On the monoid of partial isometries of a cycle graph

VITOR H. FERNANDES

TANIA PAULISTA

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://journals.tubitak.gov.tr/math/vol47/iss6/10

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
On the monoid of partial isometries of a cycle graph

Vítor Hugo FERNANDES*, Tânia PAULISTA
Center for Mathematics and Applications (NovaMath) and Department of Mathematics,
School of Science and Technology, NOVA University Lisbon, Caparica, Portugal

Abstract: In this paper we consider the monoid \(DPC_n \) of all partial isometries of an \(n \)-cycle graph \(C_n \). We show that \(DPC_n \) is the submonoid of the monoid of all oriented partial permutations on an \(n \)-chain whose elements are precisely all restrictions of a dihedral group of order \(2n \). Our main aim is to exhibit a presentation of \(DPC_n \). We also describe Green’s relations of \(DPC_n \) and calculate its cardinality and rank.

Key words: Transformations, orientation, partial isometries, cycle graphs, rank, presentations

1. Introduction
Let \(\Omega \) be a finite set. As usual, let us denote by \(\mathcal{PT}(\Omega) \) the monoid (under composition) of all partial transformations on \(\Omega \), by \(\mathcal{T}(\Omega) \) the submonoid of \(\mathcal{PT}(\Omega) \) of all full transformations on \(\Omega \), by \(\mathcal{I}(\Omega) \) the symmetric inverse monoid on \(\Omega \), i.e. the inverse submonoid of \(\mathcal{PT}(\Omega) \) of all partial permutations on \(\Omega \), and by \(\mathcal{S}(\Omega) \) the symmetric group on \(\Omega \), i.e. the subgroup of \(\mathcal{PT}(\Omega) \) of all permutations on \(\Omega \).

Recall that the rank of a (finite) monoid \(M \) is the minimum size of all (finite) generating sets of \(M \), i.e. the minimum of the set \(\{ |X| : X \subseteq M \text{ and } X \text{ generates } M \} \).

Let \(\Omega \) be a finite set with at least 3 elements. It is well-known that \(\mathcal{S}(\Omega) \) has rank 2 (as a semigroup, a monoid, or a group) and \(\mathcal{T}(\Omega) \), \(\mathcal{I}(\Omega) \), and \(\mathcal{PT}(\Omega) \) have ranks 3, 3, and 4, respectively. The survey [13] presents these results and similar ones for other classes of transformation monoids, in particular, for monoids of order-preserving transformations and for some of their extensions. For example, the rank of the extensively studied monoid of all order-preserving transformations of an \(n \)-chain is \(n \), which was proved by Gomes and Howie [23] in 1992. More recently, for instance, the papers [5, 16, 17, 19, 21] are dedicated to the computation of the ranks of certain classes of transformation semigroups or monoids.

A monoid presentation is an ordered pair \(\langle A \mid R \rangle \), where \(A \) is a set, often called an alphabet, and \(R \subseteq A^* \times A^* \) is a set of relations of the free monoid \(A^* \) generated by \(A \). A monoid \(M \) is said to be defined by a presentation \(\langle A \mid R \rangle \) if \(M \) is isomorphic to \(A^*/\rho_R \), where \(\rho_R \) denotes the smallest congruence on \(A^* \) containing \(R \).

Given a finite monoid, it is clear that we can always exhibit a presentation for it, at worst by enumerating all elements from its multiplication table, but clearly this is of no interest, in general. So, by determining a

*Correspondence: vhf@fct.unl.pt
2010 AMS Mathematics Subject Classification: 20M20, 20M05, 05C12, 05C25

This work is licensed under a Creative Commons Attribution 4.0 International License.
presentation for a finite monoid, we mean to find in some sense a nice presentation (e.g., with a small number of generators and relations).

A presentation for the symmetric group $S(\Omega)$ was determined by Moore [29] over a century ago (1897). For the full transformation monoid $T(\Omega)$, a presentation was given in 1958 by Aizenštat [1] in terms of a certain type of two-generator presentation for the symmetric group $S(\Omega)$, plus an extra generator and seven more relations. Presentations for the partial transformation monoid $PT(\Omega)$ and for the symmetric inverse monoid $I(\Omega)$ were found by Popova [31] in 1961. In 1962, Aizenštat [2] and Popova [32] exhibited presentations for the monoids of all order-preserving transformations and of all order-preserving partial transformations of a finite chain, respectively, and from the Sixties to the present day, several authors obtained presentations for many classes of monoids. See also [33], the survey [13], and, for example, [8–12, 14, 20, 25].

Now, let $G = (V, E)$ be a finite simple connected graph, where V is the set of vertices and E is the list of edges. The (geodesic) distance between two vertices x and y of G, denoted by $d_G(x, y)$, is the length of a shortest path between x and y, i.e. the number of edges in a shortest path between x and y.

Let $\alpha \in PT(V)$. We say that α is a partial isometry or distance preserving partial transformation of G if

$$d_G(x\alpha, y\alpha) = d_G(x, y)$$

for all $x, y \in \text{Dom}(\alpha)$. Denote by $DP(G)$ the subset of $PT(V)$ of all partial isometries of G. Clearly, $DP(G)$ is a submonoid of $PT(V)$. Moreover, as a consequence of the property

$$d_G(x, y) = 0 \quad \text{if and only if} \quad x = y$$

for all $x, y \in V$, it immediately follows that $DP(G) \subseteq I(V)$. Furthermore, $DP(G)$ is an inverse submonoid of $I(V)$ (see [18]).

Observe that if $G = (V, E)$ is a complete graph, i.e. $E = \{\{x, y\} : x, y \in V, x \neq y\}$, then $DP(G) = I(V)$. On the other hand, for $n \geq 2$, consider the undirected path graph P_n with n vertices, i.e.

$$P_n = (\{1, \ldots, n\}, \{\{i, i + 1\} : i = 1, \ldots, n - 1\}).$$

Then, obviously, $DP(P_n)$ coincides with the monoid

$$DP_n = \{\alpha \in I(\{1, 2, \ldots, n\}) : |i\alpha - j\alpha| = |i - j| \quad \text{for all} \quad i, j \in \text{Dom}(\alpha)\}$$

of all partial isometries on $\{1, 2, \ldots, n\}$.

The study of partial isometries on $\{1, 2, \ldots, n\}$ was initiated by Al-Kharousi et al. in [3, 4]. The first of these two papers is dedicated to investigating some combinatorial properties of the monoid DP_n and of its submonoid ODP_n of all order-preserving (considering the usual order of \mathbb{N}) partial isometries, in particular, their cardinalities. The second paper presents the study of some of their algebraic properties, namely Green’s structure and ranks. Presentations for both the monoids DP_n and ODP_n were given by the first author and Quinteiro in [20]. Moreover, for $2 \leq r \leq n - 1$, Bugay et al. in [6] obtained the ranks of the subsemigroups $DP_{n,r} = \{\alpha \in DP_n : |\text{Im}(\alpha)| \leq r\}$ of DP_n and $ODP_{n,r} = \{\alpha \in ODP_n : |\text{Im}(\alpha)| \leq r\}$ of ODP_n.

