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Abstract: We show that a number field of the form Q(λ) admits a symplectic form which is invariant under
multiplication by λ if and only if the minimal polynomial of λ is palindromic of even degree. In particular, if λ is
an algebraic integer, it is forced to be a unit. In the case when the minimal polynomial of λ is palindromic of degree
2d , we show that there is a d -dimensional space of invariant symplectic forms on Q(λ) .
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1. Motivation
Thurston [6] classified homotopy classes of homeomorphisms f : S → S of compact topological surfaces S into
three types - periodic, reducible, and pseudo-Anosov. Each homeomorphism induces a map on the integral
homology group f∗ : H1(S;Z) ⟲ . We will now assume our surfaces S to be orientable and without a boundary
for clarity of exposition. Given α, β ∈ H1(S;Z) , the intersection form ω(α, β) counts the minimum number of
(signed) intersections of simple closed curves representing α with ones representing β . Since homeomorphisms
preserve intersections, the form ω is invariant under the action f∗ when f is orientation preserving. Similary
f∗(ω) = −ω when f is orientation reversing.

In the pseudo-Anosov case, there is a pair of singular foliations on S which are invariant under f up to
homotopy. When these foliations are orientable, the largest eigenvalue λ > 1 of f∗ is an important topological
invariant of the mapping class known as the stretch-factor (or dilatation). Being an eigenvalue of an integer
matrix, λ is an algebraic number. Moreover, log(λ) is the topological entropy of f [5], as well as the length of
the geodesic corresponding to the mapping class [f ] in the moduli space of complete Riemannian metrics on S

under the Teichmüller metric (see e.g. the book [3]).
It is an open problem to determine precisely what algebraic numbers arise in this way. Fried [2] showed

that the largest eigenvalue λ of f∗ is an algebraic unit in the ring of algebraic integers of the number field
Q(λ) . Moreover, he shows that λ is biPerron, meaning all its Galois conjugates µi satisfy {1/λ ≤ |µi| ≤ λ}
with at most one conjugate on each boundary component. He also showed the characteristic polynomial of f∗

is palindromic, meaning its coefficients are the same forwards and backwards. There are many related works,
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most notably [5], which show that logarithms of Perron numbers (algebraic λ > 1 whose Galois conjugates
µi satisfy |µi| < λ), correspond exactly to the topological entropies of interval maps whose critical points
have finite forward orbits. In particular, all Perron (and therefore biPerron) numbers are eigenvalues of integer
aperiodic matrices, i.e. non-negative matrices with some strictly positive power; a converse to the classical
Perron-Frobenius theorem originally due to Lind [4].

Now the action f∗ on H1(S;R) is semi-conjugate to the automorphism of Q(λ) given by multiplication
with λ . The semi-conjugacy π : H1(S;R) → Q(λ) can be obtained by mapping each eigenvector of f∗ corre-
sponding to a Galois conjugate of λ to the corresponding eigenvector in Q(λ) , and sending other eigenvectors
(if any) to 0 . If 1/λ is a Galois conjugate of λ , (which happens exactly when the minimal polynomial of λ

is palindromic), the intersection form ω is non-degenerate when restricted to Q(λ) , thus defining a symplectic
form on Q(λ) invariant under multiplication by λ . The non-degeneracy of ω|Q(λ) when λ−1 is a conjugate can
be seen by noting that for two eigenvectors vµ, vν of f∗ , corresponding to eigenvalues µ and ν respectively,
ω(vµ, vν) ̸= 0 if and only if µ = 1/ν since,

ω( vµ, vν ) = ω( f∗ vµ, f∗ vν ) = ω(µ vµ, ν vν ) = µν ω( vµ, vν ). (1.1)

The authors in [1] showed the following for all genus g ≥ 10 : among all biPerron numbers λ ≤ R of
degree d ≤ 2g the proportion which corresponds to stretch-factors of pseudo-Anosov maps with orientable
foliations on surfaces of genus g approaches 0 as R → ∞ . This suggests that stretch factors are sparse among
biPerron numbers, or at least that the genus of the surfaces gets very large when trying to realize biPerron
numbers of a given degree as stretch factors.

