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Abstract: One nonlocal boundary value problem for the Laplace equation in a bounded domain is considered in
this work. The concept of a strong solution to this problem is introduced. The correct solvability of this problem in
the Sobolev spaces generated by the weighted mixed norm is proved by the Fourier method. In a classic statement,
this problem has been earlier considered by E.I.Moiseev [34]. A similar problem has been treated by M.E.Lerner and
O.A.Repin [30].
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1. Introduction
Consider the following (formal for now) nonlocal boundary value problem for the Laplace equation:

uxx + uyy = 0 , 0 < x < 2π , 0 < y < h , (1.1)

u (x, 0) = φ (x) , u (x, h) = ψ (x) , 0 < x < 2π, (1.2)

ux (0, y) = 0, u (0, y) = u (2π, y) , 0 < y < h (1.3)

Such problems have specific peculiarities compared to the ones with local conditions. Earlier, F.I.Frankl
[21]; [22, p.453-456] considered the problem with nonlocal boundary conditions for a mixed-type equation.
Bitsadze-Samarski problem [13] for elliptic equations is also nonlocal with supports on the part of the boundary
of the domain, and these supports are free of other boundary conditions. In [28], N.I. Ionkin and E.I. Moiseev
solved the boundary value problem for multidimensional parabolic equations with nonlocal conditions, whose
supports are the characteristic and the improper parts of the boundary of the domain. In a classic statement,
the problem (1.1)-(1.3) has been considered in [34] and [30].

In this work, we consider the problem (1.1)-(1.3) in a weighted Sobolev space with the weight belonging
to the Muckenhoupt class. We define a concept of a strong solution to this problem. And, using the Fourier
method, we prove the correct solvability of this problem.
∗Correspondence:telmankasumov@rambler.ru
2010 AMS Mathematics Subject Classification: 35A01; 35J05; 35K05
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Note that the study of solvability of elliptic equations regarding so-called nonstandard function spaces
and also in the weighted Sobolev spaces faces some difficulties compared to the weightless case. That is why the
number of research works dedicated to this field has been growing in recent years (see, e.g., [2, 3, 7–10, 12, 14–
17, 19, 31, 35]), and the elaboration of a corresponding theory is far from complete. Note also that the same
problem was considered in the work [31] regarding unbounded rectangular.

2. Auxiliary concepts and facts

We will use standard notations. N will be the set of positive integers, while α = (α1; α2) ∈ Z+ × Z+ will

denote a multiindex, where Z+ = N
⋃
{0} . Denote ∂αu = ∂|α|u

∂xα1∂yα2
, where |α| = α1 + α2. By |M | we will

denote the Lebesgue measure of the set M ; M̄ will be the closure of M . C∞ (M̄) will stand for the infinitely
differentiable functions on M̄ , and C∞

0 (M) will denote the infinitely differentiable and finite functions on M .
Throughout this paper we will assume that p′ is a conjugate number of p , 1 < p < +∞ : 1

p′ +
1
p = 1 . dσ is an

area element.
Let us define our weighted Sobolev space. Let ν : [0, 2π] → (0,+∞) be some weight function,

Π = (0, 2π)× (0, h) . Denote by Lp;ν (Π) a Banach space of functions on Π with the mixed norm

∥f∥Lp,ν(Π)
=

∫ h

0

(∫ 2π

0

|f (x; y)|p ν (x) dx
) 1

p

dy , 1 < p < +∞.

Denote by W 2
p,ν (Π) a Sobolev space with the norm

∥u∥W 2
p;ν

=
∑
|α|≤2

∥∂αu∥Lp,ν(Π) .

Now denote by Lp,ν (I) , where I = (0, 2π) , a weighted Lebesgue space with the norm

∥f∥Lp,ν(I)
=

(∫
I

|f (x)|p ν (x) dx
) 1

p

.

