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glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and 

cytotoxic effects with in vitro and in silico methods

Hatice KIZILTAŞ*
Department of Pharmacy Services, Van Vocational School of Health Services, Van Yüzüncü Yıl University Van, Turkey

* Correspondence: haticekiziltas@yyu.edu.tr

1. Introduction   
Antioxidants are substances which neutralize free radicals and prevent damage from oxidative stress caused by an 
increase in free radicals and therefore are vital particles [1]which address the mechanism of antioxidant activity and 
focus on the kinetics of the reactions including the antioxidants. Many studies evaluating the antioxidant activity of 
various samples of research interest using different methods in food and human health have been conducted. These 
methods are classified, described, and discussed in this review. Methods based on inhibited autoxidation are the most 
suited for termination-enhancing antioxidants and for chain-breaking antioxidants, while different specific studies 
are needed for preventive antioxidants. For this purpose, the most common methods used in vitro determination of 
antioxidant capacity of food constituents were examined. Also, a selection of chemical testing methods was critically 
reviewed and highlighted. In addition, their advantages, disadvantages, limitations and usefulness were discussed and 
investigated for pure molecules and raw extracts. The effect and influence of the reaction medium on the performance 
of antioxidants are also addressed. Hence, this overview provides a basis and rationale for developing standardized 
antioxidant methods for the food, nutraceuticals, and dietary supplement industries. In addition, the most important 
advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods 
are outlined and critically discussed. The chemical principles of methods of 2,2′-azinobis-(3-ethylbenzothiazoline-6-
sulphonate. Oxidative stress can cause cellular damage such as lipid peroxidation, DNA and protein damage, and 
ultimately lead to diseases such as cardiovascular disease, inflammation, atherosclerosis, diabetes, and cancer [2]. 
Antioxidants, on the other hand, can inhibit or reduce the effect of oxidative stress on lipids, proteins and DNA due to 
their ability to scavenge free radicals [3]. Dietary antioxidants play an important function in reducing oxidative stress 
by helping endogenous antioxidants [4]. Phytonutrients that prevent free radical damage like vitamin C, tocopherols, 
flavonoids, carotenoids and phenolic acids are sources of potential antioxidants [5]. Various synthetic antioxidants 
are currently widely used; however, there have been suspicions that these compounds have toxic and carcinogenic 
effects. Thus, recently interest has increased significantly in the discovery of natural antioxidants to replace synthetic 

Abstract: In this study, anticholinergic, antidiabetic, antioxidant and cytotoxic activities of Reseda lutea L. (R. lutea) were determined. 
Ethanol extracts of R. lutea (EERL) and water extract of R. lutea (WERL) were prepared for biochemical analysis. The antioxidant 
capacities of EERL and WERL were evaluated with 6 different methods. In addition, acetylcholinesterase (AChE), α-amylase and 
α-glycosidase enzyme inhibition by EERL were measured. According to the results, EERL exhibited high inhibition effects against 
α-amylase, α-glycosidase and AChE enzymes. The IC50 values of EERL against AChE (2.21 μg/mL), α-glycosidase (1.38 μg/mL), and 
α-amylase (0.11 μg/mL) were determined. Also, high cytotoxic effect of EERL was observed on human lung cancer cell lines (A549) with 
an IC50 value of 3.58 ± 1.10 µg/mL. The affinities of 7 kaempferol and isorhamnetin rhamnopyranoside molecules, previously isolated 
from R. lutea, for AChE, α-amylase and, α-glycosidase were determined by molecular docking studies. Molecular docking results 
supported the in vitro results of the study. The results showed that the aerial parts of R. lutea have effective antioxidant, anticholinergic, 
antidiabetic and cytotoxic activities. This research will form the basis for further studies about R. lutea usage for drug development.
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antioxidants that are restricted by their carcinogenicity [6]. Almost 50% of all the prescription drugs used in cancer 
therapy are natural products or are obtained directly from natural products. In other fields, natural compounds are 
used even more; for example, to develop drugs for new infectious diseases [7]. Still most of the world’s population 
is dependent on nearly 250,000 plant species as the main drug sources [8]. A nutritious diet rich in antioxidant 
compounds is important for health [9]. Dietary antioxidants are effective in preventing many neurodegenerative 
disorders, cardiovascular diseases, cancer, Parkinson’s and Alzheimer’s diseases (AD) [10]. All of these have led to an 
increasing trend in consumer preferences towards safer and natural antioxidants, thereby accelerating the discovery of 
natural antioxidants [5]. Many phytochemicals, such as phenols and polyphenols, are the main components of plants, 
which display antioxidant activity to protect against oxidative reactions [1]. They contain metal chelators, radical chain 
reaction inhibitors, antioxidant enzyme cofactors and inhibitors of oxidative enzymes in order to scavenge ROS/RNS 
to stop radical chain reactions or their first occurrence [11]. Therefore, plants which contain phenolic compounds and 
flavonoids are beneficial for human health due to their antioxidant, antiallergic, anticancer, antiviral and antimicrobial 
properties. They are also known to be potent inhibitors of many enzymes, such as cyclooxygenase, xanthine oxidase, 
lipoxygenase, and phosphoinositide 3-kinase [8,12]. Flavonoids can induce apoptosis through some modulations of 
the apoptosis-related cellular signal transduction pathway. Some studies showed that flavonoids can exert regulatory 
activities in cells through actions in different signal transduction pathways such as kinases, caspases, and Bcl-2 family 
members [13]. The basic flavonoid structure is the flavan nucleus, which consists of 15 carbon atoms arranged in three 
rings (C6–C3–C6) (diphenylpropane) (Figure 1) which are labeled A, B, and C [1]. Studies of the glycosylation of 
flavonoid aglycone-based compounds have great general interest due to obtaining novel compounds with high stereo- 
and regioselectivity [14]. 

