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Abstract: In this paper we consider the monoid DPCn of all partial isometries of an n -cycle graph Cn . We show that
DPCn is the submonoid of the monoid of all oriented partial permutations on an n -chain whose elements are precisely
all restrictions of a dihedral group of order 2n . Our main aim is to exhibit a presentation of DPCn . We also describe
Green’s relations of DPCn and calculate its cardinality and rank.
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1. Introduction
Let Ω be a finite set. As usual, let us denote by PT (Ω) the monoid (under composition) of all partial
transformations on Ω , by T (Ω) the submonoid of PT (Ω) of all full transformations on Ω , by I(Ω) the
symmetric inverse monoid on Ω , i.e. the inverse submonoid of PT (Ω) of all partial permutations on Ω , and
by S(Ω) the symmetric group on Ω , i.e. the subgroup of PT (Ω) of all permutations on Ω .

Recall that the rank of a (finite) monoid M is the minimum size of all (finite) generating sets of M , i.e.
the minimum of the set {|X| : X ⊆ M and X generates M } .

Let Ω be a finite set with at least 3 elements. It is well-known that S(Ω) has rank 2 (as a semigroup,
a monoid, or a group) and T (Ω) , I(Ω) , and PT (Ω) have ranks 3 , 3 , and 4 , respectively. The survey [13]
presents these results and similar ones for other classes of transformation monoids, in particular, for monoids
of order-preserving transformations and for some of their extensions. For example, the rank of the extensively
studied monoid of all order-preserving transformations of an n -chain is n , which was proved by Gomes and
Howie [23] in 1992. More recently, for instance, the papers [5, 16, 17, 19, 21] are dedicated to the computation
of the ranks of certain classes of transformation semigroups or monoids.

A monoid presentation is an ordered pair ⟨A | R⟩ , where A is a set, often called an alphabet, and
R ⊆ A∗ × A∗ is a set of relations of the free monoid A∗ generated by A . A monoid M is said to be defined
by a presentation ⟨A | R⟩ if M is isomorphic to A∗/ρR , where ρR denotes the smallest congruence on A∗

containing R .
Given a finite monoid, it is clear that we can always exhibit a presentation for it, at worst by enumerating

all elements from its multiplication table, but clearly this is of no interest, in general. So, by determining a
∗Correspondence: vhf@fct.unl.pt
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presentation for a finite monoid, we mean to find in some sense a nice presentation (e.g., with a small number
of generators and relations).

A presentation for the symmetric group S(Ω) was determined by Moore [29] over a century ago (1897).
For the full transformation monoid T (Ω) , a presentation was given in 1958 by Aĭzenštat [1] in terms of a
certain type of two-generator presentation for the symmetric group S(Ω) , plus an extra generator and seven
more relations. Presentations for the partial transformation monoid PT (Ω) and for the symmetric inverse
monoid I(Ω) were found by Popova [31] in 1961. In 1962, Aĭzenštat [2] and Popova [32] exhibited presentations
for the monoids of all order-preserving transformations and of all order-preserving partial transformations of
a finite chain, respectively, and from the Sixties to the present day, several authors obtained presentations for
many classes of monoids. See also [33], the survey [13], and, for example, [8–12, 14, 20, 25].

Now, let G = (V,E) be a finite simple connected graph, where V is the set of vertices and E is the list
of edges. The (geodesic) distance between two vertices x and y of G , denoted by dG(x, y) , is the length of a
shortest path between x and y , i.e. the number of edges in a shortest path between x and y .

Let α ∈ PT (V ) . We say that α is a partial isometry or distance preserving partial transformation of G

if
dG(xα, yα) = dG(x, y)

for all x, y ∈ Dom(α) . Denote by DP(G) the subset of PT (V ) of all partial isometries of G . Clearly, DP(G)

is a submonoid of PT (V ) . Moreover, as a consequence of the property

dG(x, y) = 0 if and only if x = y

for all x, y ∈ V , it immediately follows that DP(G) ⊆ I(V ) . Furthermore, DP(G) is an inverse submonoid of
I(V ) (see [18]).

Observe that if G = (V,E) is a complete graph, i.e. E = {{x, y} : x, y ∈ V, x ̸= y} , then DP(G) = I(V ) .
On the other hand, for n ⩾ 2 , consider the undirected path graph Pn with n vertices, i.e.

Pn = ({1, . . . , n}, {{i, i+ 1} : i = 1, . . . , n− 1}) .

Then, obviously, DP(Pn) coincides with the monoid

DPn = {α ∈ I({1, 2, . . . , n}) : |iα− jα| = |i− j| for all i, j ∈ Dom(α)}

of all partial isometries on {1, 2, . . . , n} .
The study of partial isometries on {1, 2, . . . , n} was initiated by Al-Kharousi et al. in [3, 4]. The first

of these two papers is dedicated to investigating some combinatorial properties of the monoid DPn and of its
submonoid ODPn of all order-preserving (considering the usual order of N) partial isometries, in particular,
their cardinalities. The second paper presents the study of some of their algebraic properties, namely Green’s
structure and ranks. Presentations for both the monoids DPn and ODPn were given by the first author and
Quinteiro in [20]. Moreover, for 2 ⩽ r ⩽ n − 1 , Bugay et al. in [6] obtained the ranks of the subsemigroups
DPn,r = {α ∈ DPn : | Im(α)| ⩽ r} of DPn and ODPn,r = {α ∈ ODPn : | Im(α)| ⩽ r} of ODPn .