The monoid DP_{n}^* of all partial isometries of a star graph with n vertices ($n \geq 1$) was considered by the authors in [18]. They determined the rank and size of DP_{n}^* and described its Green’s relations. A presentation for DP_{n}^* was also exhibited in [18].
Now, for \(n \geq 3 \), consider the cycle graph

\[
C_n = \{\{1,2, \ldots ,n\}, \{i, i+1\} : i = 1, 2, \ldots , n-1\} \cup \{\{1, n\}\}
\]

with \(n \) vertices. Notice that cycle graphs and cycle subgraphs play a fundamental role in Graph Theory.

This paper is devoted to studying the monoid \(DPC_n \) of all partial isometries of \(C_n \), which from now on we denote simply by \(DPC_n \). Observe that \(DPC_n \) is an inverse submonoid of the symmetric inverse monoid \(I_n \).

In Section 2, we start by giving a key characterization of \(DPC_n \), which allows for significantly simpler proofs of various results presented later. Also in this section, a description of the Green’s relations of \(DPC_n \) is given and the rank and the cardinality of \(DPC_n \) are calculated. Finally, in Section 3, we determine a presentation for the monoid \(DPC_n \) on \(n + 2 \) generators, from which we deduce another presentation for \(DPC_n \) on 3 generators.

For general background and standard notations, we refer to Howie’s book [24] for Semigroup Theory, and [34] for Graph Theory.

We would like to point out that we made use of computational tools, namely GAP\(^*\)[22].

2. Some properties of \(DPC_n \)

We begin this section by introducing some concepts and notations.

For \(n \in \mathbb{N} \), let \(\Omega_n \) be a set with \(n \) elements. In general, without loss of generality, \(\Omega_n \) is considered the chain \(\Omega_n = \{1 < 2 < \cdots < n\} \) and \(PT(\Omega_n), I(\Omega_n) \) and \(S(\Omega_n) \) are denoted simply by \(PT_n, I_n \) and \(S_n \), respectively. For any \(\alpha \in PT_n \), the domain and the image sets of \(\alpha \) are denoted by \(\text{Dom}(\alpha) \) and \(\text{Im}(\alpha) \), respectively. Also, the cardinality of the set \(\text{Im}(\alpha) \) is called the rank of \(\alpha \).

A partial transformation \(\alpha \in PT_n \) is called order-preserving [order-reversing] if \(x \leq y \) implies \(x\alpha \leq y\alpha \) [\(x\alpha \geq y\alpha \)], for all \(x, y \in \text{Dom}(\alpha) \). It is clear that the product of two order-preserving or of two order-reversing transformations is order-preserving and the product of an order-preserving transformation by an order-reversing transformation, or vice-versa, is order-reversing. We denote by \(POD_n \) the submonoid of \(PT_n \) whose elements are all order-preserving or order-reversing transformations.

Let \(s = (a_1, a_2, \ldots , a_t) \) be a sequence of \(t \) \((t \geq 0)\) elements from the chain \(\Omega_n \). We say that \(s \) is cyclic [anticyclic] if there exists no more than one index \(i \in \{1, \ldots , t\} \) such that \(a_i > a_{i+1} \) \((a_i < a_{i+1})\), where \(a_{t+1} \) denotes \(a_1 \). Notice that, the sequence \(s \) is cyclic [anticyclic] if and only if \(s \) is empty or there exists \(i \in \{0, 1, \ldots , t-1\} \) such that \(a_{i+1} \leq a_{i+2} \leq \cdots \leq a_t \leq \cdots \leq a_i \) \((a_{i+1} \geq a_{i+2} \geq \cdots \geq a_t \geq a_{i+1} \geq \cdots \geq a_i)\) (the index \(i \in \{0, 1, \ldots , t-1\} \) is unique unless \(s \) is constant and \(t \geq 2 \)). We also say that \(s \) is oriented if \(s \) is cyclic or \(s \) is anticyclic (see, for example, [7, 26, 28]). Given a partial transformation \(\alpha \in PT_n \) such that \(\text{Dom}(\alpha) = \{a_1 < \cdots < a_t\} \) with \(t \geq 0 \), we say that \(\alpha \) is orientation-preserving [orientation-reversing, oriented] if the sequence of its images \((a_1\alpha , \ldots , a_t\alpha) \) is cyclic [anticyclic, oriented]. It is easy to show that the product of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the product of an orientation-preserving transformation by an orientation-reversing transformation, or vice-versa, is orientation-reversing. We denote by \(POR_n \) the submonoid of \(PT_n \) of all oriented transformations.

Notice that \(POD_n \cap I_n \) and \(POR_n \cap I_n \) are inverse submonoids of \(I_n \).

\(^*\)https://www.gap-system.org
Let us consider the following permutations of Ω_n (for $n \geq 2$) of order n and 2, respectively:

$$g = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix}$$ and $$h = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}.$$

It is clear that $g, h \in \mathcal{P} \mathcal{O} \mathcal{R}_n \cap \mathcal{T}_n$. Moreover, for $n \geq 3$, g together with h generate the well-known dihedral group D_{2n} of order $2n$ (considered a subgroup of S_n). In fact, for $n \geq 3$,

$$D_{2n} = \langle g, h \mid g^n = 1, h^2 = 1, hg = g^{n-1}h \rangle = \{1, g, g^2, \ldots, g^{n-1}, h, hg, hg^2, \ldots, hg^{n-1}\}$$

and we have

$$g^k = \begin{pmatrix} 1 & 2 & \cdots & n-k & n-k+1 & \cdots & n \\ 1+k & 2+k & \cdots & n & 1 & \cdots & k \end{pmatrix},$$

i.e. $ig^k = \{i+k \mid i \leq k \leq n-k \}$

and

$$hg^k = \begin{pmatrix} 1 & \cdots & k & k+1 & \cdots & n \\ k & \cdots & 1 & n & \cdots & k+1 \end{pmatrix},$$

i.e. $ihg^k = \{k-i+1 \mid k+i-1 \leq i \leq n \}$

for $0 \leq k \leq n-1$. Observe that, for $n \in \{1, 2\}$, the dihedral group $D_{2n} = \langle g, h \mid g^n = 1, h^2 = 1, hg = g^{n-1}h \rangle$ of order $2n$ (also known as the Klein four-group for $n = 2$) cannot be considered a subgroup of S_n. Denote also by C_n the cyclic group of order n generated by g, i.e. $C_n = \{1, g, g^2, \ldots, g^{n-1}\}$.

Until the end of this paper, we will consider $n \geq 3$. Moreover, for convenience, we will denote $\alpha \in \mathcal{P} \mathcal{T}_n$ with $\text{Dom}(\alpha) = \{i_1, \ldots, i_k\}$ ($k \geq 1$) by $\alpha = \begin{pmatrix} i_1 & \cdots & i_k \\ i_1 \alpha & \cdots & i_k \alpha \end{pmatrix}$.

