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Abstract: In this paper, an optimal lower bound is given for the Submanifold Dirac operator in terms of the trace of an
Energy — Momentum tensor, scalar curvature and mean curvature. In the equality case, it is proven that the submanifold

is Einstein if the normal bundle is flat.
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1. Introduction

On a compact Riemannian manifold endowed with Spin —structure, one can construct a spinor bundle. On this
spinor bundle by using the Levi— Civita connection coming from the structure of the Riemannian manifold,
the spinorial Levi— Civita connection can be built. The Dirac operator can be defined with the help of this
spinorial Levi— Civita connection [3, 12, 13]. Since the Dirac operator and the spinorial Levi— Civita connection
are carried subtle information about the geometry and topology of the manifold, many mathematicians work
on them [1, 4, 6, 7, 9-11, 14, 16]. One of these studies is done by the A. Lichnerowicz [15] to bring the lower
bounds on a compact n—dimensonal Riemannian Spin —manifold :

N> ZinfR, (1.1)

n
M

= =

where R is denoted by the scalar curvature of M. The proof is based on the well — known Schrodinger — Lichnerowicz
formula [15]. Subsequently, (1.1) is improved in terms of the Yamabe number and Energy — Momentum tensor
6, 8].

After that, on the compact n+m— dimensional Riemannian Spin — manifold N and its n > 2—dimensional
Spin — submanifold M whose normal bundle is also Riemannian Spin similar studies have been done. One of
these is done in [10] by O. Hijazi and X. Zhang. They obtain an estimate for the eigenvalue Ay of the subman-

ifold Dirac operator Dy in terms of the mean curvature as follows:

N = sup inf (et — ), (12)

c\np2—26+1 (1—np)

for some f real function, 8 # L if H # 0 for some A. Here ||[H| = /> H? is the norm of the mean curvature denoted
\/ A
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by H4 and for any spinor field ® € I'(S), R ¢ = —%( S Rijape'-el-et.ef ., %) is defined on the complement
4,5,A,B

set of zeros M. In the limiting case, if the normal bundle is flat, they showed that the manifold (M, gn| ) is an
M

Einstein. Also by using some tricks they showed that A% satisfies

22 Z%Li‘(,/nil1(RL,¢+R)—||H||)2. (1.3)

Moreover, with respect to the conformal metric Gy = e**gn, they improved (1.2) and (1.3) as

2
Yinf (/325 G+ Riw) = [1H]), ifn >3 and n(Rue +pm) > (0= D] HI?,
A2 > Mg
H_{lmf( 7+2RL¢—||HH) if n=2and, ~157 1 2R, 4 > |H|>?
4 Mo Area(M) ' Area(M)

where p1 is the first eigenvalue of the Yamabe number and Area(M) denotes the area of M. If the limiting cases

(1.4)

are achieved and the normal bundle is flat, the norm of the mean curvature is constant and the manifold (M, gn| ) is
M

Einstein.
Also, by considering the Energy — Momentum tensor defined on the complement of the set zeros of a spinorfield

® and modified scalar curvature given by

Qs(X,Y) = —Re(X Vyd+Y  Vx®, |§|2) (1.5)
o 1\ o 2
Rrue = R+Rie —4TAu—|—4VTVu—4(1 — E)T |dul”, (1.6)

respectively, the following estimate is obtained in [10] as

1 . Rroua+4Qal? n—1) 2
(et (R - Yusedil). a2
Ay > 2 1.7
H = i sup inf(1/ﬁ(RT,uyq>+4|Qq>\2) — HHH) , if n > 2 and n is odd (1.7)
6Q Mg

Tu,®

2 e(ew- m—
where T, g0 = %, 2" = 2(1 — (W)) , e=(=1)""! and

02,6 = {(ru) : n(Rrue +4|Qs|) > (n— V| H|?}. (1.8)

T,u,P

Here 7,3 and u are real functions. With respect to the conformal metric gy = e*“gn , they improved (1.7) as

ru,»+4Q
2 fgﬁmf( 1+nq;a24‘2*¢| = Yupomine | Hl ) nz2
g > . 1.9
= 1 sup mf(1 /2 (Rru,e + 4|Qa|?) — ||H||) , ifn>2andnis odd, (1.9)
aQ  Mas
e = {(nw):n(Rewe +4Qsl*) > (n - 1| H|?}, (1.10)
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and

Rewe = R+RL,¢+4(HT71—T)AU+4VTVU
—((n—1)(n—2)—|—4(2—n)7’+4(1—%)72)|du|2. (1.11)

In order to obtain geometric information related to the manifold we will extend the modified spinorial Levi— Civita

connection given in [1, 10], depending on the trace of the Energy —Momentum tensor.

