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Abstract: In this paper, we introduce the fibonomial sequence spaces b;‘S‘F and b25F, and show that these are BK-
spaces. Also, we prove that these new spaces are linearly isomorphic to ¢, and /. Moreover, we determine the a-, 5-,
~v-duals for these new spaces and characterize some matrix classes. The final section is devoted to the investigation of

some geometric properties of the newly defined space b;’S’F .

Key words: Fibonomial sequence spaces, Schauder basis, a-, 5-, y-duals, matrix transformations, geometric proper-

ties

1. Introduction

The theory of sequence spaces can be regarded as a fundamental subject in summability that has many important
applications, mainly in functional analysis. The classical summability theory deals with the generalization of
the convergence of sequences or series of real or complex numbers. The idea is to assign a limit of some sort to
divergent sequences or series by considering a transform of a sequence or series rather than the original sequence
or series. One can ask why we employ the special transformations represented by infinite matrices instead of
general linear operators? The answer to this question is, in many cases, the general linear operators between
two sequence spaces is given by an infinite matrix. So, the theory of matrix transformations has always been of
great interest in the study of sequence spaces. The study of the general theory of matrix transformations was
motivated by special results in summability theory [6].

Indeed, the theory of matrix transformations deals with establishing the necessary and sufficient con-
ditions on the entries of a matrix to map a sequence space X into a sequence space Y . This is a natural

generalization of the problem to characterize all summability methods given by infinite matrices that preserve
convergence.

In this study, N={0,1,2,...} and R denotes the set of all real numbers. For simplicity in notation, here
and in what follows, the summation without limits runs from 0 to oo, if not stated.

A sequence space is a linear subspace of the set of all real-valued sequences w. As well known examples,
we give fo,c,co and £, as the set of all bounded sequences, the set of all convergent sequences, the set

of all convergent to zero sequences and the set of all sequences constituting p—absolutely convergent series,
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respectively. These are Banach spaces with the following norms

o l/p
x =|lz||. = ||z||. =sup|zr| and |z||, = Z zil?
lzlle, = llzll. = llzl, k€N| | lzll,, <k_0| | :

respectively. A Banach space with all coordinate functionals p, denoted by pp(x) = x are continuous is
referred as a BK-space.

Let T' = (t,x) be an infinite matrix with real entries ¢, and 7, be the sequence in the nth row of the
matrix T for each n € N. The T—transform of a sequence & = (x) € w is the sequence Tz obtained by the

usual matrix product and its entries are stated as
(T:C)n = Ztnkxk
k

provided that the series is convergent for each n € N. The matrix T is called as a matrix mapping from a
sequence space A to a sequence space u if the sequence T'x exists and Tx € p for all € A. The collection of
all infinite matrices from A\ to p is denoted by (A, u) .

Recall that the set

AM={rcw:Trel}

is called the domain of the infinite matrix 7" in the space A. For the last two decades, the concept of domains
of special triangular matrices has attacted many scholars. One may refer to these nice articles [2-5, 7, 9-
12, 14, 16, 31, 32] and the textbook [6] for relevant studies.

The Euler sequence spaces e, = ({,)gr, €y = (co)pr, el = cgr,and e, = (fx)pr are introduced by

Altay et al. [1, 2], where E” = (e}, ) denotes the Euler means of order r defined by

. (Z) (l—r)"fkrk, if0<k<mn;
Cnk = .

0, if £k > n;
for all k,n € N. Apart from the papers [1, 2], the studies concerning the construction of new sequence spaces
by employing Euler matrix via the matrix domain of a particular limitation method have been considered by
Altay and Polat [3], Kara and Bagarir [14], Karakaya and Polat [15], Polat and Bagar [26], and Mursaleen et
al. [23].

Biggin [9, 10] gave further extension of Euler sequence spaces by introducing binomial sequence spaces

r,8

by® = (lp)Brs, by® = (co)prs, b* = cprs and b’ = ({oo) prs by means of the binomial matrix B™* = (b,)

1
brs W(Z)Tks"_k, if 0 S k S n;
n’k = S T

0, if k> n.

The author discussed various topological and geometric properties in [9]. It was shown that the spaces by® and
b’ are BK-spaces and linearly isomorphic to ¢, and ¢, respectively. Also, the Schauder basis and a-, -
and ~y-dual of these spaces were determined.

