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Abstract: In this manuscript, we obtain some sufficient conditions for a nonlinear q fractional integro singular system
with constant delays to be asymptotically admissible and a nonlinear q fractional non-singular system to be asymptotically
stable. We use Lyapunov-Krasovskii functionals and some inequalities to obtain these conditions. At the same time, we
present some numerical examples that confirm the sufficient conditions we obtained theoretically, with their annotated
solutions and graphs.
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1. Introduction
The development and progress of science is the result of the curiosity of scientists. As a matter of fact, the
emergence of the subject of fractional calculus was due to the curious questions and discussions of the two
scientists. According to the information you have received from history and academic studies, the beginning
of the subject of fractional calculus started with the question of the applicability of fractional calculus, which
L’ Hospital asked in a letter sent to his friend Leibnitz. The studies in this area, which were started by L’
Hospital in 1695, have expanded and reached the present day. Fractional calculus, which has a wide application
area today, is being handled by many scientists in various studies in mathematics and other sciences and its
popularity is increasing. Fractional and non-fractional studies and references in these studies can be made
available to curious researchers as follows (see [1, 28]).

According to the information we have taken from the relevant literature, fractional calculus or fractional
differential equations can be descriptive of natural events better than ordinary differential equations. For this
reason, it has been extensively discussed by many well-known scientists around the world (see [21]). Some
studies on this topic, which is attracting the attention of an increasing number of researchers, can be presented
as below for those interested.

The q-fractional calculus was first discussed by Agarwal [1] and Al-salam [3] in 1969. In these studies,
some q-fractional derivatives and q-fractional integrals were brought to the attention of researchers. Alkhazzan
et al., in [2], discussed a new class of nonlinear fractional stochastic differential equations with fractional integrals
and discussed existence, uniqueness, continuity of solutions and Ulam-Hyers stability with the help of Banach
contraction theorem. They supported their work with an example. In [4] , the author investigated the asymptotic
stability of Riemann-Liouville fractional neutral systems with variable delays by using the Lyapunov-Krasovskii
∗Correspondence: a-yigit63@hotmail.com
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functional. Altun and Tunç [5], discussed the asymptotic stability of a nonlinear fractional-order system with
multiple variable delays. The authors proved a new result on the subject by means of Lyapunov-Krasovskii
functional. In [6], Altun proved the asymptoc stability of fractional neutral-type neural networks with Riemann-
Liouville derivative. Atici and Eloe, in [8], discussed the function between the study of the fractional q-calculus
and the fractional q-calculus on the time scale. Chartbupapan et al., in [9], studied the asymptotic stability of
nonlinear fractional Riemann-Liouville differential equations with fixed delay and gave examples supporting the
conditions they obtained. Jarad et al., in [11], studied the stability, uniform stability, and asymptotic stability
conditions in the framework of non-autonomous Caputo fractional derivative with the help of the Lyapunov
direct method. Koca and Demirci, derived some sufficient criteria for the local stability of nonlinear q-fractional
dynamical systems in [14]. In 2017, Liu et al. [15], derived two asymptotic stability results for Riemann-Liouville
fractional singular systems with multiple time varying delays. Lu et al. established numerous sufficient stability
conditions for asymptotic stability of fractional nonlinear neutral singular systems and Mittag-Leffler stability
with the help of the Lyapunov direct method in [16]. Mahdi and Khudair, developed the delta q-Mittag-
Leffler stability conditions for nonlinear q-fractional dynamical systems on the time scale in [17]. Tunç and
Tunç studied the qualitative behavior of the solutions of Caputo proportional derivatives of delayed integro-
differential equations in [19]. In 2023, Xiao-Chung et al. [22], derived two delay-dependent and order-dependent
conditions for asymptotic stability of Riemann-Liouville fractional systems. In [25], the authors investigated the
asymptotic stability of zero solution of a nonlinear fractional neutral system with unbounded delay. Yiğit et al.
studied the asymptotic stability of delayed fractional singular systems in [26]. Zhang et al. studied the global
asymptotic stability of delayed fractional Riemann-Liouville neural networks in [27]. In [28], Zhai and Ren
studied the existence and uniqueness of solutions of fractional q-difference equations with nonlinear three-point
boundary conditions. In addition, references can be made to numerous books on these topics. Examples of
some of these books include q-fractional calculations [7, 12], fractional calculations [13, 18] and singular systems
[10, 23, 24]. Inspired by the studies summarized above and references in these studies (especially motivated
by articles [20] and [21] and the references in these articles), we considered non-linear mixed-delay q-fractional
integro neutral systems. We obtained asymptotic admissibility and asymptotic stability conditions for these
systems. For this, we have used the Lyapunov direct method, some inequalities, and lemmas. We have given
four examples with their simulations and solutions showing the practical applicability of the conditions we
obtained theoretically. We believe that our study will add a new perspective to the literature.

2. Basic informations
Now, we give some basic definitions and lemmas that should be known before describing our systems and going
into the details of our work.

Definition 2.1 ([21]). For q ∈ (0, 1), the equation Tq = {qn : n ∈ Z}∪ {0} is defined as time scale, here
Z is the set of all integers.

In order to learn more about quantum theory, we can present some studies and references in these studies
to the attention of researchers as (see [7, 8, 11, 12, 17, 21]).