In the following section, we give some fundamental facts concerning the submanifold Dirac operator [10]. Then
we obtain new lower bounds. For this bound, we consider the equality case and we show that the submanifold is an
Einstein manifold with constant mean curvature and scalar curvature. In the last section by considering modified scalar
curvature given in (1.6) we obtain some optimal bounds in terms of the mean curvature, scalar curvature, and Yamabe

number.

2. Submanifold Dirac operator

Consider (n 4+ m)—dimensional compact Riemannian Spin—manifold N with its n—dimensional submanifold M
equipped with Spin —structure and reduced Riemanian metric as described in [10]. Accordingly, since the spinor bundle
constructed on N and denoted by S is globally defined on M, we denoted the spinor bundle defined on M by S.

On the Riemannian Spin —manifold N and on its submanifold M endowed with induced Riemannian metric, one can
construct two Levi— Civita connection denoted by V and V. The corresponding spinorial Levi— Civita connections are

constructed by lifting V and V to the spinorial bundle S and denoted by the same symbol, respectively. Also, on the

spinor bundle S, the following well —known positive definite hermitian metric can be defined as
(v-®,v-T) = *,7),
(2.1)

where '+’ denotes the Clifford multiplication and v € T(T*N), and ®, ¥ € T'(S) [12]. According to the local coordinates,
the Dirac operators are defined on the manifold N and its submanifold M as Do = € - %icb and D® =e; - VP,
respectively. With respect to the metric ( , ), %,v are compatible and D is formally self —adjoint. Moreover, this
metric is globally defined along M [10].

The identities used in this paper are given as follows without any need for proof since they are identities mentioned
in [10]. Let us have a point # € M and an orthonormal basis {e-} of T, N with {ea} normal and {e;} tangent to
M such that (Vie;) = 0. It will be used in the upcoming proofs throughout in the whole paper indices are ranged as

follows:
1ST7/B7’Y7n§n+m; 1§23‘j7k7l§n7
n+1<AB<n+m. (2.2)

Let €7 be the coframe at point . Then the relation between V and V is given by
~ 1 A
Vi=V,;+ §hAij€ -el, (23)

where hai; = haji = (%i@A,@j) is the second fundemantal form. Let ﬁfgw, and R;jx and R;jap be the curvature

tensor of N, M and the normal bundle of M, respectively. Recall that R;jap = 0 the normal bundle of M is flat.
With respect to (2.3), D is given as

D=D+ %HAeA., (2.4)
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where Ha = ) hai; is denoted the component of the mean curvature of M. For any spinor field ¢ € F(S)‘M, the
i=1

Schrodinger — Lichnerowicz — type formula is described as follows
1
|D®|* = / (|V<I>|2 + 1(R+ Rl@) |®)°. (2.5)
M M

Considering the operator w, defined on S by,

wli = (—1)(m(m71)/4)e’41 ceftz e (2.6)

)

where {e“} is an orthonormal coframe and Dy satisfies the following relation

Dy =w, - D. (2.7)

Recall that Dg is formally self —adjoint with respect to the metric ( , ) and satisfies D*D = D% | where D* =
D — LHae* [10].

In the following some optimal eigenvalue estimates are obtained for appropriately constructed modified spinorial

Levi— Civita connections.

Theorem 2.1 On a compact Riemannian Spin— submanifold M C N of dimension n > 2 whose normal bundle is also

Spin, any eigenvalue A of the Dirac operator Du to which attached an eigenspinor ® satisfies

4 np%—2+1 (1—=np)

. R+R 2 _ 2
/\?{ > 1 sup an< +R1 ot46n,80[trQael”  (n 1)HH2|| ) (2.8)
Bikn, g M

2
where B real function, B =L if Ha # 0 for some A and knp,o = ("ﬁ;” .

n

Proof For any real functions 7,8 # %,’y and spinor fields ® € I'(S), consider the following modified spinorial