For more details about binomial sequence spaces and their generalizations, the readers can consult the
studies [13, 20-22, 29, 30].
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Let (F,,) denote the sequence of Fibonacci numbers defined by the recurrence relation F,, 1o = Fy,11+F,
with the initial conditions Fy = 0 and F} = 1. Thus 0,1,1,2,3,5,8,13,21,... are the first few Fibonacci
numbers. In recent years, few authors discussed Fibonacci (or F'-) or Golden calculus in their papers [18, 19,
24, 25].

The Fibonomial coefficient (cf. [19]) is defined by

n K
k)p  FplF,_g!

FE\)\=F,Fy_1...Fy, Fl=1

where 0 < k <n and

denotes the F'-factorial. Note that (g)F =1 and (Z)F =0 for n < k.

The followings are some properties (cf. [19]) sufficed by fibonomial coefficients:
n\ [ n
k). \n—k/);
n kE\ _ (n n—i
k)p\i)p \i)p\k—i)z
(z+y)p= Z (n> xFyn k. (Fibonomial Theorem)
k=0 k) r

F
F

In this paper, motivated by [10], we introduce the Fibonomial sequence spaces b;’s’F and b5 which
include the spaces ¢, and (., respectively. Also, we demonstrate that the sequence spaces b;’s’F and o755 F
are BK-spaces and linearly isomorphic to the spaces ¢, and ¢, respectively. Furthermore, we offer a—dual,
B—dual and y—dual for these spaces and characterize some matrix classes. In the final section, we exhibit some

geometric properties of the space b;’S*F .

2. Fibonomial sequence spaces
Let s,7 be nonzero real numbers such that s+ 7 # 0. Then, we introduce fibonomial matrix B"™*% = (b:l,‘zF>
defined by
1 n k.n—k :
—_— resm T i 0 <k <mny
b:L,]j,F _ (S 4 T’);; (k:)F
0, if k> n.

One can easily verify that the following properties are valid for rs > 0 :
i) || B™F| < oo,
i1) limy, oo b;’,‘:’F =0 for each k,
id7) limy, oo S000F = 1.
k
This leads us to the fact that the fibonomial matrix is regular for rs > 0. Here and henceforth, we assume

that rs > 0 unless otherwise stated.
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By taking into consideration the fibonomial matrix, let us introduce the fibonomial sequence spaces b;’S’F

and b7 as follows:

byst = {$=($k)€““z 7”2_:

n

ot = {x = (x) € w : sup
n

That is to say that

Define a sequence y = (y) by

1 k (k ) )
Yk = By = —— <> r’sk*z:ﬂi, 2.1
( )k (s+ r)’}zgo ) @1)

which shall be known as B™*! -transform of the sequence z = () in the rest of the paper.

It is worth notable that with the help of Theorem 4.3.2 of Wilansky [28], the fibonomial sequence spaces
1/p
byt and b are BK-spaces depending on the norms ||x||b;,s,F = ||B’"’S’Fx||ép = (Zn: ’(BT’S’F:E)n|p>

and [|z[yre.r = ”an,FxHeoo = sup, ey |(Br,s,Fm>n

, respectively, where 1 < p < oo.

Theorem 2.1 The fibonomial sequence spaces b;’S’F and b25E are linearly isomorphic to £, and l«, respec-

tively.

Proof We present that b;’s’F linearly isomorphic to ¢, for 1 < p < oco. To do this, we must provide that there
exists a linear transformation between these spaces which is injective, surjective and norm-preserving. For any
S b;’S’F, let L : b;’S’F — ¢, be a transformation such that L (z) = B™*x. The linearity of L is clear by
using the fact that any matrix transformation is linear. Also, the transformation L is injective by employing
that if L (z) = (0,0,...,0,...), then z = (0,0, ...,0, ...) . For any sequence y = (yx) € {p, if the sequence x = (zy)
is denoted for n € N by

k . .
T = rik;o (f) ; (=) (s + 1) uis (2.2)

then, we have
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o 1/p
~(Zml) =y, =1L, <.
n=1

Thus, L is norm-preserving and x € b;’S’F , consequently, L is surjective. The other case of the theorem can
be verified analogously. Hence, the proof is completed. O

Before determining the Schauder basis for the matrix domain of our special triangular matrix, we recall
the definition of Schauder basis. The sequence (d,) is called a Schauder basis for the space X if given any

x € A, there exists a unique sequence of scalars 7, such that

n
xTr — ZTk(;k

k=0

—0, asn— oo

for a normed space (A, ].||) and a sequence d,, in A. Then, we write

o0
xr = ZTk(;k-
k=0

Theorem 2.2 Let py, = {B’“’S’Fa:}k be given for all k € N. Let the sequence s*) (r,s, F) = {s%’” (r,s,F)} .
ne

be denoted as the elements of the binomial sequence space b;’S’F by

1 (n n—k k . .
T R T
, i n.