We will also consider the weighted Sobolev space W 2
p,ν (I) , with the norm

∥f∥W 2
p,ν(I)

= ∥f∥Lp,ν(I)
+ ∥f ′∥Lp,ν(I)

+ ∥f ′′∥Lp,ν(I)
.

We will need the class of Muckenhoupt weights Ap (I) . This is a class of 2π− periodic functions (i.e.
the class of functions ν periodically extended to the real axis with period 2π ), satisfying the condition

sup
J⊂I

(
1

|J |

∫
J

ν (t) dt

)(
1

|J |

∫
I

|ν (t)|−
1

p−1 dt

)p−1

< +∞,

where sup is taken over all intervals J ⊂ I , and |J | is a length of the interval J .
We will also need some concepts and facts from the theory of bases in a Banach space. Related to these

facts and concepts one can see [4] and references therein. Let X be a Banach space.
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Definition 2.1 A system {un}n∈N ⊂ X is called a basis if any element f ∈ X is uniquely represented as a
series

f =

∞∑
n=1

cnun,

convergent in the norm X .

Definition 2.2 A system {un}n∈N ⊂ X is called complete in X if Sp {un} = X and minimal in X if

un /∈ Sp{uk}k ̸=n .

It is known that each basis of the space X is a complete and minimal system in X , the converse is not
true in general.

Minimum criterion. The system {un}n∈N is minimal in X if and only if there exists a biorthogonal
system, i.e. there exists a system {vn}n∈N ⊂ X∗ such that ⟨un, vk⟩ = vk (un )=δnk , where δnk is the
Kronecker symbol.

Basis criterion. The system {un}n∈N ⊂ X is a basis of the space X if and only if the following
conditions are satisfied:

1) {un}n∈N is complete and minimal in X ;

2) uniformly bounded projectors

Pnf =

n∑
k=1

⟨f, vk⟩uk,

where {vk}k∈N is a biorthogonal system.

Definition 2.3 A system {un}n∈N ⊂ X is called a basis with brackets in X if there exists a sequence of
integers 0 = n0 < n1 < n2 < . . . such that each element of f ∈ X is uniquely represented as a series

f =

∞∑
k=0

nk+1∑
i=nk+1

ciui,

convergent in the norm X .

To obtain our main results, we will use the basicity of the classical trigonometric system in the weighted Lebesgue
spaces. From the results obtained by R.A.Hunt, W.S.Young in [27], the statement below follows immediately:

Proposition 2.4 Trigonometric system {1; cosnx; sinnx}n∈N forms a basis for the weighted Lebesgue space
Lp,ν (I) , 1 < p < +∞ ⇔ ν ∈ Ap (I) .

Note that the basicity problems of perturbed trigonometric systems have been also studied in [5, 6, 25].
The same problems have been studied in [4, 11, 24, 26, 36] for the eigenfunction systems of some differential
operators.
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It is known that if ν ∈ Ap (I) , 1 < p < +∞ , then C∞
0 (I) is dense in Lp,ν (I) . In fact,

ν ∈ Ap (I) ⇒ ∃ p0 ∈ (1,+∞) ⇒ ν ∈ Lp0
(I)

(see, e.g., [18, 20, 23]). We have

∫
I

|f |p ν dx ≤
(∫

I

|f |pp
′
0 dx

) 1
p′0
(∫

I

νpodx

) 1
p0

.

Hence it follows that
∥f∥Lp,ν(I)

≤ C ∥f∥Lp1
(I) , (2.1)

where p1 = pp′0 and C > 0 is a constant independent of f , i.e. the continuous embedding Lp1
(I) ⊂ Lp,ν (I)

is true. As C∞
0 (I) is dense in Lp1 (I) , from the inequality (2.1) it follows that it is also dense in Lp;ν (I) .

Consequently, Lp1 (I) is densely embedded into Lp,ν (I) .
To obtain our main results we will extensively use the following Minkowski inequality (see, e.g., [29, p.24])

for integrals.