Levi— Civita connection
VI = V@ 4+ rHae - €' - @ + Be’' - DD + ytrQae’ - ®. (2.9)
For any 1 < i < n, the norm square of (2.9) is
VI 8> = |V;®]> +27HaRe(e' - Vi®,e” - ®) — 28Re(e’ - V;®, DP)
—2trQeyRe (e’ - Vi®, ®) + 77| H|*|®|* — 2rfHaRe(e” - &, DP)
—27vHatrQsRe(e” - ®,®) + 57| D®|* + 26~trQs Re(D®, @)
+7°trQa|*|®|*. (2.10)
Summing over ¢ and using the definition l~), we get
VTP @? = |V + (27 + B — 2n7B) HaRe(e” - @, D®) + (8°n — 28)|D@|*
(54720 — ) IHIPIO + (770 -+ 280 — 27) 1rQa
—|—(5’yn — QTWH)HAtTQQRe(eA - P, <I>). (2.11)

Integrating the above equation over M and using (2.5), we have
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/ |D®|*v, = / <|VT’M<1>|2 + i(R + Rm) |®° + (2n7B — 27 — B+ 1) HaRe(D®,e” - D)
M M

~ (08~ 28)|D0f + (s — rin = D DY HIPIBE + (2 — 2P — 2980) [rQal 0

+(©27yn — fyn)HatrQa Re(e” - @, <I>)> Vg (2.12)

Taking 7 = 2&%5@, v = % and using the fact that Re (eA - P, <I>) =0, we obtain

~ 1
/ (1+n® — 26)| Do, = / VB 4 L (Rt Rie) @
M M 4

(1 +nB*—28)(1-n) g, (1=nB)* -
( 4(1 —np)? )”H” [® + n [trQas|”|®|” | vg
(2.13)
Since [, ’VT’B’W‘I’F > 0, one can obtain the desired result given in (2.8). 0

If \% takes its minimum value, then the following theorem is obtained.

Theorem 2.2 On a compact Riemannian Spin— submanifold M C N of dimension n > 2 whose normal bundle is
also Spin, if A} takes its minimum value and the normal bundle is flat, then the manifold (M, gN‘M) is an Finstein.

Accordingly, the following holds:

R=mn(n—1)|[H|?+4n(n — 1)|trQs|*,

—1)2 n3B88 — 2Bon? +2n —1 5
A2 = (n HI? 0 ¢
T nﬂo)‘l‘ "+ B2n3 — 2Bon? + n? [trQel,
(nB3 — 280 + 1) 2, 4 2
Ry = (n = )22 12 + —|rQul? ) b,
J (TL ) (1 _ nﬂ0)4 H H + TL2| TQ‘I’l J
(2.14)
where Bo is chosen such that the right hand side of (2.8) takes its mazimum.
Proof In the equality case of (2.8), VZ’B”@ = 0. This means
ﬁA A i A i N A A
V.® = -5 ¢ e - P —trQqe’ - P, Dd = —§HAe P+ ntrQe® (2.15)
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~ 2 ~
where Hp = %HA and trQe = LtrQe. Accordingly d|®|> = 0. Also, if the normal bundle is flat, then

1

E *Rijklek . el -
4

k,l

(vjvi - Viv]‘)q)

Il
<

j(— %fIAeAfi —terqwi) -@—Vi(— %f[AeA e —tT@¢€j) - P

N =

( HAe ej—Vj(fIAeA)-ei>-@—i—%ﬁAeA-(ej-Vi —é Vj)
(%

(trQa)e’ — j(t"'@@)ei) D+ trQs (ej SVid—e - Vjcb)

(2.16)
Considering Clifford multiplication of the above equality with e’, yields
Z lRikek - = Z 1Ri'kzej RPN
2 e
k Jike,d
n—2 ~ A 1 i ~
= ( 3 )Vi(HAe )«<I>+§e -D(HAe )- ¢>+( 5 )HAe -V;®
+g||ﬁ||2e" SO+ ntrQie’ - d + (2 — n)trQaVi® + (2 — n)Vi(trQae)®
+ei- D(trQas) - ®
(2.17)
Again, Clifford multiplication of (2.17) with e’, one has
1 _ 1, ik
f§R<I> = Z 2lee e” -
~ — 1\, ~ ~ ~
= —(n— l)D(HAeA) - n(" )HHH2\I/ —2(n— 1)D<trQq>) @ — 2n(n — 1)[trQs|®.
(2.18)
Take inner product of the equality (2.18) with ® and compare its real and imaginary parts to obtain
R = n(n- 1)||]?{'||2 +4n(n — 1)|trQs|* and D(ﬁ[AeA) + 2D(tr@q>) =0.
(2.19)
Since V™27 =0, one gets
1 Ris+R (n—1)|H| (nfo — 1) 2
Ny = - + t . 2.20
D <"ﬂo D R (e N e T T A )
This and (2.19) imply that, H and trQs are constant. Therefore
Rij = (n— 1)(\ﬁ|2 + 4|tT@\I/|2)5ij
(nB3 — 260 +1)%)
= -1 H t i
(=D (e I L lrQul)s
(2.21)
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and