Now, notice that,

$$d_{C_n}(x, y) = \min\{|x-y|, n-|x-y|\} = \begin{cases} |x-y| & \text{if } |x-y| \leq \frac{n}{2} \\ n-|x-y| & \text{if } |x-y| > \frac{n}{2} \end{cases},$$

and so $0 \leq d_{C_n}(x, y) \leq \frac{n}{2}$ for all $x, y \in \{1, 2, \ldots, n\}$.

From now on, for any two vertices x and y of C_n, we denote the distance $d_{C_n}(x, y)$ simply by $d(x, y)$.

Observe for $x, y \in \Omega_n$ that

$$d(x, y) = \frac{n}{2} \iff |x-y| = \frac{n}{2} \iff n-|x-y| = \frac{n}{2} \iff |x-y| = n-|x-y|,$$

in which case n is even, and

$$|\{z \in \{1, 2, \ldots, n\} : d(x, z) = d\}| = \begin{cases} 1 & \text{if } d = \frac{n}{2} \\ \frac{1}{2} & \text{if } d < \frac{n}{2} \end{cases} \quad (2.1)$$

for all $1 \leq d \leq \frac{n}{2}$. Moreover, it is a routine matter to show that

$$D = \{z \in \{1, 2, \ldots, n\} : d(x, z) = d\} = \{z \in \{1, 2, \ldots, n\} : d(y, z) = d'\}$$

implies

$$d(x, y) = \begin{cases} 0 & (\text{i.e. } x = y) \text{ if } |D| = 1 \\ \frac{n}{2} & \text{if } |D| = 2 \end{cases} \quad (2.2)$$
Therefore, we may conclude immediately that:

Recall that \mathcal{DP}_n is an inverse submonoid of $\mathcal{POD}_n \cap I_n$. This is an easy fact to prove and was observed by Al-Kharousi et al. in [3, 4]. A similar result is also valid for \mathcal{DPC}_n and $\mathcal{POR}_n \cap I_n$, as we will deduce below.

First, notice that it is easy to show that both permutations g and h of Ω_n belong to \mathcal{DPC}_n and so the dihedral group D_{2n} is contained in \mathcal{DPC}_n. Furthermore, as we prove next, the elements of \mathcal{DPC}_n are precisely the restrictions of the permutations of the dihedral group D_{2n}. This is a key characterization of \mathcal{DPC}_n that will allow us to prove in a simpler way some of the results that we present later in this paper. Observe that

$$\alpha = \sigma|_{\text{Dom}(\alpha)} \iff \alpha = \text{id}_{\text{Dom}(\alpha)} \sigma \iff \alpha = \sigma \text{id}_{\text{Im}(\alpha)},$$

for any $\alpha \in \mathcal{PT}_n$ and $\sigma \in \mathcal{I}_n$, where $\sigma|_{\text{Dom}(\alpha)}$ denotes the restriction mapping of σ to $\text{Dom}(\alpha)$ and id_U, with $U \subseteq \Omega_n$, denotes the restriction map of the identity mapping id of Ω_n to U.

Lemma 2.1 For any $\alpha \in \mathcal{PT}_n$, $\alpha \in \mathcal{DPC}_n$ if and only if there exists $\sigma \in D_{2n}$ such that $\alpha = \sigma|_{\text{Dom}(\alpha)}$. Furthermore, for $\alpha \in \mathcal{DPC}_n$:

1. if either $|\text{Dom}(\alpha)| = 1$ or $|\text{Dom}(\alpha)| = 2$ and $d(\min \text{Dom}(\alpha), \max \text{Dom}(\alpha)) = \frac{n}{2}$ (in which case n is even), then there exist exactly two (distinct) permutations $\sigma, \sigma' \in D_{2n}$ such that $\alpha = \sigma|_{\text{Dom}(\alpha)} = \sigma'|_{\text{Dom}(\alpha)}$;

2. if either $|\text{Dom}(\alpha)| = 2$ and $d(\min \text{Dom}(\alpha), \max \text{Dom}(\alpha)) \neq \frac{n}{2}$ or $|\text{Dom}(\alpha)| \geq 3$, then there exists exactly one permutation $\sigma \in D_{2n}$ such that $\alpha = \sigma|_{\text{Dom}(\alpha)}$.

Proof For any $\alpha \in \mathcal{PT}_n$, if $\alpha = \sigma|_{\text{Dom}(\alpha)}$, for some $\sigma \in D_{2n}$, then $\alpha \in \mathcal{DPC}_n$ since $D_{2n} \subseteq \mathcal{DPC}_n$ and, clearly, any restriction of an element of \mathcal{DPC}_n also belongs to \mathcal{DPC}_n.

Conversely, let us suppose that $\alpha \in \mathcal{DPC}_n$. First, observe that, for each pair $1 \leq i, j \leq n$, there exists a unique $k \in \{0, 1, \ldots, n-1\}$ such that $ig^k = j$ and there exists a unique $\ell \in \{0, 1, \ldots, n-1\}$ such that $ihg^\ell = j$, where g and h are the permutations defined above. In fact, for $1 \leq i, j \leq n$ and $k, \ell \in \{0, 1, \ldots, n-1\}$, it is easy to show that

1. if $i \leq j$ then $ig^k = j$ if and only if $k = j - i$;

2. if $i > j$ then $ig^k = j$ if and only if $k = n + j - i$;

3. if $i + j \leq n$ then $ihg^\ell = j$ if and only if $\ell = i + j - 1$;

4. if $i + j > n$ then $ihg^\ell = j$ if and only if $\ell = i + j - 1 - n$.

Therefore, we may conclude immediately that:

1. any nonempty transformation of \mathcal{DPC}_n has at most two distinct extensions in D_{2n} and, if there are two distinct, one must be an orientation-preserving transformation and the other an orientation-reversing transformation;

2. any transformation of \mathcal{DPC}_n with rank 1 has two distinct extensions in D_{2n} (one is an orientation-preserving transformation and the other is an orientation-reversing transformation).
Notice that, as \(g^n = g^{-n} = 1 \), we also have \(ig^{j-i} = j \) and \(ihg^{i+j-1} = j \), for all \(1 \leq i, j \leq n \).

Next, suppose that \(\text{Dom}(\alpha) = \{ i_1 < i_2 \} \). Then, there exist \(\sigma \in \mathcal{C}_n \) and \(\xi \in \mathcal{D}_{2n} \setminus \mathcal{C}_n \) (both unique) such that \(i_1 \sigma = i_1 \alpha = i_1 \xi \). Take \(D = \{ z \in \{ 1, 2, \ldots, n \} : d(i_1 \alpha, z) = d(i_1, i_2) \} \). Then \(1 \leq |D| \leq 2 \) and \(i_2 \alpha, i_2 \sigma, i_2 \xi \in D \).