The monoid DPSn of all partial isometries of a star graph with n vertices (n ⩾ 1) was considered
by the authors in [18]. They determined the rank and size of DPSn and described its Green’s relations. A
presentation for DPSn was also exhibited in [18].
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Now, for n ⩾ 3 , consider the cycle graph

Cn = ({1, 2, . . . , n}, {{i, i+ 1} : i = 1, 2, . . . , n− 1} ∪ {{1, n}})

with n vertices. Notice that cycle graphs and cycle subgraphs play a fundamental role in Graph Theory.

This paper is devoted to studying the monoid DP(Cn) of all partial isometries of Cn , which from now
on we denote simply by DPCn . Observe that DPCn is an inverse submonoid of the symmetric inverse monoid
In .

In Section 2, we start by giving a key characterization of DPCn , which allows for significantly simpler
proofs of various results presented later. Also in this section, a description of the Green’s relations of DPCn

is given and the rank and the cardinality of DPCn are calculated. Finally, in Section 3, we determine a
presentation for the monoid DPCn on n+2 generators, from which we deduce another presentation for DPCn

on 3 generators.

For general background and standard notations, we refer to Howie’s book [24] for Semigroup Theory, and
[34] for Graph Theory.

We would like to point out that we made use of computational tools, namely GAP∗[22].

2. Some properties of DPCn

We begin this section by introducing some concepts and notations.
For n ∈ N , let Ωn be a set with n elements. In general, without loss of generality, Ωn is considered

the chain Ωn = {1 < 2 < · · · < n} and PT (Ωn) , I(Ωn) and S(Ωn) are denoted simply by PT n , In and
Sn , respectively. For any α ∈ PT n , the domain and the image sets of α are denoted by Dom(α) and Im(α) ,
respectively. Also, the cardinality of the set Im(α) is called the rank of α .

A partial transformation α ∈ PT n is called order-preserving [order-reversing] if x ⩽ y implies xα ⩽ yα

[xα ⩾ yα ], for all x, y ∈ Dom(α) . It is clear that the product of two order-preserving or of two order-reversing
transformations is order-preserving and the product of an order-preserving transformation by an order-reversing
transformation, or vice-versa, is order-reversing. We denote by PODn the submonoid of PT n whose elements
are all order-preserving or order-reversing transformations.

Let s = (a1, a2, . . . , at) be a sequence of t (t ⩾ 0) elements from the chain Ωn . We say that s is
cyclic [anticyclic] if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1 [ai < ai+1 ], where
at+1 denotes a1 . Notice that, the sequence s is cyclic [anticyclic] if and only if s is empty or there exists
i ∈ {0, 1, . . . , t− 1} such that ai+1 ⩽ ai+2 ⩽ · · · ⩽ at ⩽ a1 ⩽ · · · ⩽ ai [ai+1 ⩾ ai+2 ⩾ · · · ⩾ at ⩾ a1 ⩾ · · · ⩾ ai ]
(the index i ∈ {0, 1, . . . , t − 1} is unique unless s is constant and t ⩾ 2). We also say that s is oriented if s

is cyclic or s is anticyclic (see, for example, [7, 26, 28]). Given a partial transformation α ∈ PT n such that
Dom(α) = {a1 < · · · < at} with t ⩾ 0 , we say that α is orientation-preserving [orientation-reversing, oriented]
if the sequence of its images (a1α, . . . , atα) is cyclic [anticyclic, oriented]. It is easy to show that the product
of two orientation-preserving or of two orientation-reversing transformations is orientation-preserving and the
product of an orientation-preserving transformation by an orientation-reversing transformation, or vice-versa,
is orientation-reversing. We denote by PORn the submonoid of PT n of all oriented transformations.

Notice that PODn ∩ In and PORn ∩ In are inverse submonoids of In .
∗https://www.gap-system.org
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Let us consider the following permutations of Ωn (for n ⩾ 2) of order n and 2 , respectively:

g =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
and h =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

It is clear that g, h ∈ PORn ∩ In . Moreover, for n ⩾ 3 , g together with h generate the well-known dihedral
group D2n of order 2n (considered a subgroup of Sn ). In fact, for n ⩾ 3 ,

D2n = ⟨g, h | gn = 1, h2 = 1, hg = gn−1h⟩ = {1, g, g2, . . . , gn−1, h, hg, hg2, . . . , hgn−1}

and we have

gk =

(
1 2 · · · n− k n− k + 1 · · · n

1 + k 2 + k · · · n 1 · · · k

)
, i.e. igk =

{
i+ k 1 ⩽ i ⩽ n− k
i+ k − n n− k + 1 ⩽ i ⩽ n,

and

hgk =

(
1 · · · k k + 1 · · · n
k · · · 1 n · · · k + 1

)
, i.e. ihgk =

{
k − i+ 1 1 ⩽ i ⩽ k
n+ k − i+ 1 k + 1 ⩽ i ⩽ n,

for 0 ⩽ k ⩽ n− 1 . Observe that, for n ∈ {1, 2} , the dihedral group D2n = ⟨g, h | gn = 1, h2 = 1, hg = gn−1h⟩
of order 2n (also known as the Klein four-group for n = 2) cannot be considered a subgroup of Sn . Denote
also by Cn the cyclic group of order n generated by g , i.e. Cn = {1, g, g2, . . . , gn−1} .

