ x)−c

n
n−1
ϵ ) |x|pβ

+ αcp−n
ϵ rnϵ ∥uϵ∥n−p

p ψp−1
ϵ |x|pβ

− λc1−n
ϵ rnϵ c

− n
n−1

ϵ e−αn(1+
pβ
n −ϵ)c

n
n−1
ϵ |x|pβ ,

(3.1)

and

−∆nφϵ(x) = ψ
1

n−1
ϵ eαn(1+

pβ
n −ϵ)(u

n
n−1
ϵ (r

n
n+pβ
ϵ x)−c

n
n−1
ϵ ) |x|pβ

+ αcpϵr
n
ϵ ∥uϵ∥n−p

p ψp−1
ϵ |x|pβ

− λcϵr
n
ϵ c

− n
n−1

ϵ e−αn(1+
pβ
n −ϵ)c

n
n−1
ϵ |x|pβ .

(3.2)

Since uϵ is bounded in Lp(B) , we have

(∫
B(r−1

ϵ )

(cp−n
ϵ rnϵ ∥uϵ∥n−p

p ψp−1
ϵ |x|pβ)

p
p−1 dx

) p−1
p

= c1−n
ϵ r

n
p
ϵ ∥uϵ∥n−1

p |x|pβ → 0.

Then we can get ∆nψϵ(x) is bounded in L
p

p−1 (B(r−1
ϵ )) . Applying the standard elliptic regularity theory [32]

to (3.1), we obtain ψϵ → ψ in C0
loc(Rn) . When 1 < p ≤ n , one can easily see that

αcpϵr
n
ϵ ∥uϵ∥n−p

p ψp−1
ϵ |x|pβ → 0
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uniformly in x ∈ B(r−1
ϵ ) as ϵ→ 0 . When p > n , we have that for any R > 0 and sufficiently small ϵ ,

∥uϵ∥n−p
p =

(∫
B
upϵdx

)n
p −1

≤

(∫
B(Rrϵ)

upϵdx

)n
p −1

= cn−p
ϵ r

n2

p −n
ϵ

(∫
B(R)

ψp
ϵ dx

)n
p −1

.

Then we have

∥uϵ∥n−p
p ≤ 2cn−p

ϵ r
n2

p −n
ϵ

(∫
B(R)

ψpdx

)n
p −1

.

In view of lim
ϵ→0

rnϵ e
δc

n
n−1
ϵ = 0 for any 0 < δ < αn(1 +

p
nβ) , we can obtain

αcpϵr
n
ϵ ∥uϵ∥n−p

p ψp−1
ϵ |x|pβ ≤ 2cnϵ r

n2

p
ϵ

(∫
B(R)

ψpdx

)n
p −1

→ 0.

It follows that ∆nψϵ is bounded in L∞(B(R)) . According to the regularity theory [32], we conclude that
ψϵ → ψ in C1(B(R/2)) . Therefore, ψϵ → ψ in C1

loc(Rn) . Hence ψ satisfies −∆nψ(x) = 0 in Rn . Obviously
we have 0 ≤ ψ(x) ≤ ψ(0) = 1 , so Liouville type theorem implies that ψ = 1 .

Applying the standard elliptic regularity theory [32] to (3.2), then by the similar argument, we have for
any p > 1 , φϵ → φ in C1

loc(Rn) . In this situation, we have

uϵ(r
n

n+pβ
ϵ x)

n
n−1 − c

n
n−1
ϵ = c

n
n−1
ϵ

(
(1 +

φϵ

c
n

n−1
ϵ

)
n

n−1 − 1

)

=
n

n− 1
φϵ + c

n
n−1
ϵ o

(
φϵ

c
n

n−1
ϵ

)

=
n

n− 1
φ+ o(1).

Hence φ(x) is the distributional solution of the equation

−∆nφ(x) = |x|pβe
n

n−1αn(1+
pβ
n )φ(x) in Rn.