Proposition 2.5 [29] Let (Mk; σMk
; µk) , k = 1, 2 , be measurable spaces with σ -finite measures µk and

F (x; y) be a µ1 × µ2 -measurable function. Then∥∥∥∥∫
M1

F (x; y) dµ1 (x)

∥∥∥∥
Lp(µ2)

≤
∫
M1

∥F (x; ·)∥Lp(µ2)
dµ1 (x) ,

where

∥f∥Lp(µ2)
=

(∫
M2

|f |p dµ2

) 1
p

.

From ν ∈ Ap (I) , 1 < p < +∞ , it is obvious that Lp,ν (I) ⊂ L1 (I) . Then, the continuous embedding
W 2

p,ν (Π) ⊂ W 2
1 (Π) is also true. Consequently, every function u ∈ W 2

p,ν (Π) has traces u|∂Π and ux|∂Π as
functions of space L1(∂Ω; dσ) on the boundary ∂Π (correctly defined with respect to the Lebesgue measure on
∂Π).

Let u ∈ W 2
p,ν (Π) , and ξ ∈ [0, h] be an arbitrary number. Denote Iξ = {(x, ξ) : x ∈ I} . Obviously,

u ∈ W 2
1 (Π) . Denote the trace of the function u (x, y) on Iξ , ξ ∈ (0, h) , by Fξ (x) : Fξ (x) = u (x, ξ) , 0 <

x < 2π. Let us show that Fξ ∈ Lp,ν (I) . Assume Πξ = {(x, y) : x ∈ I , y ∈ (0, ξ)} . It is absolutely clear that
u ∈ W 2

p,ν (Πξ) . From the condition v ∈ Ap (I) it follows that v ∈ Ap (Πξ) (can be verified directly), and so

C∞ (Π̄ξ

)
is dense in W 2

p,ν (Πξ) . Let us first assume that u ∈ C∞ (Π̄ξ

)
. Without loss of generality, we suppose

that u (x; 0) = 0, ∀ x ∈ I . Then, we have

Fξ (x) = u (x; ξ) =

∫ ξ

0

∂u (x, y)

∂y
dy, a.e. x ∈ I.

Applying Minkowski’s inequality (Proposition 2.5), we obtain

∥Fξ ∥Lp,ν(I)
≤
∥∥∥∥∂u∂y

∥∥∥∥
Lp,ν(Πξ)

≤ ∥u∥W 2
p,ν

(Πξ)
.

24



GASYMOV et al./Turk J Math

Using this estimate and the fact that C∞ (Π̄ξ

)
is dense in W 2

p,ν (Πξ) , absolutely similar to the weightless case
we can prove that the trace of ∀ u ∈W 2

p,ν (Π) on Iξ satisfies the estimate

∥Fξ∥Lp,ν(I)
≤ ∥u∥W 2

p,ν
(Π) .

If u satisfies (1.1), then it is known that u ∈ C∞ (Π) ⇒ Fy (x) = u (x, y) , ∀x ∈ I .
So let us introduce the following

Definition 2.6 A function u ∈ W 2
p,ν (Π) is called a strong solution of the problem (1.1)-(1.3) if the equality

(1.1) is satisfied for a.e. (x; y) ∈ Π and its trace u|∂Π satisfies the relations (1.2), (1.3).

Introduce the systems of functions {un (x) }n∈Z+ and {ϑn (x) }n∈Z+ , where

u2n (x) = cosnx, n ∈ Z+, u2n−1 (x) = x sinnx, n ∈ N, (2.2)

ϑ0 (x) =
1

2π2
(2π − x) , ϑ2n (x) =

1

π2
(2π − x) cosnx, ϑ2n−1 (x) =

1

π2
sinnx , n ∈ N. (2.3)

Note that these systems are biorthogonal, which can be verified directly. To obtain our main result, we will
significantly use the following theorem.

Theorem 2.7 Let ν ∈ Ap (I) , 1 < p < +∞ . Then the system (2.2) forms a basis for Lp,ν (I) .