Suppose that \(i_2 \sigma = i_2 \xi \) and let \(j_1 = i_1 \sigma \) and \(j_2 = i_2 \sigma \). Then \(\sigma = g^{j_1-i_1} = g^{j_2-i_2} \) and \(\xi = hg^{j_1+j_1-1} = hg^{j_2+j_2-1} \). Hence, we have \(j_1 - i_1 = j_2 - i_2 \) or \(j_1 - i_1 = j_2 - i_2 \pm n \) from the first equality, and \(i_1 + j_1 = i_2 + j_2 \) or \(i_1 + j_1 = i_2 + j_2 \pm n \) from the second. Since \(i_1 \neq i_2 \) and \(i_2 - i_1 \neq n \), it is a routine matter to conclude that the only possibility is to have \(i_2 - i_1 = \frac{n}{2} \) (in which case \(n \) is even). Thus, \(d(i_1, i_2) = \frac{n}{2} \). By (2.1), it follows that \(|D| = 1 \) and so \(i_2 \alpha = i_2 \sigma = i_2 \xi \), i.e. \(\alpha \) is extended by both \(\sigma \) and \(\xi \).

If \(i_2 \sigma \neq i_2 \xi \), then \(|D| = 2 \) (whence \(d(i_1, i_2) < \frac{n}{2} \)), and so either \(i_2 \alpha = i_2 \sigma \) or \(i_2 \alpha = i_2 \xi \). In this case, \(\alpha \) is extended by exactly one permutation of \(\mathcal{D}_{2n} \).

Now, suppose that \(\text{Dom}(\alpha) = \{ i_1 < i_2 < \cdots < i_k \} \) for some \(3 \leq k \leq n - 1 \). Since \(\sum_{p=1}^{k-1} (i_{p+1} - i_p) = i_k - i_1 < n \), then there exists at most one index \(1 \leq p \leq k - 1 \) such that \(i_{p+1} - i_p \geq \frac{n}{2} \). Therefore, we may take \(i, j \in \text{Dom}(\alpha) \) such that \(i \neq j \) and \(d(i, j) \neq \frac{n}{2} \) and so, as \(\alpha|_{\{i,j\}} \in \mathcal{DPC}_n \), by the above deductions, there exists a unique \(\sigma \in \mathcal{D}_{2n} \) such that \(\sigma|_{\{i,j\}} = \alpha|_{\{i,j\}} \). Let \(\ell \in \text{Dom}(\alpha) \setminus \{i, j\} \). Then

\[
\ell \alpha, \ell \sigma \in \{ z \in \{ 1, 2, \ldots, n \} : d(i \alpha, z) = d(i, \ell) \} \cap \{ z \in \{ 1, 2, \ldots, n \} : d(j \alpha, z) = d(j, \ell) \}.
\]

In order to obtain a contradiction, suppose that \(\ell \alpha \neq \ell \sigma \). Therefore, by (2.1), we have

\[
\{ z \in \{ 1, 2, \ldots, n \} : d(i \alpha, z) = d(i, \ell) \} = \{ \ell \alpha, \ell \sigma \} = \{ z \in \{ 1, 2, \ldots, n \} : d(j \alpha, z) = d(j, \ell) \}
\]

and so, by (2.2), \(d(i, j) = d(i \alpha, j \alpha) = \frac{n}{2} \), which is a contradiction. Hence, \(\ell \alpha = \ell \sigma \). Thus, \(\sigma \) is the unique permutation of \(\mathcal{D}_{2n} \) such that \(\alpha = \sigma|_{\text{Dom}(\alpha)} \), as required.

Bearing in mind the previous lemma, it seems appropriate to designate \(\mathcal{DPC}_n \) by dihedral inverse monoid on \(\Omega_n \).

Since \(\mathcal{D}_{2n} \subseteq \mathcal{POR}_n \cap \mathcal{I}_n \), which contains all the restrictions of its elements, we have immediately the following corollary.

Corollary 2.2 The monoid \(\mathcal{DPC}_n \) is contained in \(\mathcal{POR}_n \cap \mathcal{I}_n \). \(\square \)

Observe that, as \(\mathcal{D}_{2n} \) is the group of units of \(\mathcal{POR}_n \cap \mathcal{I}_n \) (see [14, 15]), then \(\mathcal{D}_{2n} \) also has to be the group of units of \(\mathcal{DPC}_n \).

Next, recall that, given an inverse submonoid \(M \) of \(\mathcal{I}_n \), it is well known that the Green’s relations \(\mathcal{L}, \mathcal{R}, \) and \(\mathcal{H} \) of \(M \) can be described as follows: for \(\alpha, \beta \in M \),

- \(\alpha L \beta \) if and only if \(\text{Im}(\alpha) = \text{Im}(\beta) \);
- \(\alpha R \beta \) if and only if \(\text{Dom}(\alpha) = \text{Dom}(\beta) \);
- \(\alpha H \beta \) if and only if \(\text{Im}(\alpha) = \text{Im}(\beta) \) and \(\text{Dom}(\alpha) = \text{Dom}(\beta) \).

In \(\mathcal{I}_n \), we also have
• \(\alpha \not\sim \beta \) if and only if \(|\text{Dom}(\alpha)| = |\text{Dom}(\beta)|\) (if and only if \(|\text{Im}(\alpha)| = |\text{Im}(\beta)|\)).

Since \(\mathcal{DPC}_n \) is an inverse submonoid of \(\mathcal{I}_n \), it remains to describe its Green’s relation \(\mathcal{J} \). In fact, it is a routine matter to prove the following proposition.

Proposition 2.3 Let \(\alpha, \beta \in \mathcal{DPC}_n \). Then \(\alpha \not\sim \beta \) if and only if one of the following properties is satisfied:

1. \(|\text{Dom}(\alpha)| = |\text{Dom}(\beta)| \leq 1\);
2. \(|\text{Dom}(\alpha)| = |\text{Dom}(\beta)| = 2 \) and \(d(i_1, i_2) = d(i'_1, i'_2) \) where \(\text{Dom}(\alpha) = \{i_1, i_2\} \) and \(\text{Dom}(\beta) = \{i'_1, i'_2\} \);
3. \(|\text{Dom}(\alpha)| = |\text{Dom}(\beta)| = k \geq 3 \) and there exists \(\sigma \in \mathcal{D}_{2k} \) such that \((i'_1 \ i'_2 \ \cdots \ i'_k) = (i_1 \ i_2 \ \cdots \ i_k) \) \(\in \mathcal{DPC}_n \) where \(\text{Dom}(\alpha) = \{i_1 < i_2 < \cdots < i_k\} \) and \(\text{Dom}(\beta) = \{i'_1 < i'_2 < \cdots < i'_k\} \).

An alternative description of \(\mathcal{J} \) can be found in the second author’s MSc thesis [30].

Next, we count the number of elements of \(\mathcal{DPC}_n \).

Theorem 2.4 One has \(|\mathcal{DPC}_n| = n^{2n+1} - \frac{(-1)^n+5}{4}n^2 - 2n + 1 \).

Proof Let \(\mathcal{A}_i = \{\alpha \in \mathcal{DPC}_n : |\text{Dom}(\alpha)| = i\} \) for \(i = 0, 1, \ldots, n \). Since the sets \(\mathcal{A}_0, \mathcal{A}_1, \ldots, \mathcal{A}_n \) are pairwise disjoints, we get \(|\mathcal{DPC}_n| = \sum_{i=0}^n |\mathcal{A}_i| \).