Until the end of this paper, we will consider n ⩾ 3 . Moreover, for convenience, we will denote α ∈ PT n

with Dom(α) = {i1, . . . , ik} (k ⩾ 1) by α =

(
i1 · · · ik
i1α · · · ikα

)
.

Now, notice that,

dCn(x, y) = min{|x− y|, n− |x− y|} =

{
|x− y| if |x− y| ⩽ n

2
n− |x− y| if |x− y| > n

2 ,

and so 0 ⩽ dCn(x, y) ⩽ n
2 for all x, y ∈ {1, 2, . . . , n} .

From now on, for any two vertices x and y of Cn , we denote the distance dCn
(x, y) simply by d(x, y) .

Observe for x, y ∈ Ωn that

d(x, y) =
n

2
⇔ |x− y| = n

2
⇔ n− |x− y| = n

2
⇔ |x− y| = n− |x− y|,

in which case n is even, and

| {z ∈ {1, 2, . . . , n} : d(x, z) = d} | =
{

1 if d = n
2

2 if d < n
2

(2.1)

for all 1 ⩽ d ⩽ n
2 . Moreover, it is a routine matter to show that

D = {z ∈ {1, 2, . . . , n} : d(x, z) = d} = {z ∈ {1, 2, . . . , n} : d(y, z) = d′}

implies

d(x, y) =

{
0 (i.e. x = y) if |D| = 1
n
2 if |D| = 2, (2.2)
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for all 1 ⩽ d, d′ ⩽ n
2 .

Recall that DPn is an inverse submonoid of PODn ∩In . This is an easy fact to prove and was observed
by Al-Kharousi et al. in [3, 4]. A similar result is also valid for DPCn and PORn ∩ In , as we will deduce
below.

First, notice that it is easy to show that both permutations g and h of Ωn belong to DPCn and so the
dihedral group D2n is contained in DPCn . Furthermore, as we prove next, the elements of DPCn are precisely
the restrictions of the permutations of the dihedral group D2n . This is a key characterization of DPCn that
will allow us to prove in a simpler way some of the results that we present later in this paper. Observe that

α = σ|Dom(α) ⇔ α = idDom(α)σ ⇔ α = σidIm(α),

for any α ∈ PT n and σ ∈ In , where σ|Dom(α) denotes the restriction mapping of σ to Dom(α) and idU , with
U ⊆ Ωn , denotes the restriction map of the identity mapping id of Ωn to U .

Lemma 2.1 For any α ∈ PT n , α ∈ DPCn if and only if there exists σ ∈ D2n such that α = σ|Dom(α) .
Furthermore, for α ∈ DPCn :

1. if either |Dom(α)| = 1 or |Dom(α)| = 2 and d(minDom(α),maxDom(α)) = n
2 (in which case n is

even), then there exist exactly two (distinct) permutations σ, σ′ ∈ D2n such that α = σ|Dom(α) = σ′|Dom(α) ;

2. if either |Dom(α)| = 2 and d(minDom(α),maxDom(α)) ̸= n
2 or |Dom(α)| ⩾ 3 , then there exists exactly

one permutation σ ∈ D2n such that α = σ|Dom(α) .

Proof For any α ∈ PT n , if α = σ|Dom(α) , for some σ ∈ D2n , then α ∈ DPCn since D2n ⊆ DPCn and,
clearly, any restriction of an element of DPCn also belongs to DPCn .

Conversely, let us suppose that α ∈ DPCn . First, observe that, for each pair 1 ⩽ i, j ⩽ n , there exists a
unique k ∈ {0, 1, . . . , n−1} such that igk = j and there exists a unique ℓ ∈ {0, 1, . . . , n−1} such that ihgℓ = j ,
where g and h are the permutations defined above. In fact, for 1 ⩽ i, j ⩽ n and k, ℓ ∈ {0, 1, . . . , n − 1} , it is
easy to show that

1. if i ⩽ j then igk = j if and only if k = j − i ;

2. if i > j then igk = j if and only if k = n+ j − i ;

3. if i+ j ⩽ n then ihgℓ = j if and only if ℓ = i+ j − 1 ;

4. if i+ j > n then ihgℓ = j if and only if ℓ = i+ j − 1− n .

Therefore, we may conclude immediately that:

1. any nonempty transformation of DPCn has at most two distinct extensions in D2n and, if there are
two distinct, one must be an orientation-preserving transformation and the other an orientation-reversing
transformation;

2. any transformation of DPCn with rank 1 has two distinct extensions in D2n (one is an orientation-
preserving transformation and the other is an orientation-reversing transformation).
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Notice that, as gn = g−n = 1 , we also have igj−i = j and ihgi+j−1 = j , for all 1 ⩽ i, j ⩽ n .