— 1)2 n382 —2Bon% +2n —1 2
2 = U e Q.
" 4(1 — nfo)* 1"+ B&n3 — 2Bon? + n? [trQe|
(2.22)
O
In (2.24), by taking
- D H|?
g (Bie +R)— | H
and Kn 8,0 = % in (2.8) as in [10], we get the following estimates under the condition n(R+ R o44kn. s.0|trQa|?) >
(n=1)|H|?,
. 2
N> sup inf L(Ri,q, + R+ 4knpoltrQs|?) — |H| | - (2.24)
dppo M n—1

3. Conformal lower bounds of eigenvalues

Let (N,gn) be an (n+m)— dimensional compact Riemannian Spin — manifold. Then, the isometry G, between SOg4, N
and SOg, N can be given by the conformal change of metric g = e?“ gy for any real function v on N. Accordingly, G,
induces an isometry between the Spin, principal bundles, Sping, and Sping, . Also, it induces an isometry between
the corresponding spinor bundles S and S of N. Moreover, the natural Hermitian metrics (, )¢, and (, )7, defined
on S and S, respectively, satisfies

(\IJ7¢')9N = (@76)7 (3'1)

N>

where U, ® € I'(S) and ¥ = G, ¥, ® = G,® € I'(S). As well as, the Clifford multiplication on T'(S) denoted by * and

given as follows

et =et- U, (3.2)

In the following, we give some relations with respect to the conformal change of the metric by using the same arguments

given in [11]. Let © the regular class of N, given as
Q = {ueC™(N,R), du(ea)|, =0, for all A}. (3.3)

Now, we give some identities which are obtained in [11] to extend our estimates in terms of the Yamabe number and
area of M.

Let g = 62“‘ 29 be a regular conformal metric. Then the following identities are held [10]:

EH(e_((nfl)/2)u6) _ e_((ﬂ+1)/2)uDH® (34)

Hija = eiu(HijAeru(eA)). (3.5)
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Also, with respect to gy = ¢*“gn, one has Rijap = ¢ *“Rijap and R ¢ = ¢ R, ¢ for ¥ = e "TV2ug  With

respect to gy = e*“gn, applying @ to the equation (2.13), we get
_ By — 1, _
[ aens—2pDaa, = [ (VW + (RO

_((1 +nB% —26)(1 —n)
4(1 —npB)?

— 1—n 2 —
A1 + g P v
(3.6)
Accordingly, the following corollaries are obtained.

Corollary 3.1 Under the same conditions as in Theorem 2.1, for some real functions B,u on N any eigenvalue Ag
of Dp satisfies

1 nB2—2B+1 (1-np)2

. R R)e?v 4 b 2 _ 2
)\?{ > 1 sup inf (( LetR)eHk, g altrQael”  (n—1)||H|| ) 7 (37)
w,B,6n,8,& Mo

where R is denoted the scalar curvature of M associated to a regular conformal metric g = eQu‘Mg.

Corollary 3.2 Under the same conditions as in Theorem 2.1, if n > 2 and the scalar curvature TL((RL@) + R)e* +

4kin p,0|trQse|*) — (n — 1)[|H||> > 0 for some regular conformal metric g = e**g and real function 7 on N. Let Au be

(n—1)
any eigenvalue of the Dirac operator Dg to which is attached an eigenspinor . Then for ® = e_( 2 ")\I’, one has

2
N> b sup mfwn"l(m,@+R>e2u+4mn,g,¢|m«@@2)|H|> (3.8)

u,B,6n,8,6 Mo

where R is the scalar curvature of M associated to a reqular conformal metric g = 62“|Mg, for some real functions a,u

on N.