Clearly, \(\mathcal{A}_0 = \{\emptyset\} \), where \(\emptyset \) denotes the empty mapping on \(\Omega_n \), and \(\mathcal{A}_1 = \{\{i\} : 1 \leq i, j \leq n\} \), whence \(|\mathcal{A}_0| = 1 \) and \(|\mathcal{A}_1| = n^2 \). Moreover, for \(i \geq 3 \), by Lemma 2.1, we have as many elements in \(\mathcal{A}_i \) as there are restrictions of rank \(i \) of permutations of \(\mathcal{D}_{2n} \), i.e., we have \(\binom{n}{i} \) distinct elements of \(\mathcal{A}_i \) for each permutation of \(\mathcal{D}_{2n} \), whence \(|\mathcal{A}_i| = 2n\binom{n}{i} \). Similarly, for an odd \(n \), by Lemma 2.1, we have \(|\mathcal{A}_2| = 2n\binom{n}{\frac{n}{2}} \). On the other hand, if \(n \) is even, also by Lemma 2.1, we have as many elements in \(\mathcal{A}_2 \) as there are restrictions of rank 2 of permutations of \(\mathcal{D}_{2n} \) minus the number of elements of \(\mathcal{A}_2 \) that have two distinct extensions in \(\mathcal{D}_{2n} \), i.e., \(|\mathcal{A}_2| = 2n\binom{n}{\frac{n}{2}} - |\mathcal{B}_2| \), where

\[
\mathcal{B}_2 = \{\alpha \in \mathcal{DPC}_n : |\text{Dom}(\alpha)| = 2 \text{ and } d(\min \text{Dom}(\alpha), \max \text{Dom}(\alpha)) = \frac{n}{2}\}.
\]

It is easy to check that

\[
|\mathcal{B}_2| = 2\left(\frac{n}{2}\right)^2 = \frac{1}{2}n^2.
\]

Therefore,

\[
|\mathcal{DPC}_n| = \begin{cases} 1 + n^2 + 2n \sum_{i=2}^n \binom{n}{i} & \text{if } n \text{ is odd} \\ 1 + n^2 + 2n \sum_{i=2}^n \binom{n}{i} - \frac{1}{2}n^2 & \text{if } n \text{ is even} \end{cases} = \begin{cases} n^{2n+1} - n^2 - 2n + 1 & \text{if } n \text{ is odd} \\ n^{2n+1} - \frac{3}{2}n^2 - 2n + 1 & \text{if } n \text{ is even}, \end{cases}
\]

as required.

We finish this section by deducing that \(\mathcal{DPC}_n \) has rank 3.
Let
\[
e_i = \text{id}_{\Omega_n \setminus \{i\}} = \begin{pmatrix} 1 & \cdots & i-1 & i+1 & \cdots & n \\ 1 & \cdots & i-1 & i+1 & \cdots & n \end{pmatrix} \in \mathcal{DPC}_n,
\]
for \(i = 1, 2, \ldots, n\). Clearly, for \(1 \leq i, j \leq n\), we have \(e_i^2 = e_i\) and \(e_ie_j = \text{id}_{\Omega_n \setminus \{i,j\}} = e_je_i\). More generally, for any \(X \subseteq \Omega_n\), we get \(\Pi_{i \in X} e_i = \text{id}_{\Omega_n \setminus X}\).

Now, take \(\alpha \in \mathcal{DPC}_n\). Then, by Lemma 2.1, \(\alpha = h^i g^j|_{\text{Dom}(\alpha)}\) for some \(i \in \{0, 1\}\) and \(j \in \{0, \ldots, n-1\}\). Hence, \(\alpha = h^i g^j\text{id}_{\text{Im}(\alpha)} = h^i g^j \Pi_{k \in \Omega_n \setminus \text{Im}(\alpha)} e_k\). Therefore, \(\{g, h, e_1, e_2, \ldots, e_n\}\) is a generating set of \(\mathcal{DPC}_n\).

Since \(e_i = g^{n-i} e_n g^i\) for all \(i \in \{1, 2, \ldots, n\}\), it follows that \(\{g, h, e_n\}\) is also a generating set of \(\mathcal{DPC}_n\). As \(\mathcal{D}_2n\) is the group of units of \(\mathcal{DPC}_n\), which is a group with rank 2, the monoid \(\mathcal{DPC}_n\) cannot be generated by less than three elements. So, we have the following theorem.

Theorem 2.5 The rank of the monoid \(\mathcal{DPC}_n\) is 3. \(\square\)

3. **Presentations for \(\mathcal{DPC}_n\)**

In this section, we aim to determine a presentation for \(\mathcal{DPC}_n\). In fact, we first determine a presentation of \(\mathcal{DPC}_n\) on \(n + 2\) generators and then, by applying Tietze transformations, we deduce a presentation for \(\mathcal{DPC}_n\) on 3 generators.

We begin this section by recalling some notions related to the concept of a monoid presentation.

Let \(A\) be an alphabet and consider the free monoid \(A^*\) generated by \(A\). The elements of \(A\) and of \(A^*\) are called letters and words, respectively. The empty word is denoted by 1 and we write \(A^+\) to express \(A^* \setminus \{1\}\). A pair \((u, v)\) of \(A^* \times A^*\) is called a relation of \(A^*\) and it is usually represented by \(u = v\). To avoid confusion, given \(u, v \in A^*\), we will write \(u \equiv v\) instead of \(u = v\), whenever we want to state precisely that \(u\) and \(v\) are identical words of \(A^*\). A relation \(u = v\) of \(A^*\) is said to be a consequence of \(R\) if \(u \rho_R v\), where \(R \subseteq A^* \times A^*\) is a set of relations and recall that \(\rho_R\) denotes the smallest congruence on \(A^*\) containing \(R\).

Let \(X\) be a generating set of a monoid \(M\) and let \(\phi : A \rightarrow M\) be an injective mapping such that \(A\phi = X\). Let \(\varphi : A^* \rightarrow M\) be the (surjective) homomorphism of monoids that extends \(\phi\) to \(A^*\). We say that \(X\) satisfies (via \(\varphi\)) a relation \(u = v\) of \(A^*\) if \(u\varphi = v\varphi\). For more details see, for example, [27, 33].

A direct method to find a presentation for a monoid is described by the following well-known result (see, for example, [33, Proposition 1.2.3]).