Our motivation for this paper was to rule out certain biPerron units λ from appearing as eigenvalues of
surface automorphisms, so we sought a natural obstruction in the form of the following question: which number
fields of the form Q(λ) admit symplectic forms that are invariant under multiplication by λ . Our work does
not disprove the conjecture that all biPerron numbers are stretch factors. Rather, the answer to our question
turns out to be that there is no such obstruction to the existence of a symplectic structure for number fields of
biPerron numbers, since for any algebraic number λ ,

Theorem 1.1 Q(λ) admits a symplectic form invariant under multiplication by λ if and only if the minimal
polynomial of λ is a palindromic polynomial of even degree.

In section 2 we recall some definitions including symplectic forms, algebraic number fields, and describe
what we mean by invariance. Section 3 proves the necessity of the minimal polynomial of λ to be palindromic
for the existence of such forms. Section 4 is devoted to showing sufficience, and showing that the dimension of
the space of invariant symplectic forms is half the degree of the minimal polynomial. In section 5, we provide
some examples.

2. Introduction
A complex number λ is called algebraic if it is the root of a polynomial of the form

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, with ai ∈ Q (2.1)

The unique polynomial of minimal degree is called the minimal polynomial of λ and the roots of this
polynomial are the Galois conjugates of λ . If the coefficients ai are integers, ai ∈ Z , then λ is called an
algebraic integer. A polynomial p(x) is called palindromic if a0 = 1 and ai = an−i for all 1 ≤ i ≤ n− 1 .
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Suppose V is a finite-dimensional vector space defined over a field F , or more generally a module over a
ring. Then a (linear) symplectic form Θ on V is a non-degenerate alternating bilinear pairing. Namely, it is a
map Θ : V × V → F, that satisfies the following three properties:

(i) Θ(u, v) = −Θ(v, u), for all u, v ∈ V (alternating) (2.2)

(ii) Θ(a u+ b v, w) = aΘ(u,w) + bΘ(v, w), for all u, v, w ∈ V and a, b ∈ F (bilinear) (2.3)

(iii) For any u ∈ V \ {0}, there is some v ∈ V such that Θ(u, v) ̸= 0 (non-degenerate) (2.4)

In terms of a basis for V , bilinearity implies Θ can be written as Θ(u, v) = u⊤ Qv , where Q is a square
matrix of the same size as the dimension of V . Θ is non-degenerate when det(Q) ̸= 0 and alternating when Q

is skew-symmetric, i.e. when Q⊤ = −Q .
In this paper, we will be concerned with number fields of the form Q(λ) , where λ is an algebraic number.

The number field Q(λ) is defined to be the minimal finite field extension of Q that contains λ . If the minimal
polynomial of λ is of degree n , then Q(λ) is a Q -vector space of dimension n , and a general element β ∈ Q(λ)

is of the form
β = b1 + b2λ+ · · ·+ bnλ

n−1, for unique bi ∈ Q. (2.5)

Multiplication with λ defines a field automorphism (· × λ) : Q(λ) → Q(λ) and thus an isomorphism
of Q(λ) as a vector space. We wish to find symplectic forms Θ on Q(λ) which are invariant under this
isomorphism.

Definition 2.1 Let λ be an algebraic number. We say Q(λ) admits a λ-invariant symplectic form Θ if
there exists a symplectic form Θ : Q(λ)×Q(λ) → Q satisfying

Θ(u, v) = Θ(λu, λ v), for all u, v ∈ Q(λ). (2.6)

3. Necessity

If Q(λ) carries a symplectic form, it must be even-dimensional. This follows from the fact that an odd-
dimensional skew-symmetric matrix has a determinant 0 . Thus n must be an even integer.

Proposition 3.1 If λ is an algebraic number such that Q(λ) admits a λ-invariant symplectic form, then the
minimal polynomial of λ is palindromic, that is a0 = 1 and ai = an−i for all 1 ≤ i ≤ n− 1 .