Then, the sequence {s(o) (r,s,F),sM (r,s, F), } is a basis for the space bg’S’F and any x in b;;s’F is uniquely

determined as x = Y pps® (r,s, F), where 1 < p < co.
k
Proof Given any = = (xy) € b;’S’F for 1 < p < co. Then, we consider for all non negative integer m that

2l = 57 s (1,5, F).
k=0

Now, applying the fibonomial matrix B™*f = (b:L;F) to z[™ leads to
BT’S’Fl'[m] _ Z /,LkBT’S’FS(k) (7“, s, F) _ Z (BT’S’Fx)k e(k)
k=0 k=0

and

{Br,s,F (:c - z[m]> }n _ {(BT’S’F:E)n , ifn>m;

0, if 0 <n<m;

for all n,m € N. For any given € > 0, there exists a non-negative integer mg such that

> 1), s (5)

n=mo+1
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for all m > mg. So, we have

IN
w\m N N
M8
Uo
Y
»

!
SN~—

3
S
——
_
~
=

IA

<eg, forall m > myg,

which concludes that
= pps® (r,s, F).
k

To prove the uniqueness of this representation, let
z=Yuys™ (1,5, F)
k

be another representation of x. Then, it is readily seen for every n € N that

(BT’S’F:r)n = zk:uﬁc {BT’S’FS(’“) (r, s, F)}n
= 2ues!)
= fin;

which contradicts the representation (B"’S’F x)n = u, for every n € N. So, the proof is completed. O

Combining the fact that bgs’F is Banach space for 1 < p < oo together with Theorem 2.2, we get the

following corollary.

Corollary 2.3 The fibonomial sequence space b;’s’F is separable for 1 < p < co.

3. a-, -, y-duals

This section is devoted to present a-dual, S-dual and ~y-dual of fibonomial sequence spaces b;’5>F and b5

The multiplier space of A and p is the set S (A, u) defined by
Shp)={ucw:zuecuforal z € A}.
By adopting this notation, the «-dual, §-dual and ~y-dual of a sequence space A\ are defined by
A =8 (\4), MW =8(\cs) and XY = S (), bs).

Here, ¢s and bs denote the spaces of all convergent and bounded series, respectively.
We begin with the following lemma, which is an effective tool to discover the a-dual, S-dual and 7y-dual
of the fibonomial sequence spaces b]’;s’F and b5, Note that f denotes the family of all finite subsets of N

and%+%:1for1<p§oo.
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Lemma 3.1 (/27]) T = (tnx) € (¢1,01) if and only if

sup tnk| < 00.
DL

T = (tnr) € (01,0) if and only if

sup |tnr| < oo. (3.1)
n,keN

T = (tnk) € (01,¢) if and only if (5.1) holds and

lim ¢,y erists (3.2)
n—oQ

for each k € N. T = (tnr) € (£p,lso) if and only if

Supz ‘tnk|q < o9, (33)
"ok

where 1 <p < o0o. T = (tur) € (Lp,c) if and only if (3.2) and (3.3) hold for 1 < p < co. T = (tnk) € (£p,l1) if

and only if
q

supz <oo forl<p<oo.

KeF k

Z tnk

nekK

T = (tnk) € (booyloo) = (¢, €oo) if and only if (3.3) holds for ¢ = 1. T = (tnr) € (bo,¢) if and only if (3.2)
holds and

(3.4)

lim Z k| = Z

k=0

lim tnk .
n— oo

Theorem 3.2 Define the sets

r,s,F
o7t = b= (bg Gw:supg
! { ( ) Kefl &

5 (3) e e,

nek

L {b(bk)ew:sup;‘(;DF(s)" B s+ 1)k b,

Then, bT’S’F = o5®F and {b05F VY = 67 where 1 < p < oo.
1 2 P 1

Proof For any b= (b,) € w, one can write from (2.2) that
n n n— —TL 7,8,
bpTn = Y. (k) (—s) k (s + ) buyr = (G F )n
F

for all n € N. So, we have bz = (byx,) € £; whenever z = (x3) € b}™F or = = (x3) € b= E if and