Next, suppose that Dom(α) = {i1 < i2} . Then, there exist σ ∈ Cn and ξ ∈ D2n \ Cn (both unique)
such that i1σ = i1α = i1ξ . Take D = {z ∈ {1, 2, . . . , n} : d(i1α, z) = d(i1, i2)} . Then 1 ⩽ |D| ⩽ 2 and
i2α, i2σ, i2ξ ∈ D .

Suppose that i2σ = i2ξ and let j1 = i1σ and j2 = i2σ . Then σ = gj1−i1 = gj2−i2 and ξ = hgi1+j1−1 =

hgi2+j2−1 . Hence, we have j1− i1 = j2− i2 or j1− i1 = j2− i2±n from the first equality, and i1+ j1 = i2+ j2

or i1 + j1 = i2 + j2 ± n from the second. Since i1 ̸= i2 and i2 − i1 ̸= n , it is a routine matter to conclude that
the only possibility is to have i2 − i1 = n

2 (in which case n is even). Thus, d(i1, i2) =
n
2 . By (2.1), it follows

that |D| = 1 and so i2α = i2σ = i2ξ , i.e. α is extended by both σ and ξ .
If i2σ ̸= i2ξ , then |D| = 2 (whence d(i1, i2) <

n
2 ), and so either i2α = i2σ or i2α = i2ξ . In this case, α

is extended by exactly one permutation of D2n .

Now, suppose that Dom(α) = {i1 < i2 < · · · < ik} for some 3 ⩽ k ⩽ n − 1 . Since
∑k−1

p=1(ip+1 − ip) =

ik − i1 < n , then there exists at most one index 1 ⩽ p ⩽ k − 1 such that ip+1 − ip ⩾ n
2 . Therefore, we may

take i, j ∈ Dom(α) such that i ̸= j and d(i, j) ̸= n
2 and so, as α|{i,j} ∈ DPCn , by the above deductions, there

exists a unique σ ∈ D2n such that σ|{i,j} = α|{i,j} . Let ℓ ∈ Dom(α) \ {i, j} . Then

ℓα, ℓσ ∈ {z ∈ {1, 2, . . . , n} : d(iα, z) = d(i, ℓ)} ∩ {z ∈ {1, 2, . . . , n} : d(jα, z) = d(j, ℓ)} .

In order to obtain a contradiction, suppose that ℓα ̸= ℓσ . Therefore, by (2.1), we have

{z ∈ {1, 2, . . . , n} : d(iα, z) = d(i, ℓ)} = {ℓα, ℓσ} = {z ∈ {1, 2, . . . , n} : d(jα, z) = d(j, ℓ)}

and so, by (2.2), d(i, j) = d(iα, jα) = n
2 , which is a contradiction. Hence, ℓα = ℓσ . Thus, σ is the unique

permutation of D2n such that α = σ|Dom(α) , as required. 2

Bearing in mind the previous lemma, it seems appropriate to designate DPCn by dihedral inverse monoid
on Ωn .

Since D2n ⊆ PORn ∩ In , which contains all the restrictions of its elements, we have immediately the
following corollary.

Corollary 2.2 The monoid DPCn is contained in PORn ∩ In . 2

Observe that, as D2n is the group of units of PORn ∩ In (see [14, 15]), then D2n also has to be the
group of units of DPCn .

Next, recall that, given an inverse submonoid M of In , it is well known that the Green’s relations L ,
R , and H of M can be described as follows: for α, β ∈ M ,

• αL β if and only if Im(α) = Im(β) ;

• αRβ if and only if Dom(α) = Dom(β) ;

• αH β if and only if Im(α) = Im(β) and Dom(α) = Dom(β) .

In In , we also have
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• αJ β if and only if |Dom(α)| = |Dom(β)| (if and only if | Im(α)| = | Im(β)|).

Since DPCn is an inverse submonoid of In , it remains to describe its Green’s relation J . In fact, it is
a routine matter to prove the following proposition.

Proposition 2.3 Let α, β ∈ DPCn . Then αJ β if and only if one of the following properties is satisfied:

1. |Dom(α)| = |Dom(β)| ⩽ 1 ;

2. |Dom(α)| = |Dom(β)| = 2 and d(i1, i2) = d(i′1, i
′
2) where Dom(α) = {i1, i2} and Dom(β) = {i′1, i′2} ;

3. |Dom(α)| = |Dom(β)| = k ⩾ 3 and there exists σ ∈ D2k such that
(
i′1 i′2 · · · i′k
i1σ i2σ · · · ikσ

)
∈ DPCn where

Dom(α) = {i1 < i2 < · · · < ik} and Dom(β) = {i′1 < i′2 < · · · < i′k} . 2

An alternative description of J can be found in the second author’s MSc thesis [30].

Next, we count the number of elements of DPCn .

Theorem 2.4 One has |DPCn| = n2n+1 − (−1)n+5
4 n2 − 2n+ 1 .