Proof Suppose Q(λ) admist a λ -invariant symplectic form Θ . If u ∈ Q(λ) is written as a column vector
in terms of the standard basis {1, λ, λ2, · · · , λn−1} of Q(λ) , then λu is given by Cu , where C is the n × n

companion matrix of p(x) (equation 2.1):

C =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2

. . .
0 0 · · · 1 −an−1

 (3.1)
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On the other hand, Θ is given by Θ(u, v) = u⊤Qv where Q is the skew-symmetric and non-degenerate
matrix

Qi j = Θ(λi−1, λj−1), 1 ≤ i, j ≤ n. (3.2)

The λ -invaraiance relation Θ(u, v) = Θ(λu, λ v) for all u, v ∈ Q(λ) thus becomes

u⊤Qv = (Cu)⊤Q(Cv) = u⊤(C⊤QC)v. (3.3)

So the form Θ on Q(λ) is λ -invariant exactly when

C⊤QC = Q. (3.4)

If v is a λ -eigenvector of C , we see that C⊤QCv = Qv implies Qv is a 1
λ -eigenvector of C⊤ . Thus 1/λ

is an eigenvalue of C⊤ (and of C itself) and satisfies the minimal polynomial of λ :

p

(
1

λ

)
=

(
1

λ

)n

+ an−1

(
1

λ

)n−1

+ · · ·+ a1

(
1

λ

)
+ a0 = 0. (3.5)

Multiplying throughout by λn and dividing by a0 , we get

λn +
a1
a0

λn−1 + · · ·+
an/2

a0
λn/2 + · · ·+ an−1

a0
λ+

1

a0
= 0. (3.6)

Comparing coefficients with the minimal polynomial p(x) (2.1) of λ , which is unique, we see that an−i = ai/a0

for all i . In particular an/2 = an/2/a0 , and a0 = 1/a0 =⇒ a0 = ±1 .
Note that a0 = −1 contradicts the minimality of p(x) : If a0 = −1 we get an/2 = 0 , and an−i = −ai for

1 ≤ i ≤ n− 1 . But then p(x) is of the form

p(x) = xn − a1x
n−1 − · · · − an

2 −1x
n
2 +1 + an

2 −1x
n
2 −1 + · · ·+ a1x− 1, (3.7)

and p(1) = 0 , so p(x) is divisble by x− 1 , and λ is the root of a monic polynomial of smaller degree over Q ,
contradicting the minimality of p(x) .

Thus a0 = 1 and for all 1 ≤ i ≤ n− 1 we have that an−i = ai , so p(x) is palindromic. 2

As an immediate consequence of the proof, we obtain

Corollary 3.2 If λ is an algebraic integer and Q(λ) admits a λ-invariant symplectic form, then λ is an
algebraic unit.

Proof If in the proof above the coefficients of p(x) are integers, then 1/λ satisfying the same polynomial
implies 1/λ is also an algebraic integer. 2

4. Sufficience
In this section we show that if the minimal polynomial of λ is palindromic of even degree, then there exist
λ -invariant symplectic forms on Q(λ) . Thus supppose n is even and λ is an algebraic number whose minimal
polynomial p(x) = xn + an−1x

n−1 + · · ·+ a1x+ 1, ai ∈ Q is palindromic, namely ai = an−i .
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If Q is any non-degenerate, skew-symmetric matrix of size n , namely with Qi j = −Qj i for 1 ≤ i, j ≤ n ,
we can obtain a linear symplectic form on Q(λ) by simply defining Θ : Q(λ) × Q(λ) → Q by setting
Θ(u, v) = u⊤Qv. Recall the entries of Q are related to Θ as

Qi, j = Θ(λi−1, λj−1), 1 ≤ i, j ≤ n. (4.1)

But for the form Θ to be λ -invariant, we must have Θ(1, λ) = Θ(λ, λ2) = · · · = Θ(λn−2, λn−1) . So for
instance, Q1, 2 = Q2, 3 = · · · = Qn−1,n = x1 (say). Similarly, Q1, 3 = Q2, 4 = · · · = Qn−2, n = x2 (say), etc.
Thus if Θ is λ -invariant, all diagonals of Q parallel to the main diagonal (of zeros) must be constant, in other
words, Q must take the following form:

Q =



0 x1 x2 · · · xn−2 xn−1

−x1 0 x1 xn−2

−x2 −x1 0
. . . ...

... . . . . . . x1 x2

−xn−2 −x1 0 x1

−xn−1 −xn−2 · · · −x2 −x1 0


(4.2)

Furthermore, Q must satisfy the relation C⊤ QC = Q where C is the companion matrix (3.1) of the polynomial
p(x) . We show that there exists an n/2 -dimensional family of Q satisfying these conditions.