Proof Conjugate space of Lp;ν (I) is Lp′,ν (I) . It is absolutely clear that the system (2.3) belongs to Lp′,ν (I)

and is biorthonormalized to the system (2.2) (see [34]). It follows that (2.2) is minimal in Lp,ν (I) . On the other
hand, from [1] it follows that the system (2.2) forms a basis with brackets for Lp (I) for every p ∈ (1,+∞) ,
and, consequently, it is complete in Lp1

(I) , where the number p1 is the same as in inequality (2.1). Then from
the embedding Lp1

(I) ⊂ Lp,ν (I) it follows that (2.2) is complete and, consequently, complete and minimal in
Lp,ν (I) .

Let us prove the basicity of the system (2.2) for Lp,ν (I) . Consider the projectors

Pn (f) =

n∑
k=0

⟨f, ϑk⟩uk, ∀ n ∈ Z+, ∀f ∈ Lp,ν (I) ,

where

⟨f, g⟩ =
∫ 2π

0

f (x) g (x) dx.

From the basicity with brackets of the system (2.2) for Lp,ν (I) it follows that

∃C > 0 : ∥P2n (f)∥Lp,ν(I)
≤ C ∥f∥Lp,ν(I)

, ∀ n ∈ N. (2.4)

On the other hand, from (2.2), (2.3) we have

∃M > 0 : ∥un∥Lp,ν(I)
≤M, ∥ϑn∥Lp′,ν(I)

≤M, ∀ n ∈ N. (2.5)
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Considering the relations (2.4), (2.5), we obtain

∥P2n+1 (f)∥Lp,ν(I)
= ∥P2n (f) + ⟨f, ϑ2n+1⟩u2n+1∥Lp,ν(I)

≤ ∥P2n (f)∥Lp,ν(I)
+

+ ∥⟨f, ϑ2n+1⟩u2n+1∥Lp,ν(I)
≤ C ∥f∥Lp,ν(I)

+ ∥f∥Lp,ν(I)
∥u2n+1∥Lp,ν(I)

∥ϑ2n+1∥Lp′,ν(I)
≤

≤
(
C +M2

)
∥f∥Lp,ν(I)

. (2.6)

From (2.4), (2.6) it follows that the projectors {Pn}n∈Z+ are uniformly bounded, and, according to the criterion
for basicity, this means that the system (2.2) forms a basis for Lp,ν (I) . The theorem is proved. 2

3. Main results
In this section, we will study the existence and uniqueness of strong solution of the problem (1.1)-(1.3) in the
sense of Definition 2.6. First, denote Γ0 = {(0; y) : 0 < y < h} and Γ2π = {(2π; y) , 0 < y < h} . Consider
the following nonlocal problem

∆u = 0 , (x; y) ∈ Π, (3.1)

u|I0 = φ , u|Ih = ψ, u|Γ0 = u|Γ2π , ux|Γ0 = 0. (3.2)

By the solution of this problem, we mean a function u ∈ W 2
p;ν (Π) , which satisfies the equality (3.1) a.e. in Π

and whose traces satisfy the relations (3.2) on the boundary ∂Π = I0
⋃
Ih
⋃

Γ0

⋃
Γ2π . Let us first prove the

uniqueness of the solution. The following theorem is true:

Theorem 3.1 Let ν ∈ Ap (I) , 1 < p < +∞ , and the functions φ, ψ ∈ W 2
p,ν (I) satisfy the conditions

φ (2π)− φ (0) = φ′ (0) = 0, ψ (2π)− ψ (0) = ψ′ (0) = 0 . If the problem (3.1),(3.2) has a solution in W 2
p,ν (Π) ,

then it is unique.