Lemma 2.1([21]). Assume that x(t) ∈ Rn be a vector of q-fractional differentiable function and
S ∈ Rn×n, S = ST > 0, is a constant matrix. Then,

∇α
q (x

T (t)Sx(t)) ≤ 2xT (t)S∇α
q x(t), 0 < α < 1, ∀t ∈ Tq, t > 0,
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is satisfied.

Lemma 2.2([21]). Assume that x(t) : [0, ρ] → Rn be a vector function such that the terms∫ ρ

0
xT (s)Sx(s)∇qs,

∫ ρ

0
x(s)∇qs are well defined and S ∈ Rn×n, S = ST > 0, is a constant matrix. Then,

(

∫ ρ

0

x(s)∇qs)
TS(

∫ ρ

0

x(s)∇qs) ≤ ρ

∫ ρ

0

xT (s)Sx(s)∇qs,

is satisfied.

Lemma 2.3([20]). Assume that S = ST > 0, and ∆,Γ, S ∈ Rn×n, we get

∆TΓ + ΓT∆ ≤ ∆TS∆+ ΓTS−1Γ.

Especially, when S = ϖI, we have

∆TΓ + ΓT∆ ≤ ϖ∆T∆+
1

ϖ
ΓTΓ,

where, ϖ is a positive number and I ∈ Rn×n, is identity matrix.

3. Main results
In this part of our work, we first describe a new q-fractional nonlinear singular system with mixed delays. With
the help of the Lyapunov method, some basic information, and inequalities, we obtain sufficient conditions
to show that this system is asymptotically admissible and give two examples that support these conditions.
Then we describe a new nonsingular q-fractional nonlinear system. We derive sufficient conditions to prove the
asymptotic stability of this system using the Lyapunov method and give two examples.

Now, we introduce a non-linear q-fractional delay neutral singular system as:

A∇α
q x(t)−B∇α

q x(t− k) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)), t ≥ 0, (3.1)

with the initial value condition as:

I1−α
q x(t) = φ(t), t ∈ [−τ0, t0]q, τ0 = max{k, ρ}, α ∈ (0, 1),

for 0 < α < 1, the state vector x(t) ∈ Rn, and A,B,D,U, L ∈ Rn×n are five constant system matrices
with ||B|| < 1, A ∈ Rn×n is singular and rankA = r ≤ n, n ≥ 1. Here [−τ0, t0]q = [−τ0, t0] ∩ Tq and
φ(t) ∈ C([−τ0, t0], R

n) is the initial function with τ0 = max{k, ρ}. The values k, ρ are real positive numbers
and h(s) = diag(h1(s), h2(s), ..., hn(s)) is a nonnegative real-valued function matrix satisfying

∫ ρ

0
hj(θ)∇qθ =

1, j = 1, 2, ..., n. The nonlinear terms H(.) and G(.) satisfying

HT (x(t))H(x(t)) ≤ a2xT (t)x(t), (3.2)

HT (x(t− k))H(x(t− k)) ≤ b2xT (t− k)x(t− k), (3.3)

GT (x(t))G(x(t)) ≤ c2xT (t)x(t), (3.4)

GT (x(t− ρ))G(x(t− ρ)) ≤ d2xT (t− ρ)x(t− ρ), (3.5)
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here a, b, c, d are given real numbers.

Theorem 3.1. The q-fractional system (3.1) is asymptotically admissible, if there exist k > 0,m >

0, ϵ > 0, λ > 0, ρ > 0, ||B|| < 1 and a, b, c, d given any constants, some positive definite symmetric matrices
P,Q,K,R, Si, (i = 1, 2, 3, 4) and a matrix S of suitable dimensions such that the following LMI holds:

Γ =



Γ11 Γ12 0 Γ14 Γ15 P +DT (S1 + kS2) P +DT (S1 + kS2)
∗ Γ22 0 UT (S1 + kS2)L Γ25 UT (S1 + kS2) UT (S1 + kS2)
∗ ∗ Γ33 0 0 0 0
∗ ∗ ∗ Γ44 Γ45 LT (S1 + kS2) LT (S1 + kS2)
∗ ∗ ∗ ∗ Γ55 Γ56 Γ57

∗ ∗ ∗ ∗ ∗ Γ66 S1 + kS2

∗ ∗ ∗ ∗ ∗ ∗ Γ77


< 0, (3.6)

where

Γ11 =DTP + PD +Q+K +R+ a2S3 + c2S4 +DT (S1 + kS2)D,

Γ12 =PU +DT (S1 + kS2)U,Γ14 = PL+DT (S1 + kS2)L,

Γ15 =PB +DT (S1 + kS2)B +DTZST ,

Γ22 =−Q+ ϵb2I + UT (S1 + kS2)U,Γ25 = UT (S1 + kS2)B + UTZST ,

Γ33 =−K + λd2I,Γ44 = LT (S1 + kS2)L−R,

Γ45 =LT (S1 + kS2)B + LTZST ,

Γ55 =−AT −A− 2mI −m2S1 +BT (S1 + kS2)B +BTZST + SZTB,

Γ56 =BT (S1 + kS2) + SZT ,Γ57 = BT (S1 + kS2) + SZT ,

Γ66 =S1 + kS2 − S3 − ϵI,Γ77 = S1 + kS2 − S4 − λI.

where Z ∈ Rn×(n−r) is any matrix satisfying ATZ = 0 and I is identity matrix with appropriate dimension.