Proof Let Ai = {α ∈ DPCn : |Dom(α)| = i} for i = 0, 1, . . . , n . Since the sets A0,A1, . . . ,An are pairwise
disjoints, we get |DPCn| =

∑n
i=0 |Ai| .

Clearly, A0 = {∅} , where ∅ denotes the empty mapping on Ωn , and A1 = {
(
i
j

)
: 1 ⩽ i, j ⩽ n} , whence

|A0| = 1 and |A1| = n2 . Moreover, for i ⩾ 3 , by Lemma 2.1, we have as many elements in Ai as there are
restrictions of rank i of permutations of D2n , i.e. we have

(
n
i

)
distinct elements of Ai for each permutation

of D2n , whence |Ai| = 2n
(
n
i

)
. Similarly, for an odd n , by Lemma 2.1, we have |A2| = 2n

(
n
2

)
. On the other

hand, if n is even, also by Lemma 2.1, we have as many elements in A2 as there are restrictions of rank 2

of permutations of D2n minus the number of elements of A2 that have two distinct extensions in D2n , i.e.
|A2| = 2n

(
n
2

)
− |B2| , where

B2 = {α ∈ DPCn : |Dom(α)| = 2 and d(minDom(α),maxDom(α)) = n
2 }.

It is easy to check that

B2 =

{(
i i+ n

2
j j + n

2

)
,

(
i i+ n

2
j + n

2 j

)
: 1 ⩽ i, j ⩽ n

2

}
,

whence |B2| = 2(n2 )
2 = 1

2n
2 . Therefore,

|DPCn| =

 1 + n2 + 2n
∑n

i=2

(
n
i

)
if n is odd

1 + n2 + 2n
∑n

i=2

(
n
i

)
− 1

2n
2 if n is even

=

 n2n+1 − n2 − 2n+ 1 if n is odd

n2n+1 − 3
2n

2 − 2n+ 1 if n is even,

as required. 2

We finish this section by deducing that DPCn has rank 3 .
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Let

ei = idΩn\{i} =

(
1 · · · i− 1 i+ 1 · · · n
1 · · · i− 1 i+ 1 · · · n

)
∈ DPCn,

for i = 1, 2, . . . , n . Clearly, for 1 ⩽ i, j ⩽ n , we have e2i = ei and eiej = idΩn\{i,j} = ejei . More generally, for
any X ⊆ Ωn , we get Πi∈Xei = idΩn\X .

Now, take α ∈ DPCn . Then, by Lemma 2.1, α = higj |Dom(α) for some i ∈ {0, 1} and j ∈ {0, . . . , n−1} .
Hence, α = higj idIm(α) = higjΠk∈Ωn\Im(α)ek . Therefore, {g, h, e1, e2, . . . , en} is a generating set of DPCn .
Since ei = gn−ieng

i for all i ∈ {1, 2, . . . , n} , it follows that {g, h, en} is also a generating set of DPCn . As D2n

is the group of units of DPCn , which is a group with rank 2 , the monoid DPCn cannot be generated by less
than three elements. So, we have the following theorem.

Theorem 2.5 The rank of the monoid DPCn is 3 . 2

3. Presentations for DPCn

In this section, we aim to determine a presentation for DPCn . In fact, we first determine a presentation of
DPCn on n+ 2 generators and then, by applying Tietze transformations, we deduce a presentation for DPCn

on 3 generators.

We begin this section by recalling some notions related to the concept of a monoid presentation.

Let A be an alphabet and consider the free monoid A∗ generated by A . The elements of A and of
A∗ are called letters and words, respectively. The empty word is denoted by 1 and we write A+ to express
A∗ \ {1} . A pair (u, v) of A∗ × A∗ is called a relation of A∗ and it is usually represented by u = v . To avoid
confusion, given u, v ∈ A∗ , we will write u ≡ v instead of u = v , whenever we want to state precisely that u

and v are identical words of A∗ . A relation u = v of A∗ is said to be a consequence of R if uρR v , where
R ⊆ A∗ ×A∗ is a set of relations and recall that ρR denotes the smallest congruence on A∗ containing R .

Let X be a generating set of a monoid M and let ϕ : A −→ M be an injective mapping such that
Aϕ = X . Let φ : A∗ −→ M be the (surjective) homomorphism of monoids that extends ϕ to A∗ . We say that
X satisfies (via φ) a relation u = v of A∗ if uφ = vφ . For more details see, for example, [27, 33].

A direct method to find a presentation for a monoid is described by the following well-known result (see,
for example, [33, Proposition 1.2.3]).

Proposition 3.1 Let M be a monoid generated by a set X , let A be an alphabet and let ϕ : A −→ M be an
injective mapping such that Aϕ = X . Let φ : A∗ −→ M be the (surjective) homomorphism that extends ϕ to
A∗ and let R ⊆ A∗ ×A∗ . Then ⟨A | R⟩ is a presentation for M if and only if the following two conditions are
satisfied:

1. The generating set X of M satisfies (via φ) all the relations from R ;

2. If u, v ∈ A∗ are any two words such that the generating set X of M satisfies (via φ) the relation u = v

then u = v is a consequence of R . 2

Given a presentation for a monoid, another method to find a new presentation consists in applying Tietze
transformations. For a monoid presentation ⟨A | R⟩ , the four elementary Tietze transformations are:
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(T1) Adding a new relation u = v to ⟨A | R⟩ , provided that u = v is a consequence of R ;

(T2) Deleting a relation u = v from ⟨A | R⟩ , provided that u = v is a consequence of R\{u = v} ;

(T3) Adding a new generating symbol b and a new relation b = w , where w ∈ A∗ ;

(T4) If ⟨A | R⟩ possesses a relation of the form b = w , where b ∈ A , and w ∈ (A\{b})∗ , then deleting b from
the list of generating symbols, deleting the relation b = w , and replacing all remaining appearances of b

by w .