The Resedacea family is represented by six genera and 75 species, which are distributed predominantly in the 
Mediterranean region and in South West Asia region [15]. Reseda lutea L. (R. lutea) is linked to the Resedaceae 
family, and 14 species of  R. lutea are found in Turkey, seven of them endemic [16]. R. lutea is known as yellow 
mignonette or wild mignonette, and is used as a medicinal plant [17]. Many studies demonstrated the existence of 
flavonoids, anthocyanins, and α-glycosides in the aerial parts of R. lutea [18–20]. R. lutea was included in lists of 
interesting species at the ethnopharmacological level because of its healing properties, antitumor, anti-HIV, cytotoxic, 
antibacterial, antiinflammatory, and antioxidant effects [7,16,21–23] . Kaempferol isolated from R. lutea is a flavonoid 
antioxidant found in fruits and vegetables. In many studies, it was stated that kaempferol has positive effects against 
chronic disease, especially cancer and nervous system diseases [24].

Our research team isolated many flavonoids from the aerial parts of R. lutea. The isolation and structure 
determination of two new (1-2) kaempferol rhamnopyranosides and five known (3-7) kaempferol and isorhamnetin 
rhamnopyranosides (Figures 2 and 3) from R. lutea in our previous research [20]. Here, the molecular docking of these 
isolated flavonoid compounds with AChE, α-glycosidase and α-amylase are described, along with in vitro antioxidant 
activity, anti-Alzheimer and antidiabetic enzyme inhibition and cytotoxic activities of R. lutea extracts.
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Figure 1. Basic chemical structure of flavonoids. Figure 2. Chemical structure of isolated compounds 1-2 isolated 
from aerial parts of R. lutea.
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2. Materials and methods 
2.1. Chemicals
Compounds which are used for antioxidant activity suchlike neocuproine (2,9-dimethyl-1,10-phenanthroline), 2,2-azino-
bis3-ethylbenzthiazoline-6-sulfonic acid (ABTS), 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 3-(2-pyridyl)-5,6-bis 
(4-phenyl-sulfonic acid)-1,2,4-triazine (Ferrozine), ascorbic acid, BHT (butylated hydroxytoluene), α-tocopherol were 
obtained from Sigma (Sigma-Aldrich GmbH, Steinheim, Germany). All other chemicals used were of analytical grade and 
obtained from either Sigma-Aldrich or Merck Millipore.
2.2. Identification and collection of the plant material
The aerial parts of Reseda lutea L. were collected from Evyapan, Kağızman, Kars in July 2019 (location: 40°02’36.2”N 
43°02’42.6”E, herbarium code: M. Pınar 16412). The samples were authenticated by Assoc. Prof. Dr. S. Mesut PINAR (Van 
YYU, Faculty of Sciences, Department of Biology) and voucher specimens were deposited in the Herbarium of the Biology 
Department (VANF), Van, Turkey.
2.3. Isolated compounds
The kaempferol and isorhamnetin rhamnopyranosides were isolated from the aerial parts of R. lutea. Isolation of the 
seven kaempferol and isorhamnetin rhamnopyranoside compounds was previously reported by [20] and their structures 
are shown in Figures 1 and 2. As a result of the study two new compounds isolated and identified for the first time 
were named as 1 and 2.  Of the seven isolated and identified compounds, the remaining five were previously known 
molecules and named as (3-7). In this study, molecules were named with the same numbers so that they can be easily 
distinguished.  Two new compounds named kaempferol-3-O-[2-O-(ß-D-xylopyranosyl)-3-O-(ß-D-glucopyranosyl)]-
α-L-rhamnopyranosyl-7-O-α-Lrhamnopyranoside (1) and kaempferol-3-O-[2-O-((6-O-trans-p-coumaryl)-ß-
Dglucopyranosyl)-3-O-(ß-D-xylopyranosyl)]-α-L-rhamnopyranosyl-7-O-α-L-rhamnopyranoside (2) are reported, as the 
first tetrasaccharidic secondary metabolites from the family Resedaceae [20]. The known compounds kaempferol-3-O-[2-
O-(ß-D-xylopyranosyl)]-α-L-rhamnopyranosyl-7-O-α-L rhamnopyranoside (3); kaempferol-3-Oß-D-glucopyranosyl-7-
O-α-L-rhamnopyranoside (4a) and isorhamnetin-3-O-ß-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (4b), 4a (major) 
and 4b (minor) were isolated as a mixture; kaempferol-3,7di-O-α-L-rhamnopyranoside (5a) and isorhamnetin-3,7-di-O-
α-rhamnopyranoside (5b), 5a (major) and 5b (minor) were isolated as a mixture and identified by comparison with their 
IF-I-NMR spectra. The data are stated in our previous publication [20].
2.4. Preparation of ethanol and water extracts 
The procedure for the extractions was applied as described previously [25,26]. To prepare evaporated ethanolic (EERL) 
and lyophilized water extracts of aerial parts of R. lutea (WERL), 25 g of air-dried plant material was finely pulverized for 
each extract in a grinder. The aquatic extract was prepared by boiling with 0.5 L water then the sample was lyophilized in 
a lyophilizer (Labconco, Freezone 1L) at –50° C with 5 mm-Hg= pressure setting [25]. The ethanolic extract was prepared 
by soaking in 0.5 L ethanol, then the solvent was evaporated via a rotary evaporator (Heidolph Hei-VAP HL, Germany) 
[27]. Both lyophilized and evaporated extracts were stored at –20°C until their use.

 