Proof . Let us first show that the system (3.1) is impulse-free and regular (see [23]). Because of
rankA = r ≤ n, there exist two inverse matrices N and T such that

A = NAT =

[
Ir 0
0 0

]
, D = NDT =

[
D1 D2

D3 D4

]
, P = N−TPT =

[
P1 P2

P3 P4

]
. (3.7)

From Γ11 , (3.7) and some mathematical calculations, we get DT
4 P4+P4D4 < 0. This proves that D4 is regular.

Therefore, the pair (A,D) is regular and impulse-free (see Dai [10]). According to Wu et al. [20], the system
(3.1) is regular and impulse free.
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Now, let us select a new LKF as:

V (t) =I1−α
q (xT (t)PAx(t)) +

∫ t

t−k

xT (s)Qx(s)∇qs+

∫ t

t−ρ

xT (s)Kx(s)∇qs

+

n∑
j=1

rj

∫ ρ

0

∫ t

t−s

hj(s)x
2
j (θ)∇qθ∇qs+

∫ t

t−k

∇α
q x

T (s)ATS1A∇α
q x(s)∇qs

+

∫ t

t−k

∫ t

0

∇α
q x

T (s)ATS2A∇α
q x(s)∇qs∇qθ +

∫ t

t−k

HT (x(s))S3H(x(s))∇qs

+

∫ t

t−ρ

GT (x(s))S4G(x(s))∇qs.

Clearly, V (t) > 0. According to the Lemma 2.1, Lemma 2.2 and ∇α
q I

β
q f(t) = ∇α−β

q f(t), α > β ≥ 0

(see [21]), If we take the q-derivative of V (t) along the trajectories of the system (3.1), we get the following
inequality as:

∇qV (t) ≤2xT (t)PA∇α
q x(t) + xT (t)Qx(t)− xT (t− k)Qx(t− k)

+ xT (t)Kx(t)− xT (t− ρ)Kx(t− ρ) +

n∑
j=1

rjx
2
j (t)

−
n∑

j=1

rj

∫ ρ

0

hj(s)x
2
j (t− s)∇qs+∇α

q x
T (t)ATS1A∇α

q x(t)

−∇α
q x

T (t− k)ATS1A∇α
q x(t− k) + k∇α

q x
T (t)ATS2A∇α

q x(t)

−
∫ t

t−k

∇α
q x

T (s)ATS2A∇α
q x(s)∇qs+HT (x(t))S3H(x(t))

−HT (x(t− k))S3H(x(t− k)) +GT (x(t))S4G(x(t))

−GT (x(t− ρ))S4G(x(t− ρ)). (3.8)

According to the previously given Lemmas and information, let us point out that for some terms of
inequality (3.8), we can write the following relationships, respectively.

2xT (t)PA∇α
q x(t) =2xT (t)P [Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)) +B∇α
q x(t− k)]

=xT (t)[PD +DTP ]x(t) + 2xT (t)PUx(t− k)

+ 2xT (t)PL

∫ t

t−ρ

h(t− s)x(s)∇qs+ 2xT (t)PH(x(t− k))

+ 2xT (t)PG(x(t− ρ)) + 2xT (t)PB∇α
q x(t− k), (3.9)
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n∑
j=1

rjx
2
j (t)−

n∑
j=1

rj

∫ ρ

0

hj(s)x
2
j (t− s)∇qs ≤ xT (t)Rx(t)

− (

∫ t

t−ρ

h(t− s)x(s)∇qs)
TR(

∫ t

t−ρ

h(t− s)x(s)∇qs), (3.10)

∇α
q x

T (t)ATS1A∇α
q x(t) + k∇α

q x
T (t)ATS2A∇α

q x(t) = [Dx(t) + Ux(t− k)

+ L

∫ t

t−ρ

h(t− s)x(s)∇qs+H(x(t− k)) +G(x(t− ρ)) +B∇α
q x(t− k)]T

× (S1 + kS2)[Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)) +B∇α
q x(t− k)]

=xT (t)DT [S1 + kS2]Dx(t) + xT (t)DT [S1 + kS2]Ux(t− k) + xT (t)DT [S1 + kS2]

× L(

∫ t

t−ρ

h(t− s)x(s)∇qs) + xT (t)DT [S1 + kS2]H(x(t− k))

+ xT (t)DT [S1 + kS2]G(x(t− ρ)) + xT (t)DT [S1 + kS2]B∇α
q x(t− k)

+ xT (t− k)UT [S1 + kS2]Dx(t) + xT (t− k)UT [S1 + kS2]Ux(t− k)

+ xT (t− k)UT [S1 + kS2]L(

∫ t

t−ρ

h(t− s)x(s)∇qs) + xT (t− k)UT

× [S1 + kS2]H(x(t− k)) + xT (t− k)UT [S1 + kS2]G(x(t− ρ))

+ xT (t− k)UT [S1 + kS2]B∇α
q x(t− k) + (

∫ t

t−ρ

h(t− s)x(s)∇qs)
T

× LT [S1 + kS2]Dx(t) + (

∫ t

t−ρ

h(t− s)x(s)∇qs)
TLT [S1 + kS2]Ux(t− k)

+ (

∫ t

t−ρ

h(t− s)x(s)∇qs)
TLT [S1 + kS2]L(

∫ t

t−ρ

h(t− s)x(s)∇qs)

+ (

∫ t

t−ρ

h(t− s)x(s)∇qs)
TLT [S1 + kS2]H(x(t− k))