We make the change of variable y = r
n

n+pβ
ϵ x with |x| ≤ R , then for any fixed R > 1 , there holds |y| ≤ 2Rr

n
n+pβ
ϵ .

We also have∫
B(R)

|x|pβe
n

n−1αn(1+
pβ
n )φdx = lim

ϵ→0

∫
B(R)

|x|pβ eαn(1+
pβ
n −ϵ)(u

n
n−1
ϵ (r

n
n+pβ
ϵ x)−c

n
n−1
ϵ )dx ≤ 1.

In viewing of [14], it is not hard to see that

φ(x) = − n− 1

αn(1 +
pβ
n )

ln

(
1 +

(
ωn−1

n+ pβ

) 1
n−1

|x|
n+pβ
n−1

)
.

In particular, ∫
B
e

n
n−1αn(1+

pβ
n )φ|x|pβdx = 1. (3.3)
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Define uϵ,δ = min{uϵ, δcϵ} for any real number 0 < δ < 1 . In the same way as [21, 34], we have the
following lemma:

Lemma 3.1 There holds

lim
ϵ→0

∫
B
|∇uϵ,δ|ndx = δ.

Proof We have by the equation (2.4) and the divergence theorem,∫
B
|∇uϵ,δ|ndx = −

∫
B
uϵ,δ(∆nuϵ)dx

=

∫
B
uϵ,δ

(
α|x|pβ∥uϵ∥n−p

p up−1
ϵ +

1

λϵ
|x|pβu

1
n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ − λ

λϵ
|x|pβh′m(uϵ)

)
dx

≥
∫
B(Rr

n
n+pβ
ϵ )

(δcϵ + oϵ(1))

(
1

λϵ
|x|pβu

1
n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ

)
dx+ o(1).

By making the change of variable x = r
n

n+pβ
ϵ y , we get∫

B
|∇uϵ,δ|ndx ≥ δ(1 + oϵ(1))

∫
B(R)

eαn(1+
pβ
n −ϵ)(uϵ(r

n
n+pβ
ϵ y)−c

n
n−1
ϵ ) |y|pβ dy,

which yields

lim inf
ϵ→0

∫
B
|∇uϵ,δ|ndx ≥ δ

∫
B(R)

e
n

n−1αn(1+
pβ
n )φ(y)|y|pβdy.

Letting R→ +∞ and by equation (3.3), we obtain

lim inf
ϵ→0

∫
B
|∇uϵ,δ|ndx ≥ δ.

By the same argument, we establish that∫
B
|∇(uϵ − uϵ,δ)|ndx ≥ 1− δ.

Since ∫
B
|∇uϵ,δ|ndx+

∫
B
|∇(uϵ − uϵ,δ)|ndx = 1,

we get the result. 2

The following lemma is used in proving the existence of extremal functions of the Trudinger-Moser
inequality. Due to it providing the asymptotic behavior of uϵ , we include it here.

Lemma 3.2 There holds

lim
ϵ→0

∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!

)
dx

≤
∫
B
|x|pβdx+ lim sup

ϵ→0

λϵ

c
n

n−1
ϵ

.

(3.4)
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The proof is similar to the proof of Lemma 4.8 in [34], so we omit here. It follows from Lemma 3.2 that

lim
ϵ→0

c
n

n−1
ϵ

λϵ
= 0. (3.5)

In order to investigate the convergence behaviour of uϵ away from the blow-up point, we need the
following lemma:

Lemma 3.3 For any φ ∈ C(B) , we have

lim
ϵ→0

∫
B

1

λϵ
cϵu

1
n−1
ϵ eαn(1+

pβ
n −ϵ)u

n
n−1
ϵ |x|pβφ(x)dx = φ(0).