Proof Suppose u (x, y) ∈W 2
p;ν (Π) is a solution of the problem (3.1), (3.2). Consider Un (y) = ⟨u (·, y) , ϑn (·)⟩ ,

i.e.
U0 (y) =

1
2π2

∫ 2π

0
u (x, y) (2π − x) dx ,

U2n (y) =
1
π2

∫ 2π

0
u (x, y) (2π − x) cosnx dx ,

U2n−1 (y) =
1
π2

∫ 2π

0
u (x, y) sinnx dx , n ∈ N .


(3.3)

From Theorems 1.1.1-1.1.3 of [32, pp. 13-15] it follows that the functions Un (y) are twice differentiable and
they can be differentiated under the integral sign. Since the function u (x, y) satisfies the equation (3.1),
multiplying it by sinnx (by (2π − x) cosnx ) and integrating over I, we obtain the following relations for
U2n−1 (y) (respectively, for U2n (y)):

U ′′
2n−1 (y)− n2U2n−1 (y) = 0 , y ∈ (0.h) , (3.4)

U ′′
2n (y)− n2U2n (y) = −2nU2n−1 (y) , y ∈ (0.h) . (3.5)

By the Newton-Leibniz formula, we have
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u (x, ξ) = u (x, 0) +

∫ ξ

0

∂u (x, y)

∂y
dy = φ (x) +

∫ ξ

0

∂u (x, y)

∂ξ
dξ, a.e. x ∈ I.

Consequently

|u (x, ξ)− φ (x)| ≤
∫ ξ

0

∣∣∣∣∂u (x, y)∂y

∣∣∣∣ dy, a.e. x ∈ I.

Hence it immediately follows that

∫
I

|u (x, ξ)− φ (x)| dx ≤
∫
I

∫ ξ

0

∣∣∣∣∂u (x, y)∂y

∣∣∣∣ dy dx. (3.6)

We have |Πξ| → 0 as ξ → +0 . Then from (3.6) it follows that

uξ (·) → φ (·) , ξ → +0, (3.7)

in the norm of the space L1 (I) .
Similarly, we have

u (x, ξ) = u (x, h)−
∫ h

ξ

∂u (x, y)

∂y
dy = ψ (x)−

∫ h

ξ

∂u (x, y)

∂y
dy, a.e. x ∈ I.

Hence ∫
I

|u (x, ξ)− ψ (x)| dx ≤
∫
I

∫ h

ξ

∣∣∣∣∂u (x, y)∂y

∣∣∣∣ dy dx. (3.8)

As |Π\Πξ| → 0 when ξ → h− 0 , from (3.8) it follows that

uξ (·) → ψ (·) , ξ → h− 0, (3.9)

in the norm of the space L1 (I) .
On the other hand, it is clear that Un (y) ∈ W 2

1 (0, h) . Hence it immediately follows that there exist
limits

lim
y→+0

Un (y) = Un (0) , lim
y→h−0

Un (y) = Un (h) , ∀n ∈ Z+.

By (3.7) and (3.9), from the last two relations it immediately follows that

Un (0) = φn, Un (h) = ψn, ∀ n ∈ Z+, (3.10)

where 
φ0 = 1

2π2

∫ 2π

0
φ (x) (2π − x) dx,

φ2n−1 = 1
π2

∫ 2π

0
φ (x) sinnx dx,

φ2n = 1
π2

∫ 2π

0
φ (x) (2π − x) cosnx dx, n ∈ N ;

(3.11)
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
ψ0 = 1

2π2

∫ 2π

0
ψ (x) (2π − x) dx,

ψ2n−1 = 1
π2

∫ 2π

0
ψ (x) sinnx dx,

ψ2n = 1
π2

∫ 2π

0
ψ (x) (2π − x) cosnx dx, n ∈ N.