only if G™*¥y € £, whenever y = (yx) € £; or y = (yx) € ¢,, respectively, for 1 < p < oo. This tells us
P
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b= (b,) € {b?st} or b= (b,) € {b;’s’F}a if and only if G™* € (¢1,¢1) or G™*F € (£,, 1), respectively,

for 1 < p < co. Combine the relevant part of Lemma 3.1 and these facts to get

b= (o) € {7}

if and only if

n nfk —n
su S s+ 7r)nby| < o0
kegg (k>p( ) ( )
or
b= (bn) € {by*F}"
if and only if
q
supz Z() —8)" T (s 1)K b| < o0,
Ker k IneK F
respectively, where 1 < p < co. So, the proof is completed. O
Theorem 3.3 Define the sets
oyt = {b = (b)) Ew: Z <;) (—s) Fri(s+ 7") b; exists for each k € N} ,
i=k F
oo F = {b:(bk)EOJ:sup Z(;) (—s) ki (s+7)5b; <oo},
ok i=k F
r,s,F . ” 1 i— k) —
= b= (b 21 — ‘ bi| =
o fi=tew: in = ;(k)F< F (s
= 1 i—k —
S ()) ot b )
kli=k F
n n . q
i i
op®F = b:(bk)ew:supZZ() (=) e s+ )bl <o, (1<q<o0)
neN 5o |io \F/ p
r,s,F _ _ . & . i o\ ki .
o7 = {b—(bk)ew.:légl;) ;(k)p( ) (s+7r)pbi <oo}.

Then,

r,s,F B r,s,F r,s,F rs, 7 r,s,F
1. {bl” } =037 Noy™ {bl” } =0, .
2. {op=FY = op T nopsl | (e F ) = o5 1 < p < o0,
3. by = obh
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Proof We only present the proof of {b;’5>F}B = o5  nog® for 1 < p < oo to avoid unnecessary repetitions

of similar statements. For any b = (b,,) € w, it follows from (2.2) that

for all n € N. Here, M"5F = (m;,:F> denotes the matrix, defined by

ror )X (=) T T s+ )p b, HHO< K <n

0, if k> n;

for all n,k € N. So, bx = (byzn) € cs whenever z = (z}) € by®F if and only if M™*¥y € ¢ whenever

y = (yr) € £, for 1 < p < oo, from which one concludes that b = (by) € {b;’st}ﬂ if and only if M"*F € (¢,,¢),
where 1 < p < co. Considering these facts and the related part of Lemma 3.1 yields that

n n . q
i e
apd |3 (1) o) <o
neN 5| ion \K/ p
and
Z (k:) (=) Fpi (s + r)]; b; exists for each k € N
i=k F
for 1 < p < oo and 1%—1—% = 1. As a result, we reach that {b;’S’F}B = O'g’s’F ﬂag’s’F for 1 < p < oo, as desired.

O

4. Matrix mappings

In the current section, we characterize some class of matrix mappings from the spaces b;’S’F and b75F to the

space p € {loo, ¢, co,f1}. We begin with the following theorem which is fundamental in our investigation.

Theorem 4.1 Let 1 <p < oo and A Cw. Then ® = (pn) € (b5*F,N) if and only if ©M) = (QJ(Z)) € (bp,0)
for each n € N, and © = (0ni) € (£p, ), where

g _ )0 - . (k> 3),
ik -ljzk (]lg)F(_S)_ T_l (S+T)F@nl (0<k‘l<.7)7

and

b= (,i)F (=) F 1 (5 4+ ) (4.1)

=k

for all n,k € N.
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Proof The proof is similar to the proof of Theorem 4.1 of [16]. Hence details are omitted. O

Recalling the well-known results of Stielglitz and Tietz [27] and taking in account Theorem 4.1, we obtain

the following results:
Corollary 4.2 The following statements hold:

1. ® e (5" 0. if and only if

lim 9;.2) exists for alln,k € N, (4.2)
j—o0
sup ‘9](2)‘ < 00, (4.3)
n,keN
sup |On| < oo, (4.4)
n,keN

2. e (b’lﬂ’s’F,c) if and only if (4.2) and (4.3) hold, and (4.4) and
nh_)n;O Oni exists for all k € N, (4.5)
also hold.
3 ®e (b;’S’F7co) if and only if (4.2) and (4.3) hold, and (4.4) and
nhﬁrr;o Onr =0 for all k € N, (4.6)
also hold.