Figure 3. Chemical structure of isolated compounds 
3-5b isolated from aerial parts of R. lutea.
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2.5. Antioxidant activity
2.5.1. Reducing ability assay
R. lutea’s reducing ability was carry out by three separate methods which are; the Fe3+ reducing ability [27], copper ions 
(Cu2+) reduction capacity (CUPRAC) [28] and ferric reducing antioxidant power (FRAP) methods [12].
2.5.2. Radical scavenging methods
DPPH˙ scavenging [29], Fe2+ chelating [30,31] and ABTS+• scavenging activities [32] are 3 separate methods which are 
based on spectrophotometric measurements. They all were used for the determination of free radical scavenging potential 
of WERL and EERL.
2.5.3. Total phenolics and flavonoids contents
The total amount of phenolics in WERL and EERL were determined from the method in previous research. Gallic acid 
was used as standard and the amount of the total phenolic content in samples was determined as micrograms of gallic 
acid equivalents (GAE) [25]. The total amount of flavonoids found in WERL and EERL was determined by the method 
described in a previous study [26]. The quantity was determined in micrograms of quercetin equivalents (QE) using the 
equation obtained from the standard quercetin plot.
2.6. Enzyme inhibitory activities
The AChE enzyme inhibitory properties of EERL were measured according to a previous study, using electric eel as source 
of the AChE enzyme [33]. The α-amylase and α-glycosidase inhibitory effects of EERL were estimated according to a 
method from previous studies [34]. The IC50 value is defined as the concentration of compound causing 50% inhibition 
and was obtained from activity (%) against compounds graphs [35].
2.7. Molecular docking studies
The chemical structures of the isolated compounds were drawn with ChemDraw (CambridgeSoft, USA) and optimized 
using Chem3D version. The chemical structure of α-glycosidase (PDB ID: 3A4A), α-amylase (PDB ID: 3L2M) and 
acetylcholinesterase (PDB ID: 1ACJ) enzymes were downloaded from the “Protein Data Bank” website. The structures of 
these enzymes were optimized in AutoDock-Tools 1.5.7 [36]. Structure optimization and the most stable conformations 
of the ligands were determined with AutoDockTools then the PDBQT file of the ligands was prepared. The optimized 
enzyme and ligand structures were loaded into AutoDock-Tools and the same program was used for docking. The best 
docking energy scores and binding interactions were analyzed with PLIP [37]and BIOVIA Discovery Studio.
2.8. Cytotoxic activity
2.8.1. Cell culture 
Commercially available human respiratory epithelial cell line (A549) (human lung cancer cell lines) was used in the study. 
Cells were cultured in appropriate medium (90% medium + 10% serum + 1% antibiotic) in 25 cm2 flasks (BINDER CB 
150 E3, Germany) in the incubator (37±1 °C containing 5% CO2, approximately 95% relative humidity).
2.8.2. Cell viability assay (MTT)
After seeding with in a 96-well plate, cells were allowed to incubate for 24 h to adhere to the bottom of the plate. After 24 