+ (

∫ t

t−ρ

h(t− s)x(s)∇qs)
TLT [S1 + kS2]G(x(t− ρ))

+ (

∫ t

t−ρ

h(t− s)x(s)∇qs)
TLT [S1 + kS2]B∇α

q x(t− k)

+HT (x(t− k))[S1 + kS2]Dx(t) +HT (x(t− k))[S1 + kS2]

× Ux(t− k) +HT (x(t− k))[S1 + kS2]L(

∫ t

t−ρ

h(t− s)x(s)∇qs)

+HT (x(t− k))[S1 + kS2]H(x(t− k)) +HT (x(t− k))[S1 + kS2]
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×G(x(t− ρ)) +HT (x(t− k))[S1 + kS2]B∇α
q x(t− k)

+GT (x(t− ρ))[S1 + kS2]Dx(t) +GT (x(t− ρ))[S1 + kS2]

× Ux(t− k) +GT (x(t− ρ))[S1 + kS2]L(

∫ t

t−ρ

h(t− s)x(s)∇qs)

+GT (x(t− ρ))[S1 + kS2]H(x(t− k)) +GT (x(t− ρ))[S1 + kS2]

×G(x(t− ρ)) +GT (x(t− ρ))[S1 + kS2]B∇α
q x(t− k)

+ (∇α
q x(t− k))TBT [S1 + kS2]Dx(t) + (∇α

q x(t− k))TBT [S1 + kS2]

× Ux(t− k) + (∇α
q x(t− k))TBT [S1 + kS2]L(

∫ t

t−ρ

h(t− s)x(s)∇qs)

+ (∇α
q x(t− k))TBT [S1 + kS2]H(x(t− k)) + (∇α

q x(t− k))TBT

× [S1 + kS2]G(x(t− ρ)) + (∇α
q x(t− k))TBT [S1 + kS2]

×B(∇α
q x(t− k)). (3.11)

Furthermore, let us point out that ATZ = 0, we can deduce

2∇α
q x

T (t)ATZST∇α
q x(t− k) = 0, (3.12)

From (3.3) and (3.5), we deduce

0 ≤ϵb2xT (t− k)x(t− k)− ϵHT (x(t− k))H(x(t− k)) (3.13)

0 ≤λd2xT (t− ρ)x(t− ρ)− λGT (x(t− ρ))G(x(t− ρ)) (3.14)

here ϵ, λ are positive numbers. From Lemma 2.3, we can get

−∇α
q x

T (t− k)ATS1A∇α
q x(t− k) ≤ −∇α

q x
T (t− k)[AT +A− S−1

1 ]∇α
q x(t− k).

Let us point out that the relationship (I +mS1)
TS−1

1 (I +mS1) > 0 implies −S−1
1 < 2mI +m2S1. From here,

we can obtain

−∇α
q x

T (t− k)ATS1A∇α
q x(t− k) ≤ −∇α

q x
T (t− k)[AT +A+ 2mI +m2S1]∇α

q x(t− k). (3.15)

If the relationships (3.9)-(3.15) are substituted in (3.8), the following inequality is obtained.

∇qV (t) ≤ µT (t)Γµ(t),

here the matrix Γ is defined with (3.6) and

µT (t) =
[
F1(t) F2(t) F3(t) F4(t) F5(t) F6(t) F7(t)

]
,

where

F1(t) = xT (t), F2(t) = xT (t− k), F3(t) = xT (t− ρ), F4(t) = (

∫ t

t−ρ

h(t− s)x(s)∇qs)
T

F5(t) = (∇α
q x(t− k))T , F6(t) = HT (x(t− k)), F7(t) = GT (x(t− ρ)).
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Clearly, for µ(t) ̸= 0,∇qV (t) < 0. Since the conditions discussed in this Theorem are satisfied, the trivial
solution of the nonlinear q-fractional neutral delay singular system (3.1) is asymptotically admissible.

Now, let us make the following definition for convenience. Let us define

M(t) = Ax(t)−Bx(t− k).

Then, rewrite the system (3.1) in the following new system

∇α
qM(t) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs+H(x(t− k)) +G(x(t− ρ)), t ≥ 0. (3.16)

Theorem 3.2. The q-fractional system (3.1) is asymptotically admissible, if there exist a, b, c, d given
any constants, k > 0,m > 0, ϵ > 0, λ > 0, ρ > 0, ||B|| < 1 and some positive definite symmetric matrices
P,Q,K,R, Si, Ni, (i = 1, 2, 3) such that the following LMI holds:

Π =



−N1 −NT
1 Π12 Π13 0 PL P P

∗ Π22 Π23 0 kDTS1L kDTS1 kDTS1

∗ ∗ Π33 0 kUTS1L kUTS1 kUTS1

∗ ∗ ∗ −K + λd2I 0 0 0
∗ ∗ ∗ ∗ −R+ kLTS1L kLTS1 kLTS1

∗ ∗ ∗ ∗ ∗ Π66 kS1

∗ ∗ ∗ ∗ ∗ ∗ Π77


< 0, (3.17)

where

Π12 =PD +N1A+NT
2 A,Π13 = PU −N1B −BTN3B,

Π22 =− 2AT − 2A− 4mI − 2m2N2 +K +Q+R+ kDTS1D + a2S2 + c2S3,

Π23 =ATN2B +ATNT
3 B + kDTS1U,

Π33 =− 2BTN3B −Q+ kUTS1U + ϵb2I,

Π66 =− S2 + kS1 − ϵI,Π77 = −S3 + kS1 − λI.

where I is the identity matrix with appropriate dimension.