The next result is well-known (see, for example, [33]):

Proposition 3.2 Two finite presentations define the same monoid if and only if one can be obtained from the
other by a finite number of elementary Tietze transformations (T1) , (T2) , (T3) , and (T4) . 2

Now, consider the alphabet A = {g, h, e1, e2, . . . , en} and the set R formed by the following n2+5n+9+(−1)n

2

monoid relations:

(R1) gn = 1 , h2 = 1 and hg = gn−1h ;

(R2) e2i = ei for 1 ⩽ i ⩽ n ;

(R3) eiej = ejei for 1 ⩽ i < j ⩽ n ;

(R4) ge1 = eng and gei+1 = eig for 1 ⩽ i ⩽ n− 1 ;

(R5) hei = en−i+1h for 1 ⩽ i ⩽ n ;

(Ro
6) hge2e3 · · · en = e2e3 · · · en if n is odd;

(Re
6) hge2 · · · en

2
en

2 +2 · · · en = e2 · · · en
2
en

2 +2 · · · en and he1e2 · · · en = e1e2 · · · en if n is even.

We aim to show that the monoid DPCn is defined by the presentation ⟨A | R⟩ .
Let ϕ : A −→ DPCn be the mapping defined by gϕ = g , hϕ = h and eiϕ = ei , for 1 ⩽ i ⩽ n , and let

φ : A∗ −→ DPCn be the homomorphism of monoids that extends ϕ to A∗ . Notice that we are using the same
symbols for the letters of the alphabet A and for the generating set of DPCn , which simplifies notation and,
within the context, will not cause ambiguity.

It is a routine matter to check the following lemma.

Lemma 3.3 The set of generators {g, h, e1, e2, . . . , en} of DPCn satisfies (via φ) all the relations from R . 2

Observe that this result assures us that, if u, v ∈ A∗ are two words such that the relation u = v is a
consequence of R , then uφ = vφ .

Next, in order to prove that any relation satisfied by the generating set of DPCn is a consequence of R ,
we first present a series of three lemmas. In what follows, we denote the congruence ρR of A∗ simply by ρ .
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Lemma 3.4 If n is even, then the relation

hg2j−1e1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en = e1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en

is a consequence of R for 1 ⩽ j ⩽ n
2 .

Proof We proceed by induction on j .
Let j = 1 . Then hge2 · · · en

2
en

2 +2 · · · en = e2 · · · en
2
en

2 +2 · · · en is a relation of R . Next, suppose that
hg2j−1e1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · en = e1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · en for some 1 ⩽ j ⩽ n

2 − 1 .
Then

hg2(j+1)−1e1 · · · ejej+2 · · · ej+n
2
ej+n

2 +2 · · · en
≡ hg2j+1e1 · · · ejej+2 · · · ej+n

2
ej+n

2 +2 · · · en
ρ hg2jenge2 · · · ejej+2 · · · ej+n

2
ej+n

2 +2 · · · en (by R4)
ρ hgg2j−1ene1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · en−1g (by R4)

ρ gn−1hg2j−1e1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · eng (by R1 and R3)
ρ gn−1e1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · eng (by the induction hyphotesis)

ρ gn−1e1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en−1ge1 (by R4)
ρ gn−1ge2 · · · ejej+2 · · · ej+n

2
ej+n

2 +2 · · · ene1 (by R4)
ρ e1 · · · ejej+2 · · · ej+n

2
ej+n

2 +2 · · · en (by R1 and R3),

as required. 2

Lemma 3.5 The relation hg2i−1e1· · ·ei−1ei+1· · ·en = e1· · ·ei−1ei+1· · ·en is a consequence of R , for 1 ⩽ i ⩽ n .

Proof We proceed by induction on i .
Let i = 1 . If n is odd then hge2e3 · · · en = e2e3 · · · en is a relation of R . So, suppose that n is even.