Using the fact that p1 = sup in (Rezu) we obtain the following corollary.

u M
Corollary 3.3 Under the same conditions as in Theorem 2.1, if n > 3 and n(pl + R1,¢)+ 4knp,0 trQq,|2) —(n—
|| H|]? > 0, then
2
N> L osup inf(W_l(m T Riw + AknpaltrQal?) - ||H||> (3.9)
En,g,& M

where p1 is the first eigenvalue of the Yamabe operator.

As we know the relation between the Yamabe number denoted by u and p1 is pu1 > . Using this relation we

Y = S
= Vol(M,g)%/n

obtain the following inequality.

Corollary 3.4 Under the same conditions as in Theorem 2.1, if n > 3 and TZ(M + Rie+ 4/1,L,5,q>|trQq>|2) —(n—

1)V'ol(M",g)2/"||H||2 > 0, then any eigenvalue Ag of Dm satisfies

1
A%ZZN

2
n
' Rie + 4knp.0|trQsl?) — ||H 3.10
o ﬂg(\/(n—l)Vol(Mn7g)2/n (b1 + oo+ dtonp0trQef?) — | ”> (3.10)

where p is the Yamabe number.
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Again by considering the fact that sup inf (Rezu) =
u M

#1}1\4)» we obtain the following corollary.

Corollary 3.5 Under the same conditions as in Theorem 2.1, if M is compact surface of genus zero and

167

e n 2 |H|? 11
Area(M) + 2R, o+ 8k ,5,<1>|t7"Qq>| H H > 0, (3 )

then any eigenvalue g of Dy satisfies

2
)

(3.12)

|
-

167
sup in —————— 4+ 2R & + 8knp,0[trQs|? — |H )
S Mf<\/Area(M) 1.9 peltrQel® — || H|

where Area(M) is denoted the area of M .

4. Generalized conformal lower bounds
In this section, we optimized the eigenvalue estimation obtained in [10] by modifying the spinorial Levi — Civita connection

in terms of the Energy —Momentum tensor Qs and its trace trQs. Using the Dirac operator defined on M [10] as

follows
D® = —Agew, - — %eA - P, (4.1)
where € = (=1)™', one gets
H 2
|IDOI> = A9 + %\@F + AmHaRe(ew, - ®, e - ). (4.2)

Integrating over M, then combining (2.5) with (4.2), one has
2 2 a2 o I g2 A
/ Vo[, = / ()\H|<I>| + 119 + A HaRe(ew, - @,¢” - @)
M M

7(R+fl7¢)‘¢)|2)vg~ (4.3)

The following estimates are the extension of the results obtained in [1], in terms of R, .,a .

Theorem 4.1 Let M C N be an n > 2 dimensional compact Riemannian Spin— submanifold with its Spin normal

bundle. Then any eigenvalue Ag of Du to which attached an eigenspinor ® satisfies

— 4 nqg2—2q+1 1—nq)?
T,q,Uskn g, 5 Mo (

. 2
)\?1> 1 sup mf<RT,u,q>+4~n,q,q>|t7Qq> (n1)|H2> (4.4)

— (-ng)?
n

where q, Kn,q,® are real functions.

Proof For real functions 7, 5,7,q and p, we define the following modified spinorial Levi — Civita connection
M _ i g Y i A
Vid = Vi o+7Viud 4V ue’ -e ~<I>f§HAe-e - P —glgew, - P

+ptrQge’ - ®. (4.5)
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One can easily compute
|[VMe]? = |Vi®]> +27Re(Vi®, Viud) + 28Re(V;®, Viue' - ¢ - @)
—vHARe(V;®,¢" - e* - @) — 2gAg Re(V;®,ce’ - w - D)
+2ptrQeRe(Vi®, e’ - @) + 7°|Viul*|®|* + °|dul?| |
—|—27’BR6(V¢U¢>, Vjuei el <I>) — ZTfyRe(ViuCI), e et <I>)
—QTq)\HRe(ViwID, et wy - '13) + QTptrQq>Re(V,-u<I>, et <I>)

7/8’7HAR€(VjU€j - P, et <I>) — 2ﬁq)\HRe(Vjuej - Pew - <I>)
. 2
+2BptrQas Re(V ue’ - &, ®) + ’YZ||H||2|¢'\2 + yHaqAuRe(e® - @, ew, - P)

—yHaptrQaRe(e” - @,®) + ¢*N5| @ + p°|trQa|*| 2.