Proof . It has been proved in the previous theorem that the system (3.1) is impulse-free and regular.
Therefore, it will suffice to show that the system (3.1) is asymptotically stable. For this purpose, let us define
a new LKF below:

V (t) =I1−α
q (MT (t)PM(t)) +

∫ t

t−ρ

xT (s)Kx(s)∇qs+

∫ t

t−k

xT (s)Qx(s)∇qs

+

n∑
j=1

rj

∫ ρ

0

∫ t

t−s

hj(s)x
2
j (θ)∇qθ∇qs+

∫ t

t−k

∫ t

0

∇α
qM

T (s)S1∇α
qM(s)∇qs∇qθ

+

∫ t

t−k

HT (x(s))S2H(x(s))∇qs+

∫ t

t−ρ

GT (x(s))S3G(x(s))∇qs.
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Clearly, V (t) > 0. According to the Lemma 2.1, Lemma 2.2 and ∇α
q I

β
q f(t) = ∇α−β

q f(t), α > β ≥ 0

(see [21]), If we take the q-derivative of V (t) along the trajectories of the system (3.1), we get the following
inequality as:

∇qV (t) ≤2MT (t)P [Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs+H(x(t− k))

+G(x(t− ρ))] + 2MT (t)N1[−M(t) +Ax(t)−Bx(t− k)]

− 2xT (t)ATN2[−M(t) +Ax(t)−Bx(t− k)]

+ 2xT (t− k)BTN3[−M(t) +Ax(t)−Bx(t− k)]

+ xT (t)Qx(t)− xT (t− k)Qx(t− k) + xT (t)Kx(t)− xT (t− ρ)Kx(t− ρ)

+

n∑
j=1

rjx
2
j (t)−

n∑
j=1

rj

∫ ρ

0

hj(s)x
2
i (t− s)∇qs

+ k[Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs+H(x(t− k))

+G(x(t− ρ))]S1[Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ))] + a2xT (t)S2x(t)

−HT (x(t− k))S2H(x(t− k)) + c2xT (t)S3x(t)

−GT (x(t− ρ))S3G(x(t− ρ)). (3.18)

From (3.3) and (3.5), we deduce

0 ≤ϵb2xT (t− k)x(t− k)− ϵHT (x(t− k))H(x(t− k)) (3.19)

0 ≤λd2xT (t− ρ)x(t− ρ)− λGT (x(t− ρ))G(x(t− ρ)) (3.20)

here ϵ, λ are positive numbers. From Lemma 2.3, we get

−xT (t)ATN2Ax(t) ≤ −xT (t)[AT +A−N−1
2 ]x(t).

Let us point out that the relationship (I + mN2)
TN−1

2 (I + mN2) > 0 implies −N−1
2 < 2mI + m2N2. From

here, we can obtain
−xT (t)ATN2Ax(t) ≤ −xT (t)[AT +A+ 2mI +m2N2]x(t). (3.21)

If calculations similar to the mathematical operations made in the previous theorem are applied to some terms
in the (3.18) inequality, and the relationships (3.19)-(3.21) are substituted in the (3.18) inequality, the following
inequality is obtained.

∇qV (t) ≤ ξT (t)Πξ(t),

here the matrix Π is defined with (3.17) and

ξT (t) =
[
F1(t) F2(t) F3(t) F4(t) F5(t) F6(t) F7(t)

]
,
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where

F1(t) = MT (t), F2(t) = xT (t), F3(t) = xT (t− k), F4(t) = xT (t− ρ)

F5(t) = (

∫ t

t−ρ

h(t− s)x(s)∇qs)
T , F6(t) = HT (x(t− k)), F7(t) = GT (x(t− ρ)).

Clearly, for ξ(t) ̸= 0,∇qV (t) < 0. Since the conditions discussed in this Theorem are satisfied, the trivial
solution of the nonlinear q-fractional neutral delay singular system (3.1) is asymptotically admissible.

Remark 3.1.When A = I, system (3.1) reduces to the following non-linear delay neutral nonsingular
system as:

∇α
q x(t)−B∇α

q x(t− k) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)), t ≥ 0, (3.22)

with the initial value condition as:

I1−α
q x(t) = φ(t), t ∈ [−τ0, t0]q, τ0 = max{k, ρ}, α ∈ (0, 1),

for 0 < α < 1, the state vector x(t) ∈ Rn, and B,D,U,L ∈ Rn×n are some constant system matrices with
||B|| < 1, Here [−τ0, t0]q = [−τ0, t0]∩Tq and φ(t) ∈ C([−τ0, t0], R

n) is the initial function with τ0 = max{k, ρ}.
The values τ, ρ are real positive numbers. Furthermore, the definitions of the integral term and the nonlinear
terms in the system (3.22) are as given in system (3.1).