Proof We divide B into three parts as follows:

B =
(
{uϵ > δcϵ} \ B(Rr

n
n+pβ
ϵ )

)
∪ {uϵ ≤ δcϵ} ∪ B(Rr

n
n+pβ
ϵ ),

where δ ∈ (0, 1) . Denote the integrals on the above three domains by I1 , I2 and I3 respectively. Letting

B(Rr
n

n+pβ
ϵ ) ⊂ {uϵ > δcϵ} , we have

|I1| ≤ sup
B
|φ| 1

λϵ

∫
{uϵ>δcϵ}

cϵu
1

n−1
ϵ eαn(1+

pβ
n −ϵ)u

n
n−1
ϵ |x|pβdx−

∫
B
Rr

n
n+pβ
ϵ

(xϵ)

cϵu
1

n−1
ϵ eαn(1+

pβ
n −ϵ)u

n
n−1
ϵ |x|pβdx


≤ sup

B
|φ|

(
1

δ
−
∫
B(R)

eαn(1+
pβ
n −ϵ)(u

n
n−1
ϵ (r

n
n+pβ
ϵ x)−c

n
n−1
ϵ ) |x|pβ dx

)

= sup
B
|φ|

(
1

δ
−
∫
B(R)

e
n

n−1αn(1+
pβ
n )φ|x|pβdx+ o(1)

)
→ 0.

Recalling the definition of uϵ,δ , we obtain

|I2| ≤ sup
B
|φ| cϵ

λϵ

∫
{uϵ≤δcϵ}

u
1

n−1
ϵ eαn(1+

pβ
n −ϵ)u

n
n−1
ϵ |x|pβdx

≤ sup
B
|φ| cϵ

λϵ

∫
B
u

1
n−1

ϵ,δ eαn(1+
pβ
n −ϵ)u

n
n−1
ϵ,δ |x|pβdx.

From Lemma 3.1 and (3.5), we conclude that I2 → 0 . Finally, making the change of variable y = r
n

n+pβ
ϵ x , we

get

I3 =

∫
B(Rr

n
n+pβ
ϵ )

1

λϵ
cϵuϵ(y)

1
n−1 eαn(1+

pβ
n −ϵ)uϵ(y)

n
n−1 |y|pβdy

= (1 + oϵ(1))

∫
B(R)

φ(r
n

n+pβ
ϵ x)eαn(1+

pβ
n −ϵ)(u

n
n−1
ϵ (r

n
n+pβ
ϵ x)−c

n
n−1
ϵ ) |x|pβ dx

= (φ(0) + oϵ(1))

(∫
B(R)

e
n

n−1αn(1+
pβ
n −ϵ)φ|x|pβdx+ oϵ(1)

)
.
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Letting ϵ→ 0 , we have I3 → φ(0) . Combining all the above three estimates, we conclude the result. 2

The following statement is similar to Lemma 3.10 in [41]:

Lemma 3.4 If f ∈ L1(B) , and u ∈ C1(B) ∩H1,n
0 (B) satisfies the following equation

−∆nu = f + α∥u∥n−p
p up−1,

where α < (1 + p
nβ)

n−1+n
p λp(B) is a constant. Then for any 1 < s < n , we have ∥∇u∥s ≤ C∥f∥1 for some

constant C depending only on p , s, α , n, λp(B) .

We omit the proof here. The interested readers can refer to [34] and its corrigendum in [34] to get the
detailed process of argumentation. Using Lemma 3.4, we can prove the following:

Lemma 3.5 For any 1 < s < n , c
1

n−1
ϵ uϵ is bounded in H1,s

0 (B) .