h, solutions with varying concentrations (0.0064–100 µg/mL) prepared from the ethanolic extract of the aerial parts of R. 
lutea (EERL) were added to the cells. After 24 h incubation, 20 µL of stock MTT solution (filtered MTT solution dissolved 
in 5 mg/mL PBS) was added to each well, the plate was left in the dark, and incubated for 3 h. The medium of the cells 
was completely withdrawn and 100 µL of DMSO was added. The plate was shaken in the dark for 15 min (orbital shaker, 
Heidolph Unimax 1010, Germany) and after the formazan crystals were dissolved, they were read in a multifunctional 
plate reader (BioTek Synergy HTX, USA) at a wavelength of 540 nm.
2.9. Statistical analysis 
All extractions and analyses were performed in triplicate with five replicates for the MTT test, and data are presented as 
mean ± SD values. One-way analysis of variance (ANOVA) test was used. Differences between groups were examined 
with Duncan and Tukey correction. Statistical significance levels were taken as p < 0.05 significant, and p < 0.001 highly 
significant. SPSS statistical software version 25.0 package was used for analysis.

3. Result and discussion Antioxidant activity
In this study, the antioxidant potential of EERL and WERL was measured by various in vitro spectrophotometric techniques, 
including DPPH˙and ABTS+• scavenging, Fe2+ chelating, Fe3+ reduction, CUPRAC and FRAP reduction assays. The antioxidant 
profile of ethanol and water extracts from the aerial parts of R. lutea are shown in Table 1 and ure 4, as characterized using 
ferric ion (Fe3+) reduction, cupric ion (Cu2+) reducing capacity (CUPRAC) and Fe3+-TPTZ reducing (FRAP) assays.
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Reduction activity tests are very important to determine the antioxidant capacity of a molecule. The first method used 
was to reduce Fe3+ to Fe2+ in Fe[(CN)6]

3+ solution, which is one of the important methods [1]. Reducing power of EERL, 
WERL and positive controls increased steadily with increasing concentration in the samples (40–120 µg/mL) and were as 
follows: ascorbic acid (1.52 ± 0.03, r2: 1.00) > BHT (1.27 ± 0.01, r2: 0.99) > EERL (1.00 ± 0.01, r2: 0.99) > α-tocopherol (0.99 
± 0.01, r2: 0.99) > WERL (0.08 ± 0.01, r2: 0.97) (Table 1 and Figure 4A). According to the results, R. lutea has the ability to 
reduce ferric ions (Fe3+) to a significant level to remove free radicals and has electron donating properties. The reducing 
power of EERL was higher than α-tocopherol and the standard antioxidant used (p < 0.001) (Table 1), but it was lower 
than ascorbic acid and BHT. The result of the reduction reaction, radical chain reactions which can be quite damaging, 
was terminated [1]. 

Reducing power of positive controls, EERL and WERL (30 µg/mL) for cupric ions (Cu2+) (CUPRAC) is demonstrated 
in Table 1 and Figure 4B. The cupric ion (Cu2+) reducing power was as follows: BHT (1.56 ± 0.09, r2: 1.00) > ascorbic acid 
(1.07 ± 0.01, r2: 0.97) > EERL (0.85 ± 0.01, r2: 0.99) > α-tocopherol (0.79 ± 0.07, r2: 1.00) > WERL (0.11± 0.01, r2: 1.00). 