(3.12)

The solution of the problem (3.4), (3.10) has the following expression

U2n−1 (y) = ψ2n−1
sinhny

sinhnh
+ φ2n−1

sinhn (h− y)

sinhnh
, ∀ n ∈ N, (3.13)

and the solution of the problem (3.5), (3.10) is

U0 (y) =
ψ0 − φ0

h
y + φ0, (3.14)

+φ2n
sinhn (h− y)

sinhnh
− y

(
ψ2n−1

coshny

sinhnh
− φ2n−1

coshn(h− y)

sinhnh

)
, ∀ n ∈ N. (3.15)

Now we can proceed to the proof of the uniqueness of the solution. For this, it suffices to prove that
the corresponding homogeneous problem has only a trivial solution. In fact, if φ (x) = ψ (x) ≡ 0 , then
φn = ψn = 0, ∀n ∈ Z+, and from the formulas (3.13)-(3.15) it follows that Un (y) = 0 , ∀ y ∈ (0, h) , ∀n ∈ Z+ .
As uy ∈ Lp,ν (I) , ∀y ∈ (0, h) , the basicity of the system (2.2) for Lp,ν (I) implies uy (x) = 0 a.e. x ∈ I and
∀ y ∈ (0, h) . Hence it follows that u (x; y) = 0 a.e. (x; y) ∈ Π . Consequently, the homogeneous problem has
only a trivial solution, and this completes the proof of uniqueness. 2

Now let us prove the existence of the solution. The following theorem is true.

Theorem 3.2 Let the weight function ν (x) belong to the class Ap (I) , 1 < p < +∞ , and the boundary
functions φ (x) and ψ (x) belong to the space W 2

p;ν (I) and satisfy the conditions

φ (0)− φ (2π) = φ′ (0) = 0, ψ (0)− ψ (2π) = ψ′ (0) = 0.

Then the problem (1.1)-(1.3) has a (unique) solution in W 2
p;ν (Π) .

Proof Consider the function

u (x, y) = U0 (y) +

∞∑
n=1

Un (y) un (x) = U0 (y)+

+

∞∑
k=1

(U2k (y) cos kx+ U2k−1 (y) x sin kx) , (x, y) ∈ Π, (3.16)

where the coefficients U0 (y) , U2k (y(U2k(y))) , U2k−1 (y(U2k−1(y))) , k ∈ N , are defined by (3.13)-(3.15). Let
us show that the function u (x, y) belongs to W 2

p;ν (Π) . Denote by uα1,α2 (x, y) the sum of the series obtained
by the formal differentiation of the series (3.16), i.e.

uα1,α2 (x, y) = U
(α2)
0 (y) +

∞∑
n=1

U (α2)
n (y) u(α1)

n (x) , (3.17)
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where α1, α2 ∈ Z+, α1 + α2 = 0, 1, 2; u0,0 (x, y) = u (x, y) and U
(α2)
n (y) = dα2Un

dyα2
; u(α1)

n (x) = dα1un

dxα1
.

Let us first consider the following member of series (3.16)

u1 (x, y) =

∞∑
k=1

U2k−1 (y) x sin kx.

So, differentiating this series formally term-by-term, we have

∂2u1
∂y2

=

∞∑
k=1

U ′′
2k−1 (y) x sin kx =

∞∑
k=1

k2U2k−1 (y) x sin kx, (3.18)

∂u1
∂x

=

∞∑
k=1

U2k−1 (y) sin kx+

∞∑
k=1

kU2k−1 (y) x cos kx, (3.19)

∂2u1
∂x2

= 2

∞∑
k=1

kU2k−1 (y) cos kx−
∞∑
k=1

k2U2k−1 (y) x sin kx. (3.20)

Denote

w (x, y) =

∞∑
k=1

k2U2k−1 (y) x sin kx.

Let us show that the function w (x, y) belongs to Lp;ν (Π) . Let

φ′′
2k−1 =

1

π2

∫ 2π

0

φ′′ (x) sin kx dx, ψ′′
2k−1 =

1

π2

∫ 2π

0

ψ′′ (x) sin kx dx.