Then hge2 · · · en
2
en

2 +2 · · · en = e2 · · · en
2
en

2 +2 · · · en is a relation of R , whence

hge2 · · · en
2
en

2 +2 · · · enen
2 +1 ρ e2 · · · en

2
en

2 +2 · · · enen
2 +1

and so hge2e3 · · · en = e2e3 · · · en , by R3 .
Now, suppose that hg2i−1e1 · · · ei−1ei+1 · · · en ρ e1 · · · ei−1ei+1 · · · en for some 1 ⩽ i ⩽ n− 1 . Then (with

steps similar to the previous proof), we have

hg2(i+1)−1e1 · · · eiei+2 · · · en ≡ hg2i+1e1 · · · eiei+2 · · · en
ρ hg2ienge2 · · · eiei+2 · · · en (by R4)
ρ hgg2i−1ene1 · · · ei−1ei+1 · · · en−1g (by R4)
ρ gn−1hg2i−1e1 · · · ei−1ei+1 · · · eng (by R1 and R3)
ρ gn−1e1 · · · ei−1ei+1 · · · eng (by the induction hyphotesis)
ρ gn−1e1 · · · ei−1ei+1 · · · en−1ge1 (by R4)
ρ gn−1ge2 · · · eiei+2 · · · ene1 (by R4)
ρ e1 · · · eiei+2 · · · en (by R1 and R3),

as required. 2

Lemma 3.6 The relation hℓgme1e2 · · · en = e1e2 · · · en is a consequence of R for ℓ,m ⩾ 0 .
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Proof First, we prove that the relation he1e2 · · · en = e1e2 · · · en is a consequence of R . Since this relation
belongs to R when n is even, it remains to show that he1e2 · · · en ρ e1e2 · · · en when n is odd.

Suppose that n is odd. Hence, by Ro
6 , we have hge2e3 · · · ene1 ρ e2e3 · · · ene1 , so hge1e2 · · · en ρ e1e2 · · · en

(by R3 ), whence ge1e2 · · · en ρ he1e2 · · · en (by R1 ) and then (ge1e2 · · · en)n ρ (he1e2 · · · en)n . Now, by R4

and R3 , we have ge1e2 · · · en ρ enge2 · · · en ρ ene1 · · · en−1g ρ e1e2 · · · eng and so, by relations R1 , R3 , and
R2 , it follows that (ge1e2 · · · en)n ρ gn(e1e2 · · · en)n ρ e1e2 · · · en. On the other hand, by R5 and R3 , we
have he1e2 · · · en ρ enen−1 · · · e1h ρ e1e2 · · · enh, whence (he1e2 · · · en)n ρ hn(e1e2 · · · en)n ρ he1e2 · · · en by rela-
tions R1 , R3 , and R2 , since n is odd. Therefore, he1e2 · · · en ρ e1e2 · · · en .

Secondly, we prove that the relation ge1e2 · · · en = e1e2 · · · en is a consequence of R . In fact, we have

ge1e2 · · · en ρ ge1hge2 · · · en (by Lemma 3.5)
ρ enghge2 · · · en (by R4)
ρ engg

n−1he2 · · · en (by R1)
ρ enhe2 · · · en (by R1)
ρ he1e2 · · · en (by R5)
ρ e1e2 · · · en (by the first part).

Now, clearly, for ℓ,m ⩾ 0 , hℓgme1e2 · · · en ρ e1e2 · · · en follows immediately from ge1e2 · · · en ρ e1e2 · · · en
and he1e2 · · · enρe1e2 · · · en , which concludes the proof of the lemma. 2

We are now in a position to prove the following result.

Theorem 3.7 The monoid DPCn is defined by the presentation ⟨A | R⟩ on n+ 2 generators.

Proof In view of Proposition 3.1 and Lemma 3.3, it remains to prove that any relation satisfied by the
generating set {g, h, e1, e2, . . . , en} of DPCn is a consequence of R .

Let u, v ∈ A∗ be two words such that uφ = vφ . We aim to show that u ρ v . Take α = uφ .
It is clear that relations R1 to R5 allow us to deduce that u ρ hℓgmei1 · · · eik for some ℓ ∈ {0, 1} ,

m ∈ {0, 1, . . . , n − 1} , 1 ⩽ i1 < · · · < ik ⩽ n and 0 ⩽ k ⩽ n . Similarly, we have v ρ hℓ′gm
′
ei′1 · · · ei′k′

for some

ℓ′ ∈ {0, 1} , m′ ∈ {0, 1, . . . , n− 1} , 1 ⩽ i′1 < · · · < i′k′ ⩽ n and 0 ⩽ k′ ⩽ n .

Since α = hℓgmei1 · · · eik , it follows that Im(α) = Ωn \ {i1, . . . , ik} and α = hℓgm|Dom(α) . Similarly, as

also α = vφ , from α = hℓ′gm
′
ei′1 · · · ei′k′

, we get Im(α) = Ωn \ {i′1, . . . , i′k′} and α = hℓ′gm
′ |Dom(α) . Hence,

k′ = k and {i′1, . . . , i′k} = {i1, . . . , ik} . Furthermore, if either k = n− 2 and d(minDom(α),maxDom(α)) ̸= n
2

or k ⩽ n− 3 , by Lemma 2.1, we obtain ℓ′ = ℓ and m′ = m , and so u ρ hℓgmei1 · · · eik ρ v .

If hℓ′gm
′
= hℓgm (including as elements of D2n ) then ℓ′ = ℓ and m′ = m , and so we get again

u ρ hℓgmei1 · · · eik ρ v .