Theorem 4.1 Let λ be an algebraic number whose minimal polynomial is palindromic of even degree n . Then
there exists an n/2-dimensional family of λ-invariant (linear) symplectic forms on Q(λ) .

Proof To define a λ -invariant symplectic form, we need to find a matrix Q as in equation 4.2 above that
satisfies the relation C⊤ QC = Q where C is the companion matrix in 3.1. Computing, we see that C⊤ QC

equals


0 1 0 0
0 0 1 0
...

...
... . . . ...

0 0 0 1
−1 −a1 −a2 · · · −an−1





0 x1 x2 · · · xn−1

−x1 0 x1 xn−2

−x2 −x1 0
. . . ...

... . . . . . . x1

−xn−1 −xn−2 · · · −x1 0




0 0 · · · 0 −1
1 0 · · · 0 −a1
0 1 · · · 0 −a2

. . .
0 0 · · · 1 −an−1

 =

=



0 x1 x2 · · · xn−2 Rn−1

−x1 0 x1 Rn−2

−x2 −x1 0
. . . ...

... . . . . . . x1 R2

−xn−2 −x1 0 R1

−Rn−1 −Rn−2 · · · −R2 −R1 0


(4.3)

Note that the first (n− 1)× (n− 1) block of C⊤ QC is the same as that of Q itself, and only the last
row and column require careful computation. To save space, we have renamed the last column (and row) as Ri
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and in order to satisfy C⊤ QC = Q we must have xi = Ri for all 1 ≤ i ≤ n− 1 . The Ri are computed below:
Rn−1 = x1 − a2x1 − a3x2 − · · · − an−1xn−2 (4.4)

· · ·

Rn−j = xj + a1xj−1 + · · ·+ aj−1x1 − aj+1x1 − · · · − an−1xn−j−1 (4.5)

· · ·

Rj = xn−j + a1xn−j−1 + · · ·+ an−j−1x1 − an−j+1x1 − · · · − an−1xj−1 (4.6)

· · ·

R1 = xn−1 + a1xn−2 + · · ·+ an−2x1 (4.7)

Note that for all 1 ≤ j ≤ n/2 , equations xj = Rj and xn−j = Rn−j are the same equation since all
ai = an−i and a0 = 1 . Moreover, the equation corresponding to j = n/2 ,

xn
2
= xn

2
+ a1xn

2 −1 + · · ·+ an
2 −1x1 − an

2 +1x1 − · · · − an−1xn
2 −1, (4.8)

simplifies to xn
2
= xn

2
, hence providing no information.

Thus there are only n
2−1 equations to satisfy x1 = R1, · · · , xn

2 −1 = Rn
2 −1 and n−1 variables x1, ..., xn−1 .

These equations can be summarized by requiring that (xn−1, · · · , x1)
⊤ be in the kernel of the following matrix

of dimension (n2 − 1, n− 1) :



1 a1 a2 · · · an
2 −2 an

2 −1 an
2

· · · an−3 an−2 − 1
0 1 a1 · · · an

2 −3 an
2 −2 an

2 −1 · · · an−4 − 1 an−3 − an−1

0 0 1 · · · an
2 −4 an

2 −3 an
2 −2 · · · an−5 − an−1 an−4 − an−2

...
...

...
...

...
...

...
...

0 0 0 · · · a1 a2 a3 · · · an
2
− an

2 +4 an
2 +1 − an

2 +3

0 0 0 · · · 1 a1 a2 − 1 · · · an
2 −1 − an

2 +3 an
2
− an

2 +2





xn−1

xn−2

xn−3

...
xn

2 +1

xn
2

xn
2 −1

...
x2

x1


= 0 (4.9)

This matrix is already in echelon form. If we let x1, · · · , xn
2

be free variables, then from the linear
system above one can uniquely solve for xn

2 +1, · · · , xn−1 in terms of these free variables. Thus we obtain an n
2

dimensional family of matrices Q(x1, · · · , xn
2
) that define λ -invariant forms on Q(λ) .

det(Q(x1, · · · , xn
2
)) = 0 is a closed condition on the xi , hence a dense open subset of this space of forms

consists of symplectic forms. 2

Combining Theorem 4.1 with Proposition 3.1, we have also proved Theorem 1.1.