From (3.11), integrating by parts, we obtain

φ2k−1 = − 1

π2k

∫ 2π

0

φ (x) d cos kx = − 1

π2k

(
φ (2π)− φ (0)−

∫ 2π

0

φ′ (x) cos kx dx

)
=

=
1

π2k

∫ 2π

0

φ′ (x) cos kx dx = − 1

π2k2

∫ 2π

0

φ′′ (x) sin kx dx = − 1

k2
φ′′
2k−1.

Similarly, from (3.12) we have

ψ2k−1 = − 1

k2
ψ′′
2k−1.

Thus

w (x, y) = −
∞∑
k=1

(
ψ′′
2k−1

sinh ky

sinh kh
+ φ′′

2k−1

sinh k (h− y)

sinh kh

)
x sin kx .

It is known that if ν ∈ Ap (I) , then ∃ α > 1 : ν ∈ Lα (I) (see, e.g., [23, p. 395]). Let 1
α + 1

α′ = 1 . Applying
Holder’s inequality, we obtain

(∫ 2π

0

|w (x, y)|p ν (x) dx
) 1

p

≤
(∫ 2π

0

vα (x) dx

) 1
α
(∫ 2π

0

|w (x, y)|pα
′
dx

) 1
pα′

= c

(∫ 2π

0

|w (x, y)|p1 dx

) 1
p1

,
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where c =
(∫ 2π

0
vα (x) dx

) 1
α (consequently, the constant c does not depend on w (x, y)) and p1 = pα′ . Let us

consider the cases p ≥ 2 and 1 < p < 2. Consider the following separate cases regarding p .
I. p ≥ 2 . Then p1 = pα′ > 2 . From the previous inequality, we have

(∫ 2π

0

|w (x, y)|p ν (x) dx
) 1

p

≤ c

∞∑
k=1

|U2k−1 (y)|
(∫ 2π

0

|u2k−1 (x)|p1 dx

) 1
p1

≤

≤ c1

∞∑
k=1

|U2k−1 (y)| ≤ c 1

∞∑
k=1

∣∣∣∣ψ′′
2k−1

sinh ky

sinh kh
+ φ′′

2k−1

sinh k (h− y)

sinh kh

∣∣∣∣ ≤
≤ c1

∞∑
k=1

(∣∣ψ′′
2k−1

∣∣ sinh ky
sinh kh

+
∣∣φ′′

2k−1

∣∣ sinh k (h− y)

sinh kh

)
.

Hence, first integrating with respect to y ∈ (0, h) and then applying Holder’s inequality for any β ∈ (1,∞) , we
obtain

∥w∥Lp,ν(Π) ≤ c1

∞∑
k=1

(∣∣ψ′′
2k−1

∣∣
sinh kh

∫ h

0

sinh kydy +

∣∣φ′′
2k−1

∣∣
sinh kh

∫ h

0

sinh k (h− y) dy

)
≤

≤ c1

∞∑
k=1

∣∣ψ′′
2k−1

∣∣+ ∣∣φ′′
2k−1

∣∣
sinh kh

∫ h

0

sinh kydy ≤

≤ c1

∞∑
k=1

cosh kh− 1

k sinh kh

(∣∣ψ′′
2k−1

∣∣+ ∣∣φ′′
2k−1

∣∣) ≤
≤ c2

∞∑
k=1

1

k

(∣∣ψ′′
2k−1

∣∣+ ∣∣φ′′
2k−1

∣∣) ≤ c2

( ∞∑
k=1

1

kβ′

) 1
β′
( ∞∑

n=1

|φ′′
n|

β

) 1
β

+

( ∞∑
n=1

|ψ′′
n|

β

) 1
β

 .

Now, assuming β ≥ 2 and applying classical Hausdorff-Young inequality (see, e.g. [37, p.154]), we have

∥w∥Lp,ν(Π) ≤ c3

(
∥ψ′′∥Lβ′ (I) + ∥φ′′∥Lβ′ (I)

)
. (3.21)

It is known that if ν ∈ Ap (I) , 1 < p < +∞ , then ∃ q : 1 < q < p ⇒ ν ∈ Aq (I) . Let r = p
q and g ∈ Lp,ν (I) .