Proof We denote ωϵ = c
1

n−1
ϵ uϵ , then it is easy to verify that

−∆nωϵ = α|x|pβ∥ωϵ∥n−p
p ωp−1

ϵ +
1

λϵ
|x|pβcϵu

1
n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ − λ

λϵ
|x|pβh′m(ωϵ)cϵ. (3.6)

We assert that ∥ωϵ∥p is bounded. Suppose not, we can assume that ∥ωϵ∥p → +∞ as ϵ → 0 . Letting
ω̃ϵ = ωϵ/∥ωϵ∥p , we have ∥ω̃ϵ∥p = 1 and

−∆nω̃ϵ = α|x|pβω̃p−1
ϵ +

1
λϵ
|x|pβcϵu

1
n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ

∥ωϵ∥n−1
p

+ o(1). (3.7)

It can be deduced from (3.7) that ∆nω̃ϵ is bounded in L1(B) . By Lemma 3.4, we get ω̃ϵ is bounded in H1,s
0 (B)

for any 1 < s < n . Assume ω̃ϵ ⇀ ω̃ weakly in H1,s
0 (B) for any 1 < s < n , and ω̃ϵ → ω̃ strongly in Lp(B) .

Testing (3.6) with φ ∈ C1
0 (B) and letting ϵ→ 0 , we obtain∫

B
∇φ∇ω̃dx = α

∫
B
φ|x|pβω̃p−1dx. (3.8)

One can derive from (3.8) that ω ≡ 0 , which contradicts the fact that ∥ω̃∥p = 1 . Hence ∥ωϵ∥p is bounded.
Again by using Lemma 3.4, we complete the proof. 2

The following lemma reveals how uϵ converges away from x0 = 0 :

Lemma 3.6 c
1

n−1
ϵ uϵ ⇀ Gα weakly in H1,s(B) for any 1 < s < n , where Gα is a Green function satisfying

{ −∆nGα − α∥Gα∥n−p
p Gp−1

α |x|pβ = δ0 in B

Gα = 0 on ∂B.
(3.9)

Furthermore, c
1

n−1
ϵ uϵ → Gα in C1(B′) for any domain B′ ⊂⊂ B \ {0} .
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Proof Assume c
1

n−1
ϵ uϵ ⇀ Gα weakly in H1,s(B) . Testing equation (2.4) with φ ∈ C∞

0 (Ω) , we have

−
∫
B
φ∆nωϵdx =

∫
B

(
φ

1

λϵ
|x|pβcϵu

1
n−1
ϵ eαn(1+

p
nβ−ϵ)u

n
n−1
ϵ + α∥ωϵ∥n−p

p

∫
B
φωp−1

ϵ |x|pβ
)
dx+ o(1)

→ φ(0) + α∥Gα∥n−p
p Gp−1

α |x|pβ .

Hence ∫
Ω

∇φ|∇Gα|n−2∇Gαdx = φ(0) + α∥Gα∥n−p
p Gp−1

α |x|pβ .

Then there holds
−∆nGα = δ0 + α∥Gα∥n−p

p Gp−1
α |x|pβ .

The usual elliptic estimates give the second assertion of Lemma 3.6. 2

According to Kichenassamy and Veron [17], Gα can be represented by

Gα(x) = − n

αn
ln |x|+Aα + ψα(x),

where Aα is a constant, ψα(x) ∈ Cν(B) for some 0 < ν < 1 and ψα(0) = 0 .

4. The estimate of upper bound

In this section, we use the capacity estimate, which was inspired by [28, 37], to derive an upper bound of Λλ,αn .
Taking R > 0 and δ > 0 small enough such that B(2δ) ⊂ B , for a, b ∈ R , we define the function space

Wϵ(a, b) =

{
u ∈W 1,n(B(δ) \ B(Rr

n
n+pβ
ϵ )) : u|∂B(δ) = a, u|

∂B(Rr
n

n+pβ
ϵ )

= b

}
.

Let
iϵ = inf

∂B(Rr
n

n+pβ
ϵ )

uϵ, sϵ = sup
∂B(δ)

uϵ.