Proposition 3.1 Let \(M\) be a monoid generated by a set \(X\), let \(A\) be an alphabet and let \(\phi : A \rightarrow M\) be an injective mapping such that \(A\phi = X\). Let \(\varphi : A^* \rightarrow M\) be the (surjective) homomorphism that extends \(\phi\) to \(A^*\) and let \(R \subseteq A^* \times A^*\). Then \((A | R)\) is a presentation for \(M\) if and only if the following two conditions are satisfied:

1. The generating set \(X\) of \(M\) satisfies (via \(\varphi\)) all the relations from \(R\);
2. If \(u, v \in A^*\) are any two words such that the generating set \(X\) of \(M\) satisfies (via \(\varphi\)) the relation \(u = v\) then \(u = v\) is a consequence of \(R\). \(\square\)

Given a presentation for a monoid, another method to find a new presentation consists in applying Tietze transformations. For a monoid presentation \((A | R)\), the four elementary Tietze transformations are:
(T1) Adding a new relation \(u = v \) to \(\langle A \mid R \rangle \), provided that \(u = v \) is a consequence of \(R \);

(T2) Deleting a relation \(u = v \) from \(\langle A \mid R \rangle \), provided that \(u = v \) is a consequence of \(R \setminus \{ u = v \} \);

(T3) Adding a new generating symbol \(b \) and a new relation \(b = w \), where \(w \in A^* \);

(T4) If \(\langle A \mid R \rangle \) possesses a relation of the form \(b = w \), where \(b \in A \), and \(w \in (A\setminus\{b\})^* \), then deleting \(b \) from the list of generating symbols, deleting the relation \(b = w \), and replacing all remaining appearances of \(b \) by \(w \).

The next result is well-known (see, for example, [33]):

Proposition 3.2 Two finite presentations define the same monoid if and only if one can be obtained from the other by a finite number of elementary Tietze transformations (T1), (T2), (T3), and (T4). \(\square \)

Now, consider the alphabet \(A = \{ g, h, e_1, e_2, \ldots, e_n \} \) and the set \(R \) formed by the following \(\frac{n^2 + 5n + 9 + (-1)^n}{2} \) monoid relations:

\[
(R_1) \quad g^n = 1, \quad h^2 = 1 \text{ and } hg = g^{n-1}h;
\]

\[
(R_2) \quad e_i^2 = e_i \text{ for } 1 \leq i \leq n;
\]

\[
(R_3) \quad e_ie_j = e_je_i \text{ for } 1 \leq i < j \leq n;
\]

\[
(R_4) \quad ge_1 = e_ng \text{ and } ge_{i+1} = e_ig \text{ for } 1 \leq i \leq n - 1;
\]

\[
(R_5) \quad he_i = e_{n-i+1}h \text{ for } 1 \leq i \leq n;
\]

\[
(R_6) \quad hge_3 \cdots e_n = e_2e_3 \cdots e_n \text{ if } n \text{ is odd};
\]

\[
(R_6') \quad hge_2 \cdots e_\frac{n}{2} e_\frac{n+2}{2} \cdots e_n = e_2 \cdots e_\frac{n}{2} e_\frac{n+2}{2} \cdots e_n \text{ and } he_1e_2 \cdots e_n = e_1e_2 \cdots e_n \text{ if } n \text{ is even}.
\]

We aim to show that the monoid \(DPC_n \) is defined by the presentation \(\langle A \mid R \rangle \).

Let \(\phi : A \rightarrow DPC_n \) be the mapping defined by \(g\phi = g \), \(h\phi = h \) and \(e_i\phi = e_i \), for \(1 \leq i \leq n \), and let \(\varphi : A^* \rightarrow DPC_n \) be the homomorphism of monoids that extends \(\phi \) to \(A^* \). Notice that we are using the same symbols for the letters of the alphabet \(A \) and for the generating set of \(DPC_n \), which simplifies notation and, within the context, will not cause ambiguity.

It is a routine matter to check the following lemma.

Lemma 3.3 The set of generators \(\{ g, h, e_1, e_2, \ldots, e_n \} \) of \(DPC_n \) satisfies (via \(\varphi \)) all the relations from \(R \). \(\square \)

Observe that this result assures us that, if \(u, v \in A^* \) are two words such that the relation \(u = v \) is a consequence of \(R \), then \(u\varphi = v\varphi \).

Next, in order to prove that any relation satisfied by the generating set of \(DPC_n \) is a consequence of \(R \), we first present a series of three lemmas. In what follows, we denote the congruence \(\rho_R \) of \(A^* \) simply by \(\rho \).
Lemma 3.4 If \(n \) is even, then the relation
\[
h^g 2j - 1 e_1 \cdots e_{j - 1} e_{j + 1} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n = e_1 \cdots e_{j - 1} e_{j + 1} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n
\]
is a consequence of \(R \) for \(1 \leq j \leq \frac{n}{2} \).

Proof We proceed by induction on \(j \).

Let \(j = 1 \). Then \(h e_1 \cdots e_{\frac{n}{2} - 1} e_{\frac{n}{2} + 1} \cdots e_n = e_1 \cdots e_{\frac{n}{2} - 1} e_{\frac{n}{2} + 1} \cdots e_n \) is a relation of \(R \). Next, suppose that \(h^g 2j - 1 e_1 \cdots e_{j - 1} e_{j + 1} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n \) for some \(1 \leq j \leq \frac{n}{2} - 1 \). Then
\[
h^g (j + 1) - 1 e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n = e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n
\]
(by induction hypothesis)
\[
\rho \ h^g 2j e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n
\]
(by \(R_4 \))
\[
\rho \ h^g (j + 1) - 1 e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n g
\]
(by \(R_1 \) and \(R_3 \))
\[
\rho \ h^g (j + 1) - 1 e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n e_1
\]
(by induction hypothesis)
\[
\rho \ h^g (j + 1) - 1 e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n e_1
\]
(by \(R_4 \))
\[
\rho \ e_1 \cdots e_{j + 1} e_{j + 2} \cdots e_{j + \frac{n}{2} - 1} e_{j + \frac{n}{2} + 1} \cdots e_n
\]
(by \(R_1 \) and \(R_3 \)),
as required.

Lemma 3.5 The relation \(h^g 2i - 1 e_1 \cdots e_{i - 1} e_{i + 1} \cdots e_n = e_1 \cdots e_{i - 1} e_{i + 1} \cdots e_n \) is a consequence of \(R \), for \(1 \leq i \leq n \).

Proof We proceed by induction on \(i \).

Let \(i = 1 \). If \(n \) is odd then \(h e_1 e_2 \cdots e_n = e_1 e_2 \cdots e_n \) is a relation of \(R \). So, suppose that \(n \) is even. Then \(h e_1 e_2 e_{\frac{n}{2} + 1} \cdots e_n = e_1 e_2 e_{\frac{n}{2} + 1} \cdots e_n \) is a relation of \(R \), whence
\[
h e_1 e_2 e_{\frac{n}{2} + 1} \cdots e_n e_{\frac{n}{2} + 1} \rho e_1 e_2 e_{\frac{n}{2} + 1} \cdots e_n e_{\frac{n}{2} + 1}
\]
and so \(h e_1 e_2 \cdots e_n = e_1 e_2 \cdots e_n \), by \(R_3 \).