4. ® e (O75F 00) if and only if (4.2) and (4.3) hold, and

sup Z |Onk| < 00, (4.7

keN S5

also holds.

Corollary 4.3 The following statements hold:

1. e (b;’S’F,EOO) if and only if (4.2) holds, and

J k
supz ‘9§Z) < 00, (4.8)
jeN
sup Z 10,k |" < o0, (4.9)
neN k—0

also hold.

2. ® e (bp*F,c) if and only if (4.2) and (4.8) hold, and (4.5) and (4.9) also hold.
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8. ® e (bp*F, co) if and only if (4.2) and (4.8) hold, and (4.6) and (4.9) also hold.

4. ® € (b;’S’F,Kl) if and only if (4.2) and (4.8) hold, and

. P
J\SfléR/,; T;\’an < 00, (4.10)
also holds.
Corollary 4.4 The following statements hold:
1. ® € (b25F ly) if and only if (4.2) and
lim i ’0(2) = j lim G(Z) for each n € N (4.11)
el ol

hold, and (4.9) also holds with p = 1.

2. ® € (b5 ¢) if and only if (4.2) and (4.11) hold, and (4.5) and

lim EDS lim G| (4.12)
k=0 k=0
also hold.
3. @€ (b5 o) if and only if (4.2) and (4.11) hold, and
nl;n;OkZﬂenk =0, (4.13)

also holds.

4. ® € (buF 01 if and only if (4.2) and (4.11) hold, and (4.10) also holds with p = 1.

Recently Bagar and Altay [7] developed a lemma which is extensively used in characterizing matrix mappings

between two sequence spaces.

Lemma 4.5 [7] Let A and p be any two sequence spaces, ® be an infinite matriz and © be a triangle. Then,
O € (\ po) if and only if OD € (A, p).

Using Lemma 4.5 together with Corollaries 4.2, 4.3 and 4.4, we derive following classes of matrix mappings:

Corollary 4.6 Let ® = (¢ni) be an infinite matriz and define the matriz C = (Cui,) by

A . Cu(9)Cn—v(q)
Chi = ¢ —————— ¢, (NkEN
F 1;0 Cn+1(q) Puk ( )

1925
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where (Cp(q)) is sequence of q-Catalan numbers, 0 < q < 1. Then, the necessary and sufficient conditions that
® belongs to any one of the classes (b7°F, co(C)), (b75F, ¢(C)), (b;’S’F,CO(C’)), (b;’S’F,c(é)), (b5 o (C))
and (b25F  ¢(C)) can be determined from the respective ones in Corollaries 4.2, 4.3 and 4.4, by replacing the

entries of the matriz ® by those of matriz C, where c(é’) and co(é') are g-Catalan sequence spaces defined by
Yaying et al. [32].

Corollary 4.7 Let ® = (¢nr) be an infinite matriz and define the matriz C(@ = (cglqk)) by

n

(9) — qU k N

where [n], is the g-analog of n € N and 0 < g < 1. Then, the necessary and sufficient conditions that ® belongs
to any one of the classes (bq’S’F,Xg), or>F, X9, (b=t X1), (brsF, X4), (55, X)), and (b35F, X1)
can be determined from the respective ones in Corollaries 4.2, /.3 and 4.4, by replacing the entries of the matriz

® by those of matriz CD | where X1 and X, are q-Cesdro sequence spaces defined by Yaying et al. [31].

5. Geometric properties

In this final section, we investigate certain geometric properties of the space b;’S’F . Before proceeding, we define

certain geometric notions which are the basis for our examination. We use the notation B(\) to represent the
unit ball in A.

Definition 5.1 [8/ A Banach space A has the weak Banach-Saks property if every weakly null sequence (t,)

in A has a subsequence (t,,) whose Cesdro means sequence is norm convergent to zero, that is,

lim =0.
n— oo

1 n
n—&-lztnk

k=0

Moreover, \ possesses Banach-saks property if every bounded sequence in A has a subsequence whose

Cesaro means sequence is norm convergent.

Definition 5.2 [17] A Banach space \ has the Banach-Saks type p, if every weakly null sequence (t,) has a

subsequence (wy) such that, for some J > 0,

n

D tu,

k=0

< J(n+1)7,

for all n € N.