It follows from (3.8) and Lemma 3.6 that

iϵ = cϵ +
1

c
1

n−1
ϵ

(
− n

αn
lnR− 1

αn(1 +
pβ
n )

ln
ωn−1

n+ pβ
+ o(1)

)
, (4.1)

and

sϵ = c
− 1

n−1
ϵ

(
− n

αn
ln δ +Aα + o(1)

)
. (4.2)

Therefore, iϵ > sϵ . It is not hard to see that

inf
u∈Wϵ(a,b)

∫
B(δ)\B(Rr

n
n+pβ
ϵ )

|∇u|ndx
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is attained by a function h(x) satisfying


−∆nh(x) = 0 in B(δ) \ B(Rr

n
n+pβ
ϵ )

h|∂B(δ) = sϵ

h|
∂B(Rr

n
n+pβ
ϵ )

= iϵ.

By the uniqueness of the solution, we obtain

h(x) =
sϵ(ln |x| − ln(Rr

n
n+pβ
ϵ )) + iϵ(ln δ − ln |x|)

ln δ − ln(Rr
n

n+pβ
ϵ )

,

and hence

∫
B(δ)\B(Rr

n
n+pβ
ϵ )

|∇h|ndx =
ωn−1(iϵ − sϵ)

n

(ln δ − ln(Rr
n

n+pβ
ϵ ))n−1

. (4.3)

Defining ũϵ = max{sϵ,min{uϵ, iϵ}} , one gets ũϵ ∈ Wϵ(sϵ, iϵ) and |∇ũϵ| ≤ |∇uϵ| a.e. in B(δ) \ B(Rr
n

n+pβ
ϵ ) .

Then we have

∫
B(δ)\B(Rr

n
n+pβ
ϵ )

|∇h|ndx ≤
∫
B(δ)\B(Rr

n
n+pβ
ϵ )

|∇ũϵ|ndx

≤
∫
B(δ)\B(Rr

n
n+pβ
ϵ )

|∇uϵ|ndx

= 1 + α∥u∥np,β −
∫
B(Rr

n
n+pβ
ϵ )

|∇uϵ|ndx−
∫
B\B(δ)

|∇uϵ|ndx.

We next estimate two integrals on the right-hand side of the above equation. We have

∫
B(Rr

n
n+pβ
ϵ )

|∇uϵ|ndx = c
− n

n−1
ϵ

∫
B(R)

|∇φϵ|ndx

= c
− n

n−1
ϵ

(∫
B(R)

|∇φ0|ndx+ oϵ(1)

)

= c
− n

n−1
ϵ

(
n

αn
lnR+

1

αn(1 +
pβ
n )

ln
ωn−1

n+ pβ

− n− 1

αn(1 +
pβ
n )

n−1∑
k=1

1

k
+ o(1)

)
.

(4.4)
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Since ∥uϵ∥np,β = c
− n

n−1
ϵ (∥Gα∥np,β + o(1)) , integrating by parts with Lemma 3.6 leads to

∫
B\B(δ)

|∇uϵ|ndx = c
− n

n−1
ϵ

(∫
B\Bδ(0)

|∇Gα|ndx+ o(1)

)

= c
− n

n−1
ϵ

(∫
B\B(δ)

(−∆nGα)Gαdx+

∫
∂B(δ)

|∇Gα|n−2∇Gα · ∂Gα

∂ν
ds+ o(1)

)

= c
− n

n−1
ϵ

(
α∥Gα∥n−p

p Gp−1
α |x|pβ − n

αn
ln δ +Aα + o(1)

)
.

(4.5)

Combining (4.3), (4.4), and (4.5) together, we obtain

ω
1

n−1

n−1 (iϵ − sϵ)
n

n−1

ln δ
R − 1

n+pβ ln rnϵ
≤

(
1 + c

− n
n−1

ϵ

(
n

αn
ln
δ

R
− 1

αn(1 +
pβ
n )

ln
ωn−1

n+ pβ

+
n− 1

αn(1 +
pβ
n )

n−1∑
k=1

1

k
−Aα + o(1)

)) 1
n−1

≤ 1 +
1

n− 1
c
− n

n−1
ϵ

(
n

αn
ln
δ

R
− 1

αn(1 +
pβ
n )

ln
ωn−1

n+ pβ

+
n− 1

αn(1 +
pβ
n )

n−1∑
k=1

1

k
−Aα + o(1)

)
.