Then 1 < r < p and we have

(∫
I

|g|r dx
) 1

r

=

(∫
I

|g|
p
q ν

1
q ν−

1
q dx

) 1
r

≤
(∫

I

|g|p ν dx
) 1

qr
(∫

I

ν−
q′
q dx

) 1
q′r

=

=

(∫
I

|g|p ν dx
) 1

p
(∫

I

ν−
1

q−1 dx

) q−1
p

.

As − q′

q = 1
1−q , from ν ∈ Aq (I) it follows that ν−

1
q−1 ∈ L1 (I) . Then, the last inequality means g ∈ Lr (I) and

∥g∥Lr(I)
≤ c ∥g∥Lp;ν(I)

,
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where c > 0 is a constant independent of g . Also note that the continuous embedding Lp,ν (I) ⊂ Lα (I) is true
for every α ∈ (1, r) . Let us choose β big enough to satisfy the condition 1 < β′ < r . Then from (3.21) we
obtain

∥w∥Lp;ν(Π) ≤ c
(
∥ψ′′∥Lp;ν(I)

+ ∥φ′′∥Lp;ν(I)

)
.

II. p ∈ (1, 2) . As in the previous case, note that there exists a number α > 1 such that ν ∈ Lα (I) .
But then ν ∈ Ls (I) for every s ∈ (1, α) . Therefore, choosing α > 1 close enough to 1 , we can provide that
p1 = pα′ > 2 (this is possible, because α′ → +∞ as α→ 1 + 0). With this, further considerations are carried
out similar to the previous case.

Other series from (3.18)-(3.20), and, consequently, all series from (3.17) are estimated in a similar way.
So, as a result, we obtain

∥u∥W 2
p;ν(Π) ≤ c

(
∥φ∥W 2

p;ν(I)
+ ∥ψ∥W 2

p;ν(I)

)
,

where c > 0 is a constant independent of φ and ψ . The fulfillment of equation (3.1) by u (·; ·) can be verified
directly. Let us verify the fulfillment of boundary conditions. Denote the trace operators on Γ0 , Γ2π, I0 and Ih

by θ0 , θ2π , T0 and Th , respectively. Let us show that T0u = φ. From the boundedness of the trace operator
T0 ∈

[
W 2

p;ν (Π) ; Lp;ν (I)
]

it follows that if um → u in W 2
p;ν (Π) , then um/I0 → u/I0 in Lp;ν (I) .

Now, let us consider the following functions

um (x, y) = U0 (y) +

m∑
n=1

(U2n (y) cosnx+ U2n−1 (y)x sinnx) , (x; y) ∈ Π,m ∈ N.

We have

T0um = um (x, 0) = U0 (0) +

m∑
n=1

(U2n (0) cosnx+ U2n−1 (0)x sinnx) =

=
1

2π2

∫ 2π

0

φ (τ) (2π − τ) dτ +
m∑

n=1

(
1

π2

∫ 2π

0

φ (τ) (2π − τ) cosnτdτ cosnx+
1

π2

∫ 2π

0

φ (τ) sinnτdτ x sinnx

)
.

The basicity of the system (2.2) for Lp;ν (I) implies T0um → φ , m→ ∞ , in Lp;ν (I) . Consequently, T0u = φ .
Absolutely similar we can show that Thum → ψ , m→ ∞ , in Lp;ν (I) . Consequently, Thu = ψ.

Consider the operators θ0 and θ2π . It is clear that θ0um = θ2πum , ∀ m ∈ N . Obviously, θ0um → θ0u

and θ2πum → θ2πu ⇒ θ0u = θ2πu . Thus, the boundary conditions (3.2) are fulfilled. Other trace relations
can be proved in a similar way.

The theorem is proved. 2
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