Theorem 3.3. The q-fractional system (3.22) is asymptotically stable, if there exist a, b, c, d given any
constants, k > 0, ϵ > 0, λ > 0, ρ > 0, ||B|| < 1 and some positive definite symmetric matrices P,Q,K,R, Si, (i =

1, 2, 3, 4) , such that the following LMI holds:

Σ =



Σ11 Σ12 0 Σ14 Σ15 P +DT (S1 + kS2) P +DT (S1 + kS2)
∗ Σ22 0 UT (S1 + kS2)L Σ25 UT (S1 + kS2) UT (S1 + kS2)
∗ ∗ Σ33 0 0 0 0
∗ ∗ ∗ Σ44 Σ45 LT (S1 + kS2) LT (S1 + kS2)
∗ ∗ ∗ ∗ Σ55 Σ56 Σ57

∗ ∗ ∗ ∗ ∗ Σ66 S1 + kS2

∗ ∗ ∗ ∗ ∗ ∗ Σ77


< 0, (3.23)
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where

Σ11 =PD +DTP +Q+K +R+ a2S3 + c2S4 +DT (S1 + kS2)D,

Σ12 =PU +DT (S1 + kS2)U,Σ14 = PL+DT (S1 + kS2)L,

Σ15 =PB +DT (S1 + kS2)B,

Σ22 =−Q+ ϵb2I + UT (S1 + kS2)U,Σ25 = UT (S1 + kS2)B,

Σ33 =−K + λd2I,Σ44 = LT (S1 + kS2)L−R,

Σ45 =LT (S1 + kS2)B,Σ55 = −S1 +BT (S1 + kS2)B,

Σ56 =BT (S1 + kS2),Σ57 = BT (S1 + kS2),

Σ66 =S1 + kS2 − S3 − ϵI,Σ77 = S1 + kS2 − S4 − λI.

where I is the identity matrix with appropriate dimension.

Proof. Let us choose the following new LKF, which can clearly be seen to be positive definite:

V (t) =I1−α
q (xT (t)Px(t)) +

∫ t

t−k

xT (s)Qx(s)∇qs+

∫ t

t−ρ

xT (s)Kx(s)∇qs

+

n∑
j=1

rj

∫ ρ

0

∫ t

t−s

hj(s)x
2
j (θ)∇qθ∇qs+

∫ t

t−k

∇α
q x

T (s)S1∇α
q x(s)∇qs

+

∫ t

t−k

∫ t

0

∇α
q x

T (s)S2∇α
q x(s)∇qs∇qθ +

∫ t

t−k

HT (x(s))S3H(x(s))∇qs

+

∫ t

t−ρ

GT (x(s))S4G(x(s))∇qs.

If the derivative of the LKF selected above is taken according to the system (3.22) and the mathematical
operations made in the proof of Theorem 3.1 are applied, the following inequality is obtained.

∇qV (t) ≤ ϑT (t)Σϑ(t),

here the matrix Σ is defined with (3.23) and

ϑT (t) =
[
F1(t) F2(t) F3(t) F4(t) F5(t) F6(t) F7(t)

]
,

where

F1(t) = xT (t), F2(t) = xT (t− k), F3(t) = xT (t− ρ), F4(t) = (

∫ t

t−ρ

h(t− s)x(s)∇qs)
T

F5(t) = (∇α
q x(t− k))T , F6(t) = HT (x(t− k)), F7(t) = GT (x(t− ρ)).

Clearly, for ϑ(t) ̸= 0,∇qV (t) < 0. Since the conditions discussed in this Theorem are satisfied, the trivial
solution of the nonlinear q-fractional neutral delay nonsingular system (3.22) is asymptotically stable.
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Theorem 3.4. The q-fractional system (3.22) is asymptotically stable, if there exist a, b, c, d given any
constants, k > 0, ϵ > 0, λ > 0, ρ > 0, ||B|| < 1 and some positive definite symmetric matrices P,Q,K,R, Si, (i =

1, 2, 3) such that the following LMI holds:

Λ =


Λ11 Λ12 0 PL+ kDTS1L P + kDTS1 P + kDTS1

∗ Λ22 0 Λ24 −BTP + kUTS1 −BTP + kUTS1

∗ ∗ −K + λd2I 0 0 0
∗ ∗ ∗ −R+ kLTS1L kLTS1 kLTS1

∗ ∗ ∗ ∗ Λ55 kS1

∗ ∗ ∗ ∗ ∗ Λ66

 < 0, (3.24)

where

Λ11 =PD +DTP +Q+K +R+ kDTS1D + a2S2 + c2S3,

Λ12 =PU −DTPB + kDTS1U,Λ22 = −BTPU − UTPB −Q+ kUTS1U + ϵb2I,

Λ24 =−BTPL+ kUTS1L,Λ55 = −S2 + kS1 − ϵI,Λ66 = −S3 + kS1 − λI.

Proof. Let us choose the following new LKF, which can clearly be seen to be positive definite:

V (t) =I1−α
q [x(t)−Bx(t− k)]TP [x(t)−Bx(t− k)] +

∫ t

t−ρ

xT (s)Kx(s)∇qs

+

∫ t

t−k

xT (s)Qx(s)∇qs+

n∑
j=1

rj

∫ ρ

0

∫ t

t−s

hj(s)x
2
j (θ)∇qθ∇qs

+

∫ t

t−k

∫ t

0

∇α
q [x(s)−Bx(s− k)]TS1∇α

q [x(s)−Bx(s− k)]∇qs∇qθ

+

∫ t

t−k

HT (x(s))S2H(x(s))∇qs+

∫ t

t−ρ

GT (x(s))S3G(x(s))∇qs.

If the derivative of the LKF selected above is taken according to the system (3.22) and the mathematical
operations made in the proof of Theorem 3.2 are applied, the following inequality is obtained.