(4.6)

From the definition of rϵ , we get

ln
δ

R
− 1

n+ pβ
ln rnϵ = ln

δ

R
− 1

n+ pβ
ln

λϵ

c
n

n−1
ϵ

+
αn(1 +

pβ
n )c

n
n−1
ϵ

n+ pβ
. (4.7)

It follows from (4.1) and (4.2) that

(iϵ − sϵ)
n

n−1 = c
n

n−1
ϵ

(
1 + c

− n
n−1

ϵ

(
n

αn
ln
δ

R
− 1

αn(1 +
pβ
n )

ln
ωn−1

n+ pβ
−Aα + o(1)

)) n
n−1

≥ c
n

n−1
ϵ +

n

n− 1

(
n

αn
ln
δ

R
− 1

αn(1 +
pβ
n )

ln
ωn−1

n+ pβ
−Aα + o(1)

)
.

(4.8)
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Denoting b = 1
n−1c

− n
n−1

ϵ

(
n
αn

ln δ
R − 1

αn(1+
pβ
n )

ln ωn−1

n+pβ + n−1
αn(1+

pβ
n )

∑n−1
k=1

1
k −Aα + o(1)

)
, we can obtain b → 0 .

Then putting (4.6), (4.7), and (4.8) together, we have

(1 + b) ln
λϵ

c
n

n−1
ϵ

≤ −ϵc
n

n−1
ϵ +

(
αn(1 +

pβ

n
)b− ϵ

n− 1

)
n

αn
ln
δ

R
+
αn(1 +

pβ
n − ϵ)

αn(1 +
pβ
n )

n−1∑
k=1

1

k

+

(
1 +

ϵ

αn(1 +
pβ
n )(n− 1)

)(
ln

ωn−1

n+ pβ
+ αn(1 +

pβ

n
)Aα

)
+ o(1)

≤
(
αn(1 +

pβ

n
)b− ϵ

n− 1

)
n

αn
ln
δ

R
+
αn(1 +

pβ
n − ϵ)

αn(1 +
pβ
n )

n−1∑
k=1

1

k

+

(
1 +

ϵ

αn(1 +
pβ
n )(n− 1)

)(
ln

ωn−1

n+ pβ
+ αn(1 +

pβ

n
)Aα

)
+ o(1),

which implies that

lim sup
ϵ→0

ln
λϵ

c
n

n−1
ϵ

≤ ln
ωn−1

n+ pβ
+ αn(1 +

pβ

n
)Aα +

n−1∑
k=1

1

k
.

Therefore, we conclude by (3.4),

Λλ,αn = lim
ϵ→0

∫
B
|x|pβ

(
eαn(1+

p
nβ−ϵ)|uϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ − ϵ)u

n
n−1
ϵ |k

k!

)
dx

≤
∫
B
|x|pβdx+

ωn−1

n+ pβ
eαn(1+

pβ
n )Aα+1+ 1

2+···+ 1
n−1 .

(4.9)

5. The existence result
In this section, we will construct a blow-up sequence φϵ(x) ∈ H such that when ϵ is small enough, there holds

∫
B
|x|pβ

(
eαn(1+

p
nβ)|φϵ|

n
n−1 − λ

m∑
k=0

|αn(1 +
p
nβ)φ

n
n−1
ϵ |k

k!

)
dx

>

∫
B
|x|pβdx+

ωn−1

n+ pβ
eαn(1+

pβ
n )Aα+1+ 1

2+···+ 1
n−1 .

We first establish several properties of Gα as following:

Lemma 5.1 Let Gα be the n-Green function in the above (3.9).