Theorem 5.3 The sequence space b;’S’F is of Banach-Saks type p.
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o0
Proof We take sequence of positive numbers (7;) satisfying > 7, < 4. Assume (hy) to be a weakly null
k=0

sequence in B(b;’S’F). Fix to = c¢p =0 and t; = ¢, = ¢1. Then there exists j; € N such that

o0

Z tl(k)E(k) < T1.

k=j1+1 beF

By hypothesis, (h,) is a weakly null sequence, which in turn implies that h, — 0 coordinatewise. Thus, there
exists ny € N satisfying

J1

> b (k)e®)

k=0

<7'17

r,s,F
bIJ

whenever n > ng. Again fix ty = hy,,. Then there exists jo > j3 with
o0
Z tg(k))e’:‘(k) < To.

k:j2+1 b;,s,F

Again there exists nz > ng (since h, — 0 coordinatewise) such that

whenever n > ns.

Continuing this process, we get two increasing sequences (ny) and (ji) such that

Jv
> b (k)e® < Ty,
k=0 b F
for all n > ngy1 and
S oW <n,
k=j,+1 pros F
where t, = h,,. Thus
n n j’ufl jv oo
Zt” = Z ty(k)e® + Z ty (k)™ + Z ty(k)e®)
v=0 bg«5=F v=0 \ k=0 k=jy—1+1 k=7 pros: F

IN
[
~
S
—~
™
~—
mﬂ
z

+ Qiﬂ,.
v=0

v=0 \k=j,—_1+1 r,s,F
bp
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Since h,, € B(bp**) and [[hl],...r = Z ‘Zk o

we realise that |||, < 1. This leads us to the
p

fact that
n o P n v p
2| 2 tke® SISl S
v=0 \k=j,_1+1 s F v=0k=j,_1+1 |m=0
p
P
S 9)3|) SL=LNTHENEt
v=0 k=0
Since 1 < (n+ 1)/ for all n € N and 1 < p < oo, we immediately deduce that
n
> ot <(n+DYP+1<2(n+1)Y7.
v=0 b;@F
Thus, we conclude that b;’s’F possesses Banach-Saks type p. O
Now, we give an estimation for Gurarii’s modulus of convexity for the space b;’S’F .

Definition 5.4 The Gurarii’s modulus of convezity of a normed linear space X\ is defined by
Br(T) = inf {1 - 0?121 lst + (1 —s)w]| : t,w € B(A), ||t — wl|| = ’7'} where 0 < 17 < 2.
S0

Theorem 5.5 The Gurarii’s modulus of convexity of the normed space b;’S’F is

1/p
/Bb;,s,F(T) <1- (1 — (g)p) , where 0 <7 < 2.

Proof Let ¢ be a sequence in b;’S’F. Then

1/p
r,s,F r,s,F p
Il = 1B7 ], = (Z\ (B™1) ) -
Let 0 < 7 <2 and D™ be the inverse of B™*¥. Consider the following two sequences:
P\ 1/P
= (e (= ()) o (5) o)
2
p 1/p —T
_ prs:F (1 _ (I) )) DrsF () 0,0,...).
<( 2 9 2 ) ) )

Then we notice that

1928



DAGLI and YAYING /Turk J Math

p p

-7

7,8 T\* l/p
leollyper = | Bl = \(1 -(3)) 2

T\ P T\ P
=1-(3) +(3) =1
[t = wllypsr = |B#Ft — BT’S’Fngp

(-GN -0 G)"

=T.

p
+

Eventually, for 0 < ¢ < 1, we have
odnf st + (1 = ywllyper

- S el

= A0 G) a0 -G
= (1= (3) e (5))

7\P\ 1/P
(-GN

Consequently, ﬁb;,s,F(T) <1- (1 — (%)p) /e . This completes the proof. O

p

bEru-a ()

Corollary 5.6 The following results hold:

(a) If T =2, then Bb;,s,F(T) < 1. Hence by>* is strictly convex.

(b) If 0 <7 <2, then 0 < ﬂb;,s,F(T) < 1. Hence bjy>¥ is uniformly convez.

6. Conclusions

The construction of a new sequence space using the domain of a special infinite matrix has attracted by
many scholars. In the present study, inspired by Fibonacci calculus, which has become increasingly popular in
recent years, and motivated by the significant papers concerning binomial sequence spaces, we introduced the
fibonomial sequence spaces, which are Banach spaces, and investigated some properties such as Schauder basis,
special duals and some matrix classes. We concluded the study by examining some geometric properties of the

resulting space b;’S’F . We expect that our results presented here might be a reference for further studies in this

field.
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