∇qV (t) ≤ ΞT (t)ΛΞ(t),

here the matrix Λ is defined with (3.24) and

ΞT (t) =
[
F1(t) F2(t) F3(t) F4(t) F5(t) F6(t)

]
,

where

F1(t) = xT (t), F2(t) = xT (t− k), F3(t) = xT (t− ρ), F4(t) = (

∫ t

t−ρ

h(t− s)x(s)∇qs)
T

F5(t) = HT (x(t− k)), F6(t) = GT (x(t− ρ)).

Clearly, for Ξ(t) ̸= 0,∇qV (t) < 0. Since the conditions discussed in this Theorem are satisfied, the trivial
solution of the nonlinear q-fractional neutral delay nonsingular system (3.22) is asymptotically stable.
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Remark 3.2.When H(x(t − k)) = G(x(t − ρ)) = 0, system (3.22) reduces to the Riemann-Liouville q-
fractional neutral systems with mixed delays in [21]. Additionally, if the integral term along with the non-linear
terms is taken to be zero, then the system 3.22 is reduced to the system of Liu et al., (see [15]). This explanation
is detailed by Yang et al., (see [Yang et al., [21]; Remark 1]). Thus, our study generalizes and extends some
results found in the literature.

4. Numerical applications

In this part of our study, we give some numerical examples embodying the conditions we obtained theoretically
in the previous part, together with their solutions and graphics.

Example 4.1. Let us define the below nonlinear q-fractional neutral delay singular system as:

A∇α
q x(t)−B∇α

q x(t− k) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)), (4.1)

for 0 < α < 1, 0 < q < 1, x(t) =
[
x1(t) x2(t)

]T
, k = 0.5, ρ = 0.8,m = 1, a = 0.2, b = 0.3, c = 0.4, d = 0.6, ϵ =

1.5, λ = 2,

A =

[
1 0
0 0

]
, D =

[
−6 0
0 −10

]
, U =

[
0.03 0
0 −0.12

]
,

L =

[
0.01 0
0 0.032

]
, B =

[
0.05 0
0 0.4

]
.

According to Dai (see [10]), Xu and Lam (see [23]), and Wu et al. (see [20]), it is clear that the system (4.1) is
regular and impulse-free. Also, the integral term in the system (4.1) is accepted as defined in the system (3.1).

Now, we select

P =

[
3 0
0 2

]
, Q =

[
2 0
0 0.2

]
, R =

[
2 0
0 0.05

]
,K =

[
3 0
0 0.8

]
,

S1 =

[
0.5 0
0 0.03

]
, S2 =

[
0.03 0
0 0.02

]
, S3 =

[
0.1 0
0 0.5

]
,

S4 =

[
0.2 0
0 0.3

]
, S =

[
0.5
0.05

]
, Z =

[
0

−1.2

]
.

If we calculate some mathematical operations with the help of MATLAB-Software, then we can obtain Γ < 0. Be-
cause of the all eigenvalues of Γ are −36.2382,−10.4257,−3.4660,−2.2800,−2.2012,−2.0264,−2.0002,−1.9809,

−1.8647,−1.7430,−0.7865,−0.0800,−0.0626,−0.0498. Thus, all conditions of Theorem 3.1 are satisfied. In view
of Theorem 3.1, the zero solution of the nonlinear q-fractional delay neutral singular system (4.1) is asymptot-
ically admissible. Moreover, the graph showing the numerical simulation of the system (4.1) is given in Figure
1.
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Figure 1. Numerical simulation of system (4.1).

Example 4.2. Let us define the below nonlinear q-fractional neutral delay singular system as:

A∇α
q x(t)−B∇α

q x(t− k) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)), (4.2)

for 0 < α < 1, 0 < q < 1, x(t) =
[
x1(t) x2(t)

]T
, k = 0.5, ρ = 0.8,m = 1, a = 0.2, b = 0.3, c = 0.4, d = 0.6, ϵ =

1.5, λ = 2,

A =

[
1 0
0 0

]
, D =

[
−0.2 0
0 −0.3

]
, U =

[
0.3 0
0 −0.2

]
,

L =

[
0.1 0
0 0.32

]
, B =

[
0.5 0
0 0.4

]
.

According to Dai (see [10]), Xu and Lam (see [23]) and Wu et al. (see [20]), it is clear that the system (4.2) is
regular and impulse-free. Also, the integral term in the system (4.2) is accepted as defined in system (3.1).

Now, we select

P =

[
0.3 0
0 0.2

]
, Q =

[
2 0
0 0.2

]
, R =

[
0.2 0
0 0.05

]
,K =

[
1 0
0 0.8

]
,

S1 =

[
0.5 0
0 0.03

]
, S2 =

[
0.03 0
0 0.02

]
, S3 =

[
0.1 0
0 0.5

]
,

N1 =

[
0.2 0
0 0.3

]
, N2 =

[
0.2 0
0 0.3

]
, N3 =

[
0.5 0
0 0.05

]
.

If we calculate some mathematical operations with the help of MATLAB-Software, then we can obtain Π < 0.

Because of the all eigenvalues of Π are −5.2300,−3.4691,−2.5061,−2.0987,−1.9411,−1.5472,−1.3107,−0.5960,

−0.2800,−0.2427,−0.1617,−0.0800,−0.0561,−0.0122. Thus, all conditions of Theorem 3.2 are satisfied. In view
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of Theorem 3.2, the zero solution of the nonlinear q-fractional delay neutral singular system (4.2) is asymp-
totically admissible. Moreover, the graph showing the numerical simulation of the system (4.2) is as given in
Figure 2.