(a) The sets {Gα > t} form a sequence of approximately small balls of radii ρt = eω
1

n−1
n−1 (Aα−t) . In other words,

Bρt−rt(p) ⊂ {Gα > t} ⊂ Bρt+rt(p) , with rt/ρt → 0 as t→ +∞ . In particular, lim
t→+∞

eαn(1+
pβ
n )t
∫
Gα>t

|x|pβdx =

ωn−1

n+pβ e
αn(1+

pβ
n )Aα .

(b)
∫
Gα<t

|∇Gα|ndx = t+ α∥Gα∥n−p
p Gp−1

α |x|pβ +O(tn−1e−αn(1+
pβ
n t)) as t→ +∞ .
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(c)
∫
Gα=t

|∇Gα|n−1dx = 1 +O(tn−1e−αn(1+
pβ
n )t) as t→ +∞ .

(d)
∫
Gα=t

|x|pβ
|∇Gα|ds ≥ ω

n
n−1

n−1e
αn(1+

pβ
n )(Aα−t)(1 +O(tn−1e−αn(1+

pβ
n )t)) as t→ +∞ .

The proof is similar to [34] so we omit the process of proof here. Then we take

fϵ(t) =

 c+ c−
1

n−1

(
− n−1

αn(1+
pβ
n )

ln(1 + ( ωn−1

n+pβ )
1

n−1 ϵ−
n+pβ
n−1 e−

αn(1+
pβ
n

)

n−1 t) + b

)
for t ≥ tϵ

c−
1

n−1 t for t < tϵ,

with tϵ = n
αn

ln 1
Rϵ , R, b, and c are constants to be chosen later such that R → +∞ and Rϵ → 0 as ϵ → 0 .

Let Gα be as above. Set

φϵ(x) = fϵ(Gα(x)).

To ensure φϵ ∈ H1,n
0 (B) , we assume

c+ c−
1

n−1

(
− n− 1

αn(1 +
pβ
n )

ln(1 + (
ωn−1

n+ pβ
)

1
n−1 ϵ−

n+pβ
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)
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We have by Lemma 5.1(b),
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.

An elementary calculation shows
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Hence we have by Lemma 5.1(c),
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Therefore, ∫
B
|∇φϵ|ndx = c−

n
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(
n
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n )

ln
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.

Since ∥φϵ∥np, β = c−
n

n−1 (∥Gα∥np,β +O(R−n+pβ
n−1 )) , then we have
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Combining (5.1) and (5.2), one gets
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For t ≥ tϵ , one can check that

fϵ(t)
n

n−1 ≥ c
n

n−1 +
n

n− 1
b− n

αn(1 +
pβ
n )

ln

(
1 + (

ωn−1

n+ pβ
)

1
n−1 ϵ−

n+pβ
n−1 e−

αn(1+
pβ
n

)

n−1 t

)
.

Hence we have by Lemma 5.1(d),
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Moreover, we get∫
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Combining the above two estimates, we obtain∫
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Letting R = (− ln ϵ)m+1 , we immediately have
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(5.3)

The contradiction between (4.9) and (5.3) implies that cϵ is bounded and Theorem 1 follows when λ ≤ 1 . In
the following, we consider the situation when λ ∈ (1, 1 + ϵ0) , ϵ0 is a constant. First we claim that Λλ,αn
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continuous with respect to λ at λ = 1 . It is clearly that there exists u1 such that
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Moreover, Λλ,αn is monotonically decreasing with respect to λ . Thus for any 1 < λ < 1 + ϵ1 , we have

Λ1,αn
− δ < Λλ,αn

≤ Λ1,αn
.

So our claim is true. If the extremal function of Λλ,αn does not exist when 1 < λ < 1 + ϵ0 , then similar to the
proof of the above, we can derive
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for any λ ∈ (1, 1 + ϵ2) , which contradicts with (5.4). Thus Λλ,αn can be attained if λ ≤ 1 + ϵ0 .
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