(4.6)
Summing over 4, yields
IVMo|? = |V +27rViuRe(Vi®, @) + (vqn — ¢ — ) A\wHaRe(e* @, cw, - @)
+(L;2”)||H||2|¢|2 + (ng® = 2q) A5 121" + (np” — 2p)|trQe | @[
—2gpnAtrQa Re(ew . - ®, @) + (72 — 275 + nB?)|dul*|®|>
+(17v — Byn) HaRe(du - ®,e” - @) + (2rq — 28qn) Re(du - @, ew. - D).
(4.7)
Taking § = T, one gets
VYe]? = |VO +27ViuRe(Vi®, @) + (vqn — ¢ — 7)AnHaRe(e” @, ew, - @)
(20 210 + (ng® — 20) X0 + (0 — 20) er Q017
—2qpnAptrQaRe(ewy - @, ®) + (77 — 2%2 + "772)|du\2\¢>|2.
(4.8)

Integrating over M and plugging (4.3) into (4.8), we obtain

HII? R+ R
/|VM<1>\2 = /(A%I|<1>|2+u\<1>|2+AHHARe(ewL~<I>,eA~<I>)—( e
M M 4 !

+7Au|®)? — VaVu|®|* + (1- %)7’2|du|2|<1)|2 + (nq2 - 2q))\§{|¢|2
2
—2
+(van — ¢ = 7)Au HaRe(e* @, cw, - @) + (1) | H|]*|of?
—l—(np2 — 2p)|trQq>|2|<I>|2 — 2qpn/\HtrQq>Re(ewL - P, <I>))

Considering the modified scalar curvature (1.6) and using the fact that trQw = —AuRe(ew, - @, %) with v = fqill ,

one gets

10
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9 9 nR:vw o +4(1 — nq)2|trQq,|2 (n— 1)|H|2
/M )\H|<I)‘ 2 /]M ( n(nqz _ 2(] + 1) - (1 _ nq)2 . (49)

In the following corollaries, we obtain an estimate with respect to a regular conformal metric gy = e*“gn . Under

the conformal metric, the modified spinorial Levi— Civita connection is written as:

Haet7eA™d

Ve & = & @+ 71e "Viud + fe “Vuei T el - P —

12

—ge Aget Wy 75+ptrQ$ el T .
(4.10)

Here Hqa = ¢ “Ha. Also, the scalar curvature defined on the manifold N with respect to the conformal change of the

metric is expressed as follows:

Rrws = R+Rio+ 4(”T*1 ~T)Au+4VrVu — (- 1)(n —2) + 42— n)r
1 2 2
+4(1— )T )|du| . (4.11)

Using the spinorial modified Levi— Civita connection ?ﬁé @ and the similar procedure as in Theorem 4.1, we obtain

the following inequality

2 o2 R+ 40— ng)2ltrQul>  (n— D|H|?
/M)\HM)‘ & /M ( n(nq2*2q+1) - (1-ng)? ) (4.12)

As a result, the following corollary is obtained.

Corollary 4.2 Under the same conditions as in Theorem 4.1, if n > 2, then any eigenvalue of Du satisfies

R K rQq|? — 2
)\i] 2 i sup inf<R'r,u,<I)+4 n,q,®|t Qo _ (=DH| > (413)

ng2—2qg+1 1—ngq)2
T,q,UKn g0 Mo B ( g

1— 2
where q, Kn,q, = %.

Now we consider the following modified spinorial Levi— Civita connection constructed by Energy —Momentum tensor
Qs and by its trace trQs,

Vf@ = V¢<IJ+TV¢u<I>—|—BVjuei-ej-<I>—%HAei-eA~<I>—q)\He-w1_-<I)

—&—ptrQ@ei D+ Qij@ej - D. (4.14)

where 7, 3,7,q and p real functions.

Theorem 4.3 Under the same conditions as in Theorem 4.1 if n > 2, then any eigenvalue Ag of Du satisfies

4 ng2—2q+1 1-nq)?
TqUskn, g, Ma ( )

2 2
Mg > L sup mf(RﬂwH(Hw@"Q@ +1Qal?) <n1>|H2> (4.15)

(1—ng)?
n

where ¢, Kn,q, = are real functions.