Now, suppose that \(h^g 2i - 1 e_1 \cdots e_{i - 1} e_{i + 1} \cdots e_n \rho e_1 \cdots e_{i - 1} e_{i + 1} \cdots e_n \) for some \(1 \leq i \leq n - 1 \). Then (with steps similar to the previous proof), we have
\[
h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n \equiv h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n
\]
(by induction hypothesis)
\[
\rho \ h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n = e_1 \cdots e_{i + 1} \cdots e_n
\]
(by \(R_4 \))
\[
\rho \ h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n = e_1 \cdots e_{i + 1} \cdots e_n
\]
(by \(R_1 \) and \(R_3 \))
\[
\rho \ h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n g
\]
(by induction hypothesis)
\[
\rho \ h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n e_1
\]
(by \(R_4 \))
\[
\rho \ h^g (i + 1) - 1 e_1 \cdots e_{i + 1} \cdots e_n e_1
\]
(by \(R_3 \)),
as required.

Lemma 3.6 The relation \(h^g m e_1 e_2 \cdots e_n = e_1 e_2 \cdots e_n \) is a consequence of \(R \) for \(\ell, m \geq 0 \).
Proof First, we prove that the relation \(he_1 e_2 \cdots e_n = e_1 e_2 \cdots e_n \) is a consequence of \(R \). Since this relation belongs to \(R \) when \(n \) is even, it remains to show that \(he_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \) when \(n \) is odd.

Suppose that \(n \) is odd. Hence, by \(R_0 \), we have \(hge_1 e_2 \cdots e_n e_1 \rho e_2 e_3 \cdots e_{n+1} \), so \(hge_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \) (by \(R_3 \)), whence \(ge_1 e_2 \cdots e_n \rho he_1 e_2 \cdots e_n \) (by \(R_1 \)) and then \((ge_1 e_2 \cdots e_n)^n \rho (he_1 e_2 \cdots e_n)^n \). Now, by \(R_4 \) and \(R_3 \), we have \(ge_1 e_2 \cdots e_n \rho e_n g e_2 \cdots e_n \rho e_n e_1 \cdots e_{n-1} g \rho e_1 e_2 \cdots e_n g \) and so, by relations \(R_1, R_3 \), and \(R_2 \), it follows that \((ge_1 e_2 \cdots e_n)^n \rho g^n(e_1 e_2 \cdots e_n)^n \rho e_1 e_2 \cdots e_n \). On the other hand, by \(R_5 \) and \(R_3 \), we have \(he_1 e_2 \cdots e_n \rho e_n e_1 \cdots e_{n-1} \rho e_1 e_2 \cdots e_{n-1} h \rho e_1 e_2 \cdots e_{n-1} h \), whence \((he_1 e_2 \cdots e_n)^n \rho h^n(e_1 e_2 \cdots e_n)^n \rho he_1 e_2 \cdots e_n \) by relations \(R_1, R_3 \), and \(R_2 \), since \(n \) is odd. Therefore, \(he_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \).

Secondly, we prove that the relation \(ge_1 e_2 \cdots e_n = e_1 e_2 \cdots e_n \) is a consequence of \(R \). In fact, we have

\[
\begin{align*}
ge_1 e_2 \cdots e_n & \rho ge_1 hge_2 \cdots e_n & \text{(by Lemma 3.5)} \\
n & \rho e_n ghe_2 \cdots e_n & \text{(by } R_4) \\
n & \rho e_n g g ^ {n-1} e_2 \cdots e_n & \text{(by } R_1) \\
n & \rho e_n h e_2 \cdots e_n & \text{(by } R_1) \\
n & \rho h e_1 e_2 \cdots e_n & \text{(by } R_5) \\
n & \rho e_1 e_2 \cdots e_n & \text{(by the first part).}
\end{align*}
\]

Now, clearly, for \(\ell, m \geq 0 \), \(h^\ell g^n e_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \) follows immediately from \(ge_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \) and \(he_1 e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \), which concludes the proof of the lemma.

We are now in a position to prove the following result.

Theorem 3.7 The monoid \(\mathcal{DPC}_n \) is defined by the presentation \(\langle A \mid R \rangle \) on \(n+2 \) generators.

Proof In view of Proposition 3.1 and Lemma 3.3, it remains to prove that any relation satisfied by the generating set \(\{ g, h, e_1, e_2, \ldots, e_n \} \) of \(\mathcal{DPC}_n \) is a consequence of \(R \).

Let \(u, v \in A^* \) be two words such that \(u \varphi = v \varphi \). We aim to show that \(u \rho v \). Take \(\alpha = u \varphi \).

It is clear that relations \(R_1 \) to \(R_5 \) allow us to deduce that \(u \rho h^\ell g^m e_{i_1} \cdots e_{i_k} \rho e_{i_1} \cdots e_{i_k} \) for some \(\ell \in \{ 0, 1 \}, m \in \{ 0, 1, \ldots, n-1 \}, 1 \leq i_1 < \cdots < i_k \leq n \) and \(0 \leq k \leq n \). Similarly, we have \(v \rho h^{\ell'} g^{m'} e_{i'_1} \cdots e_{i'_{k'}} \rho e_{i'_1} \cdots e_{i'_{k'}} \) for some \(\ell' \in \{ 0, 1 \}, m' \in \{ 0, 1, \ldots, n-1 \}, 1 \leq i'_1 < \cdots < i'_{k'} \leq n \) and \(0 \leq k' \leq n \).

Since \(\alpha = h^\ell g^m e_{i_1} \cdots e_{i_k} \), it follows that \(\text{Im}(\alpha) = \Omega_n \setminus \{ i_1, \ldots, i_k \} \) and \(\alpha = h^\ell g^m | \text{Dom}(\alpha) \). Similarly, as also \(\alpha = v \varphi \), from \(\alpha = h^{\ell'} g^{m'} e_{i'_1} \cdots e_{i'_{k'}} \), we get \(\text{Im}(\alpha) = \Omega_n \setminus \{ i'_1, \ldots, i'_{k'} \} \) and \(\alpha = h^{\ell'} g^{m'} | \text{Dom}(\alpha) \). Hence, \(k' = k \) and \(\{ i'_1, \ldots, i'_{k'} \} = \{ i_1, \ldots, i_k \} \). Furthermore, if either \(k = n - 2 \) and \(d(\min \text{Dom}(\alpha), \max \text{Dom}(\alpha)) \neq \frac{n}{2} \) or \(k \leq n - 3 \), by Lemma 2.1, we obtain \(\ell' = \ell \) and \(m' = m \), and so \(u \rho h^\ell g^m e_{i_1} \cdots e_{i_k} \rho v \).

If \(h^{\ell'} g^{m'} = h^\ell g^m \) (including as elements of \(\mathcal{D}_{2n} \)) then \(\ell' = \ell \) and \(m' = m \), and so we get again \(u \rho h^\ell g^m e_{i_1} \cdots e_{i_k} \rho v \).

Therefore, let us suppose that \(h^{\ell'} g^{m'} \neq h^\ell g^m \). Hence, by Lemma 2.1, we may conclude that \(\alpha = \emptyset \) or \(\ell' = \ell - 1 \) or \(\ell' = \ell + 1 \). If \(\alpha = \emptyset \), i.e. \(k = n \), then \(u \rho h^\ell g^m e_{i_1} e_2 \cdots e_n \rho e_1 e_2 \cdots e_n \rho h^{\ell'} g^{m'} e_{i_1} e_2 \cdots e_n \rho v \) by Lemma 3.6.