Figure 2. Numerical simulation of the system (4.2).

Example 4.3. Let us define the below nonlinear q-fractional neutral delay system as:

∇α
q x(t)−B∇α

q x(t− k) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)), (4.3)

for 0 < α < 1, 0 < q < 1, x(t) =
[
x1(t) x2(t) x3(t)

]T
, k = 0.5, ρ = 0.6, a = 0.2, b = 0.3, c = 0.4, d = 0.6, ϵ =

1.5, λ = 2,

D =

 −4 0 0
0 −6 0
0 0 −8

 , U =

 0.3 0 0
0 −0.2 0
0 0 −0.4

 ,

L =

 0.1 0 0
0 0.32 0
0 0 0.25

 , B =

 0.5 0 0
0 0.4 0
0 0 0.3

 .

Also, the integral term in the system (4.3) is accepted as defined in the system (3.1).

Now, we select
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P =

 3 0 0
0 1 0
0 0 2

 , Q =

 2 0 0
0 0.2 0
0 0 0.4

 , R =

 0.2 0 0
0 0.05 0
0 0 0.06

 ,

K =

 1 0 0
0 0.8 0
0 0 1

 , S1 =

 0.5 0 0
0 0.03 0
0 0 0.04

 , S2 =

 0.03 0 0
0 0.02 0
0 0 0.01

 ,

S3 =

 0.1 0 0
0 0.5 0
0 0 0.3

S4 =

 0.2 0 0
0 0.3 0
0 0 0.4

 .

If we calculate some mathematical operations with the help of MATLAB-Software, then we can obtain Σ < 0.

Because of the all eigenvalues of Σ are −27.8226,−12.6951,−9.6130,−2.2865,−2.2228,−2.0002,−1.8478,−1.8378,

−1.6232,−0.9093,−0.2800,−0.2800,−0.2410,−0.2210,−0.0800,−0.0631,−0.0545,−0.0443,−0.0171,−0.0154,

−0.0037. Thus, all conditions of Theorem 3.3 are satisfied. In view of Theorem 3.3, the zero solution of the
nonlinear q-fractional delay neutral system (4.3) is asymptotically stable. Moreover, the graph showing the
numerical simulation of the system (4.3) is given in Figure 3.

Figure 3. Numerical simulation of the system (4.3).

Example 4.4. Let us define the below nonlinear q-fractional nonsingular neutral delay system as:

∇α
q x(t)−B∇α

q x(t− k) = Dx(t) + Ux(t− k) + L

∫ t

t−ρ

h(t− s)x(s)∇qs

+H(x(t− k)) +G(x(t− ρ)), (4.4)

for 0 < α < 1, 0 < q < 1, x(t) =
[
x1(t) x2(t) x3(t)

]T
, k = 0.4, ρ = 0.6, a = 0.12, b = 0.13, c = 0.5, d =

0.4, ϵ = 1.5, λ = 2,
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D =

 −3 0 0
0 −7 0
0 0 −3

 , U =

 0.3 0 0
0 0.2 0
0 0 0.15

 ,

L =

 0.1 0 0
0 0.32 0
0 0 0.35

 , B =

 0.02 0 0
0 0.06 0
0 0 0.04

 .

Also, the integral term in the system (4.4) is accepted as defined in the system (3.1).
Now, we select

P =

 3 0 0
0 2 0
0 0 1

 , Q =

 2 0 0
0 0.2 0
0 0 0.3

 , R =

 2 0 0
0 0.05 0
0 0 0.06

 ,

K =

 3 0 0
0 0.8 0
0 0 0.9

 , S1 =

 0.5 0 0
0 0.3 0
0 0 0.4

 , S2 =

 0.3 0 0
0 0.2 0
0 0 0.4

 ,

S3 =

 0.1 0 0
0 0.5 0
0 0 0.08

 .

If we calculate some mathematical operations with the help of MATLAB-Software, then we can obtain Λ < 0.

Because of the all eigenvalues of Λ are −21.0050,−9.8250,−3.3461,−2.6800,−2.4009,−2.0102,−2.0070,−1.9913,

−1.9187,−1.6049,−1.5721,−0.9193,−0.5800,−0.4800,−0.2688,−0.1521,−0.0276,−0.0275. Thus, all conditions
of Theorem 3.4 are satisfied. In view of Theorem 3.4, the zero solution of the nonlinear q-fractional delay neutral
system (4.4) is asymptotically stable. Moreover, the graph showing the numerical simulation of the system (4.4)
is given in Figure 4.

5. Conclusion
We have found some sufficient conditions for two different q fractional neutral systems with delay. First, we have
found sufficient conditions for the asymptotic admissibility of a nonlinear delayed q fractional neutral singular
system. Then, we have found sufficient criteria for the asymptotic stability of a nonsingular q-fractional nonlinear
delayed neutral system. We have used the Lyapunov-Krasovskii functional, the matrix inequality, and various
lemmas to obtain these conditions. We have shown some numerical examples demonstrating the applicability
of these finally obtained conditions. We believe that our study is interesting and up-to-date enough to make a
comprehensive contribution to the relevant literature. In our next study, we intend to consider the system as a
variable delay.
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Figure 4. Numerical simulation of the system (4.4).
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