The Fe3+-TPTZ reduction method (FRAP) was used as the last method, which is one of the reduction forcing methods 
of Fe+3 to Fe2+ [38]. The reducing power of the standards and R. lutea decreased in the following order: ascorbic acid (1.62 ± 
0.02, r2: 0.99) > BHT (0.91 ± 0.01, r2: 0.99) > α-tocopherol (0.76 ± 0.08, r2: 0.99) > EERL (0.64 ± 0.03, r2: 0.99)> WERL (0.35 
± 0.01, r2: 0.96) (Table 1 and Figure 4C). The high reduction capability of the Fe3+-TPTZ complex is displayed through 
high absorbance values in this method. Also, R. lutea extracts were determined to have an effective FRAP reduction ability 
(p < 0.001) (Table 1). R. lutea plant extracts used in all three reduction methods ensured reduction to a value close to the 
standards. In addition, BHT and ascorbic acid which were used as standards provided the best results.

According to the DPPH radical scavenging activity method, by mixing the DPPH solution with a substance capable 
of donating a hydrogen atom, the reduced form occurs and the purple color of the solution turns yellow, which can be 
observed as a decrease in absorbance [39]. Lower IC50 values suggests an effective scavenged DPPH• scavenging effect. 
DPPH assay is widely used to determine the radical scavenging activity spectrophotometrically [40]. The DPPH free radical 
scavenging activities of ethanol and water extracts from the aerial parts of R. lutea and positive controls were investigated. 
In addition, we determined the IC50 values of extracts and standard antioxidant compounds. The IC50 values for DPPH• 
scavenging by extracts and standard antioxidants were determined in the following order: ascorbic acid (16.12 ± 0.01, r2: 
0.96) > α-tocopherol (23.10 ± 0.03, r2: 0.98) > BHT (31.50 ± 0.01, r2: 0.98) > EERL (231.0 ± 0.01, r2: 0.95) > WERL (346.50 
± 0.03, r2: 0.96) (Table 1 and Figure 5A) (p < 0.001). Ascorbic acid had the most effective DPPH• scavenging activity. When 
we examined the results of previous studies, there was only one study that investigated the DPPH• scavenging activity. 
According to this study, the IC50 value for the aqueous extract of R. lutea flowers was found to be 13.4 ± 8.6% inhibition 
(Table 1) [41]. When the results are evaluated together with our own results, IC50 values are quite high in general studies; 
however, the highest result was obtained in our study. This indicates that R. lutea extracts do not have very strong DPPH• 

scavenging activity.
The ABTS•+ scavenging experiment is based on the inhibition of ABTS•+ antioxidants. According to the method, 

a stable form of the radical is produced in the experiment and reacts with an antioxidant to form blue-green ABTS•+, 
color removal indicates the rate of ABTS•+ inhibition [42]. Both EERL and WERL showed scavenging activity against 
ABTS•+. The IC50 values of ABTS•+ scavenging for extracts and standard antioxidants were determined in the following 
order: WERL (14.14 ± 0.04, r2: 0.99) > α-tocopherol (15.40 ± 0.01, r2: 0.99) > EERL (23.90 ± 0.01, r2: 0.97) ≈ Ascorbic 
acid (23.10 ± 0.01, r2: 1.00) > BHT (26.65 ± 0.01, r2: 0.97) (Table 1 and Figure 5B). In the study conducted by Kang et al. 
(2013), the ABTS•+ scavenging activity was 10.2 ± 0.4% inhibition for the aqueous extract of R. lutea flowers. When the 
results of our research and others are evaluated, the IC50 values are quite low (p < 0.001) (Table 1). These results indicate 
that R. lutea extracts have very strong ABTS•+ scavenging activity.

Metal chelating activity of R. lutea and standard antioxidant compounds were evaluated and IC50 values were 
determined (Table 1 and Figure 5C). EERL was determined to have the most effective chelating activity (p < 0.001) 
(Table 1). The IC50 values for the metal chelating activity of extracts and standard compounds were determined in the 
following order: EERL (11.18 ± 0.05, r2: 0.96) > BHT (14.75 ± 0.06, r2: 0.97) > ascorbic acid (99.0 ± 0.04, r2: 1.00) > 
EDTA (231.0 ± 0.31, r2: 0.95) > α-tocopherol (330.0 ± 0.02, r2: 0.91). The results indicate that R. lutea extract has very 
strong metal chelating activity.