Therefore, let us suppose that hℓ′gm
′ ̸= hℓgm . Hence, by Lemma 2.1, we may conclude that α = ∅ or

ℓ′ = ℓ − 1 or ℓ′ = ℓ + 1 . If α = ∅ , i.e. k = n , then u ρ hℓgme1e2 · · · en ρ e1e2 · · · en ρ hℓ′gm
′
e1e2 · · · en ρ v by

Lemma 3.6.
Thus, we may suppose that α ̸= ∅ and, without loss of generality, also that ℓ′ = ℓ + 1 , i.e. ℓ = 0 and

ℓ′ = 1 . Let k = n− 2 and admit that d(minDom(α),maxDom(α)) = n
2 (in which case n is even).
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Let α =

(
i1 i2
j1 j2

)
with 1 ⩽ i1 < i2 ⩽ n . Then i2 − i1 = n

2 = d(i1, i2) = d(j1, j2) = |j2 − j1| , and so

j2 ∈ {j1 − n
2 , j1 +

n
2 } . Let j = min{j1, j2} (notice that 1 ⩽ j ⩽ n

2 ) and i = jα−1 . Hence, Im(α) = {j, j + n
2 }

and α = gn+j−i|Dom(α) = hgi+j−1−n|Dom(α) (cf. proof of Lemma 2.1). So, we have

u ρ gme1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en and v ρ hgm
′
e1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · en

and, by Lemma 2.1, m = rn+ j − i for some r ∈ {0, 1} , and m′ = i+ j − 1− r′n for some r′ ∈ {0, 1} . Thus,
we get

u ρ gme1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en
ρ gmhg2j−1e1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · en (by Lemma 3.4)

ρ gmhg2j−1+(r−r′)ne1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en (by R1)
ρ hgn−mgm+m′

e1 · · · ej−1ej+1 · · · ej+n
2 −1ej+n

2 +1 · · · en (by R1)
ρ hgm

′
e1 · · · ej−1ej+1 · · · ej+n

2 −1ej+n
2 +1 · · · en (by R1)

ρ v.

Finally, consider that k = n− 1 . Let i ∈ Ωn be such that Ωn \ {i1, . . . , in−1} = {i} . Then Im(α) = {i}

and {i1, . . . , in−1} = {1, . . . , i−1, i+1, . . . , n} . Take a = iα−1 . Then agm = i = ahgm
′ . Since agm = a+m−rn

for some r ∈ {0, 1} , and ahgm
′
= (n− a + 1)gm

′
= r′n− a + 1 +m′ for some r′ ∈ {0, 1} , in a similar way to

what we proved before, we have

u ρ gme1 · · · ei−1ei+1 · · · en
ρ gmhg2i−1e1 · · · ei−1ei+1 · · · en (by Lemma 3.5)
ρ gmhg2i−1+(r−r′)ne1 · · · ei−1ei+1 · · · en (by R1)
ρ hgn−mgm+m′

e1 · · · ei−1ei+1 · · · en (by R1)
ρ hgm

′
e1 · · · ei−1ei+1 · · · en (by R1)

ρ v,

as required. 2

Notice that, taking into account the relation h2 = 1 of R1 , we could have taken only half of the relations
R5 , namely the relations hei = en−i+1h with 1 ⩽ i ⩽ ⌈n

2 ⌉ , where ⌈n
2 ⌉ denotes the least integer greater than

or equal to n
2 .

Our next and final goal is, by using Tietze transformations, to deduce a new presentation on 3 generators
from the previous presentation for DPCn .

Since we have ei = hgi−1enhg
i−1 (as transformations) for all i ∈ {1, 2, . . . , n} , we will proceed as follows:

first, by applying T1, we add the relations ei = hgi−1enhg
i−1 for 1 ⩽ i ⩽ n ; secondly, we apply T4 to each of

the relations ei = hgi−1enhg
i−1 with i ∈ {1, 2, . . . , n − 1} and, in some cases, by convenience, we also replace

en by hgn−1enhg
n−1 ; finally, by using the relations R1 , we simplify the new relations obtained, eliminating the

trivial ones or those that are deduced from others. Performing this procedure for each of the sets of relations

R1 to Ro
6/R

e
6 , and renaming en by e , we may routinely obtain the following set Q of n2−n+13+(−1)n

2 many
monoid relations on the alphabet B = {g, h, e} :

(Q1) gn = 1 , h2 = 1 and hg = gn−1h ;
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(Q2) e2 = e and ghegh = e ;

(Q3) egj−iegn−j+i = gj−iegn−j+ie for 1 ⩽ i < j ⩽ n ;

(Q4) hg(eg)n−2e = (eg)n−2e if n is odd;

(Q5) hg(eg)
n
2 −1g(eg)

n
2 −2e = (eg)

n
2 −1g(eg)

n
2 −2e and h(eg)n−1e = (eg)n−1e if n is even.

Notice that, the use of the expressions ei = hgi−1enhg
i−1 for all i ∈ {1, 2, . . . , n} , instead of those

observed at the end of Section 2, i.e. ei = gn−ieng
i for all i ∈ {1, 2, . . . , n} , allowed us to obtain simpler

relations.
Now, in view of Proposition 3.2, we have the following theorem.

Theorem 3.8 The monoid DPCn is defined by the presentation ⟨B | Q⟩ on 3 generators. 2
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