Remark: Since the pivots in the linear system 4.9 are all equal to 1 , there is no division involved in solving for
xn

2 +1, · · · , xn−1 in terms of x1, · · · , xn
2

. Thus if λ is an algebraic integer, and if the x1, · · · , xn
2

are chosen
to be integers, then the λ -invariant symplectic forms abtained above are integral. That is, the forms Θ can be
thought of as maps

Θ : Z[λ]× Z[λ] → Z (4.10)
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5. Examples

1. λ =
√
3+

√
2 , has a palindromic minimal polynomial x4 − 10x2 +1 . Thus Q(λ) admits a 2 -dimensional

family of λ -invariant symplectic forms. With Q as in equation 4.2, x1 and x2 are free and x3 = 11x1 .
Thus in the standard basis {1, λ, λ2, λ3} of Q(λ) , a general λ -invariant form is given by

Θ(u, v) = u⊤Qv = u⊤


0 a b 11a
−a 0 a b
−b −a 0 a

−11a −b −a 0

 v (5.1)

where a, b are any rational numbers. Determinant of Q = Q(a, b) is (12a2 − b2)2 , thus it defines a
λ -invariant symplectic form whenever b2 ̸= 12a2 , hence for all a, b ∈ Q .

2. Q(λ) with λ =
√
p+

√
q for primes p, q , do not admit λ -invariant symplectic forms unless (p, q) = (3, 2) ,

since the minimal polynomial of λ is not palindromic:

x4 − 2(p+ q)x2 + (p− q)2. (5.2)

However the above example works more generally when λ is of the form
√
p+

√
q√

p−q
for some primes p > q .

The minimal polynomial of λ is

x4 − 2

(
p+ q

p− q

)
x2 + 1 (5.3)

and a general λ -invariant symplectic form is found with Q = Q(a, b) of the form

Q(a, b) =


0 a b 3p+q

p−q a

−a 0 a b
−b −a 0 a

− 3p+q
p−q a −b −a 0

 . (5.4)

Non-degeneracy is equivalent to 4 p a2 ̸= (p− q) b2 . And since p and p− q are relatively prime, Q(a, b)

is again non-degenerate for all (a, b) ∈ Q2 .

3. Take λ to be Lehmer’s number, i.e. the largest root of the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

Here a9 = a1 = 1, a8 = a2 = 0 and a7 = a6 = a5 = a4 = a3 = −1 . With Q as given in equation 4.2, we
need to find x1, · · · , x9 that satisfy the relations 4.9, that is:


1 1 0 −1 −1 −1 −1 −1 −1
0 1 1 0 −1 −1 −1 −2 −2
0 0 1 1 0 −1 −2 −2 −1
0 0 0 1 1 −1 −2 −1 0





x9

x8

x7

x6

x5

x4

x3

x2

x1


=


0
0
0
0

 (5.5)
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Solving this system, we let x1, ..., x5 be free variables and obtain

x6 = x2 + 2x3 + x4 − x5 (5.6)

x7 = x1 + x2 + x5 (5.7)

x8 = x1 + x2 + x3 + x4 (5.8)

x9 = x2 + 2x3 + x4 (5.9)

Letting (x1, ..., x5) = (a, b, c, d, e) so Q = Q(a, b, c, d, e) , we see that a general λ -invariant form in the
standard basis on Q(λ) takes the form:

Θ(u, v) = u⊤Qv = u⊤
(

A B
−B⊤ A

)
v (5.10)

where the matrices A, B are given below:

A =


0 a b c d
−a 0 a b c
−b −a 0 a b
−c −b −a 0 a
−d −c −b −a 0

 (5.11)

B =


e b+ 2c+ d− e a+ b+ e a+ b+ c+ d b+ 2c+ d
d e b+ 2c+ d− e a+ b+ e a+ b+ c+ d
c d e b+ 2c+ d− e a+ b+ e
b c d e b+ 2c+ d− e
a b c d e

 (5.12)

The determinant of Q is the square of a homogeneous polynomial of degree 5 in a, b, c, d, e , which if not
equal to 0 , Q defines a λ -invariant symplectic form on Q(λ) .
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