Thus, we may suppose that \(\alpha \neq \emptyset \) and, without loss of generality, also that \(\ell' = \ell + 1 \), i.e. \(\ell = 0 \) and \(\ell' = 1 \). Let \(k = n - 2 \) and admit that \(d(\min \text{Dom}(\alpha), \max \text{Dom}(\alpha)) = \frac{n}{2} \) (in which case \(n \) is even).

1756
Let \(\alpha = \left(\frac{i_1}{j_1}, \frac{i_2}{j_2} \right) \) with \(1 \leq i_1 < i_2 \leq n \). Then \(i_2 - i_1 = \frac{n}{2} = d(i_1, i_2) = d(j_1, j_2) = |j_2 - j_1| \), and so \(j_2 \in \{j_1 - \frac{n}{2}, j_1 + \frac{n}{2} \} \). Let \(j = \min \{j_1, j_2\} \) (notice that \(1 \leq j < \frac{n}{2} \)) and \(i = j\alpha^{-1} \). Hence, \(\text{Im}(\alpha) = \{j, j + \frac{n}{2} \} \) and \(\alpha = g^{n+j-1}|_{\text{Dom}(\alpha)} = hg^{j+1-n}|_{\text{Dom}(\alpha)} \) (cf. proof of Lemma 2.1). So, we have

\[
u \rho g^m e_1 \cdots e_{j-1} e_{j+1} \cdots e_j \frac{n}{2} - 1 e_j + \frac{n}{2} + 1 \cdots e_n \quad \text{and} \quad v \rho h g^{m'} e_1 \cdots e_{j-1} e_{j+1} \cdots e_j \frac{n}{2} - 1 e_j + \frac{n}{2} + 1 \cdots e_n.
\]

and, by Lemma 2.1, \(m = rn + j - i \) for some \(r \in \{0, 1\} \), and \(m' = i + j - 1 - r'n \) for some \(r' \in \{0, 1\} \). Thus, we get

\[
u \rho g^m e_1 \cdots e_{j-1} e_{j+1} \cdots e_j \frac{n}{2} - 1 e_j + \frac{n}{2} + 1 \cdots e_n \quad \text{and} \quad v \rho h g^{m'} e_1 \cdots e_{j-1} e_{j+1} \cdots e_j \frac{n}{2} - 1 e_j + \frac{n}{2} + 1 \cdots e_n.
\]

Finally, consider that \(k = n - 1 \). Let \(i \in \Omega_n \) be such that \(\Omega_n \setminus \{i_1, \ldots, i_{n-1}\} = \{i\} \). Then \(\text{Im}(\alpha) = \{i\} \) and \(\{i_1, \ldots, i_{n-1}\} = \{1, \ldots, i-1, i+1, \ldots, n\} \). Take \(a = i\alpha^{-1} \). Then \(ag^m = i = a g^{m'} \). Since \(ag^m = a + m - rn \) for some \(r \in \{0, 1\} \), and \(a g^{m'} = (n - a + 1) g^{m'} = r'n - a + 1 + m' \) for some \(r' \in \{0, 1\} \), in a similar way to what we proved before, we have

\[
u \rho g^m e_1 \cdots e_{i-1} e_{i+1} \cdots e_n \quad \text{and} \quad v \rho g^{m'} e_1 \cdots e_{i-1} e_{i+1} \cdots e_n.
\]

as required. \(\square \)

Notice that, taking into account the relation \(h^2 = 1 \) of \(R_1 \), we could have taken only half of the relations \(R_5 \), namely the relations \(h e_i = e_{n-i+1} h \) with \(1 \leq i \leq \lceil \frac{n}{2} \rceil \), where \(\lceil \frac{n}{2} \rceil \) denotes the least integer greater than or equal to \(\frac{n}{2} \).

Our next and final goal is, by using Tietze transformations, to deduce a new presentation on 3 generators from the previous presentation for \(\mathcal{DP}_n \).

Since we have \(e_i = h g^{i-1} e_n h g^{i-1} \) (as transformations) for all \(i \in \{1, 2, \ldots, n\} \), we will proceed as follows: first, by applying T1, we add the relations \(e_i = h g^{i-1} e_n h g^{i-1} \) for \(1 \leq i \leq n \); secondly, we apply T4 to each of the relations \(e_i = h g^{i-1} e_n h g^{i-1} \) with \(i \in \{1, 2, \ldots, n-1\} \) and, in some cases, by convenience, we also replace \(e_n \) by \(h g^{n-1} e_n h g^{n-1} \); finally, by using the relations \(R_1 \), we simplify the new relations obtained, eliminating the trivial ones or those that are deduced from others. Performing this procedure for each of the sets of relations \(R_1 \) to \(R_6 \), and renaming \(e_n \) by \(e \), we may routinely obtain the following set \(Q \) of \(\frac{n^2 - n + 13 + (-1)^n}{2} \) many monoid relations on the alphabet \(B = \{g, h, e\} \):

\[
(Q_1) \quad g^n = 1, \quad h^2 = 1 \quad \text{and} \quad h g = g^{n-1} h;
\]
\((Q_2) \) \(e^2 = e \) and \(ghgh = e \);

\((Q_3) \) \(e^{j-i} e^{n-j+i} = g^{j-i} e^{n-j+i} e \) for \(1 \leq i < j \leq n \);

\((Q_4) \) \(h(g(e))^{n-2} e = (e(g))^{n-2} e \) if \(n \) is odd;

\((Q_5) \) \(h(g(e))^\frac{n}{2} - 1 g(e)^\frac{n}{2} - 2 e = (e(g))^\frac{n}{2} - 1 g(e)^\frac{n}{2} - 2 e \) and \(h(e)^{n-1} e = (e(g))^{n-1} e \) if \(n \) is even.

Notice that, the use of the expressions \(e_i = h(g^{i-1} e_n h g^{i-1}) \) for all \(i \in \{1, 2, \ldots, n\} \), instead of those observed at the end of Section 2, i.e. \(e_i = g^{n-i} e_n g^i \) for all \(i \in \{1, 2, \ldots, n\} \), allowed us to obtain simpler relations.

Now, in view of Proposition 3.2, we have the following theorem.

Theorem 3.8 The monoid \(DPC_n \) is defined by the presentation \(\langle B \mid Q \rangle \) on 3 generators. \(\square \)

Acknowledgments

This work is funded by national funds through the Foundation for Science and Technology (FCT), I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (NovaMath - Center for Mathematics and Applications).

We would like to thank the anonymous referees for their valuable comments and suggestions that allowed us to improve this paper.

References

1758
FERNANDES and PAULISTA/Turk J Math

[29] Moore EH. Concerning the abstract groups of order $k!$ and $\frac{1}{2}k!$ holohedrically isomorphic with the symmetric and the alternating substitution groups on k letters. Proceedings of the London Mathematical Society 1897; 28: 357-366.