11
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Proof The norm square of (4.14) is

Ve

Summing over i, yields

Taking 8 = T, one gets

12

|VEo®

|VEo[®

|Vi®|* + 27Re(V;®, Viud) + 28Re(Vi®, Viue' - e’ - @)
—vHARe(V:®,¢" - e* - ®) — 2gAg Re(V;®,ce’ - w - D)
+2ptrQoRe(Vi®@, e - @) + 2Re(Vi®, Qij,0e’ - @) + 7°|Viul?| @
+278Re(Viu®, Vjue' - & - @) — 27yRe(Viud,e' - e - @)
—27g g Re(Viu®, ee’ - wy - ®) + 27ptrQeRe(Viud, e’ - @)
+27Re(Viu®, Qija€’ - @) + °|dul’|®[?

—ByHaRe(Vjue’ - ®,e” - ®) — 28g g Re(Vjue’ - &, e, - P)

+2BptrQaRe(Vjue’ - @, @) + 28Re(Vjue' - ¢’ - @, Qija€’ - @)
’72 A A
+ZHHH2\<I>|2+7HAq)\HRe(e @, ewy - P) — YHaptrQeRe(e” - ©, ®)

—vHaRe(e' - e ®,Qij0¢” - @) + N5 |O + p[trQa *| @)

+2pt7"Qq>R6(ei - O, Qij,cpej . @) + |Qij,q>|2|q)‘2. (4.16)

[V®|* + 27V uRe(Vi®, @) + (yqn — ¢ — y) A\ HaRe (e @, cw) - @)

2
— 2
(2N 0 + (ng? — 20) Nl + Q|
7(2q + 2qpn)/\HtrQq>Re(ewL - P, <I>) - |Q|2|<I>|2 + (72 — 278 + n/BZ) \du|2|<1>\2

—|—(T’y — ,B'yn)HARe(du - P, et <I>) + (27’q — 2,3qn)Re(du - PLew, - <I>). (4.17)

IVO|* + 27V;uRe(V;®, @)

2
—2
+(1gn — g = 7) A HaRe(e" @, s - ®) + (20 ||

+(nq2 - 2q))3ﬂ<1>|2 + an\trQq)\2\<I>|2 - (2q + qun))\HtngpRe(ewl - P, <I>)

272 nr?

—QP|2* + (v* - -t T)\du|2|<b\2

(4.18)
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Integrating over M and plugging (4.2), one has

H 2
/ A — / A?,|<1>|2+u|<1>\2+AHHARe(eM-<1>,eA.<1>)
M M 4

4%) 10]? + 7 AUl — VaVu|d?

2 J—
+(9an — =) Aw HaRe(e" 0, s - @) + (20 P o

—|—(nq2 — 2q)/\§{|<1>\2 + np2|trQq>|2|<I>\2 — (2q + 2qpn))\HtrQq>Re(ewL -, <I>)

1
—lQPIef? + (1~ n)72|du|2|<1>|2>.

(4.19)
Using the fact that trQe = —An Re(ew. - ®, i) with 5 = -2, one gets
/ LATILI / nRrue +4nQal® +4(1—ng)’[trQe*  (n— DIIH|* ) (4.20)
M Jm (ng® —2¢+1) (1 —ng)?
O

As in the Corollary 4.2, considering the following modified spinorial Levi — Civita connection expressed with respect to

the regular metric gy = e*“gn,

Ved = Ve d+7e “Vaud+fe "V,ei“el - O — %FAei TeAT D
—qge Agel Wy T@—i—ptnggTE—i—QgY = 5? TP,
(4.21)
and following similar procedure used in the proof of Theorem 4.3, we obtain the following inequality
/ el > / <n1%7,u,q> +4(1 = ng)?[trQe|* + 4n|Qa|*  (n— 1)|H||2>' (422)
M M n(nq2 —2q+ 1) (1 —ng)?

Then we obtain the following corollary.

Corollary 4.4 Under the same conditions as in Theorem 4.3, if n > 2, then any eigenvalue Ay of the Dirac operator

Dy to which is attached an eigenspinor ¥ satisfies

R K &4 2 )2 — 2
22 > % sup inf<RT,u,(p+4( n.q.@[trQel"+Qel”) _ (n—1)|H| ) (4.23)

ng2—2q+1 1—nq)?2
T,q,UKn q,& Mo o ( ?
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