Considering the six in vitro methods evaluated, in summary EERL and WERL were determined to have very high 
antioxidant potential when compared with the standards. EERL and WERL exhibited higher antioxidant activity values 
than standards in some experiments. This situation is in parallel with the high amount of phenolic and flavonoid content 
they contain. In four experiments out of these six in vitro methods, EERL exhibited more potent antioxidant potential 
than WERL, which may be attributed to the better dissolution of organic compounds and phenolic acids in ethanol. 
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Figure 4. The reducing abilities of the WERL, EERL and standard 
antioxidant compounds.

Table 1. The reducing power of EERL, WERL and standard antioxidant compounds as well as IC50 (μg/mL) values of DPPH•, Fe+2 
chelating, ABTS•+ scavenging activities.

Antioxidants
Fe3+-Fe2+ reducing* Cu2+-Cu+ reducing* Fe3+-TPTZ 

reducing*
DPPH• 
scavenging ABTS•+ scavenging Fe+2 chelating

λ700 r2 λ 450 r2 λ 593 r2 IC50 r2 IC50 r2 IC50 r2

Asc. Acid (a) 1.52 ± 0.03c,b,d,e 1.00 1.07 ± 0.01c, d,e 0.97 1.62 ± 0.02c,b,d,e 0.99 16.12 ± 0.01 0.96 23.10 ± 0.01 1.00 99.0 ± 0.04 1.00

BHT(b) 1.27 ± 0.01c,d,e 0.99 1.56 ± 0.09c,d,e 1.00 0.91 ± 0.01 c,d,e 0.99 31.50 ± 0.01 0.98 26.65 ± 0.01 0.97 14.75 ± 0.06 0.97

α-tocop. (c) 0.99 ± 0.01e 0.99 0.79 ± 0.07e 1.00 0.76 ± 0.08d,e 0.99 23.10 ± 0.03 0.98 15.40 ± 0.01 0.99 330.0 ± 0.02 0.91

EERL(d) 1.00 ± 0.01c,e 0.99 0.85 ± 0.01c,e 0.99 0.64 ± 0.03d 0.99 231.0 ± 0.01 0.95 23.90 ± 0.01 0.97 11.18 ± 0.05 0.96

WERL(e) 0.08 ± 0.01 0.97 0.11 ± 0.01 1.00 0.35 ± 0.01e 0.96 346.50 ± 0.03 0.96 14.14 ± 0.04 0.99 - -

EDTA(f) - - - - - - - - - - 231.0 ± 0.30 0.95

*Different letters in the same column indicate statistically significant difference between the means (p < 0.001 regarded as significant).
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Phenolic compounds play important roles in antioxidant activity and stabilization of lipid peroxidation [25]. Total phenolic 
contents were calculated using standard gallic acid calibration curves. The total phenolic contents of EERL and WERL 
were determined as 47.73 ± 0.32 to 7.73 ± 0.13 μg GAE, respectively (Table 2). EERL had higher amounts of phenolic 
compounds in both extracts. Many physiological benefits were attributed to flavonoids, including protection from cancer 
and cardiovascular disease, due to the powerful antioxidant and free radical scavenging properties they possess [43]. 
Flavonoids are known to have effects on signal transduction pathways related to cellular proliferation, differentiation, 
cell cycle progression, apoptosis, inflammation, angiogenesis, and metastasis [13]. The amount of total flavonoid in EERL 
and WERL was determined as 84.43 ± 2.72 and 9.83 ± 0.41 μg quercetin equivalent, respectively (Table 2). Considering 
the results, there was a positive correlation between the total flavonoid content in EERL and WERL and their antioxidant 
activity. In a study, the aqueous extract from the aerial parts of R. lutea was investigated and the total phenol content was 
10.8 ± 1.4 GAE mg/g [41]. In another study conducted in 2019, the seeds of R. lutea were extracted with 70% aqueous 
ethanol and the amounts of total phenol and flavonoid were found to be 65.32 ± 3.72 mg GAE/g and 21.93 ± 2.67 mg 
RU/g, respectively [16]. In another study, leaves of R. lutea were extracted with methanol and total phenol and flavonoid 
were determined as 133.52 ± 0.02 mg GAE/L and 196.80 ± 0.01 mg QE/L, respectively [19]. It was observed that the results 
obtained from previous studies are sometimes higher and sometimes lower than our results. This is thought to be due to 
the differences in the ecological and soil structure of the region where the plant is grown, analysis methods, solvents and 
extraction conditions.  
3.2. Enzyme inhibition 
When we evaluated the results of cholinesterase enzyme inhibition, the AChE inhibition of EERL was at a lower level 
compared to the control (Table 3). IC50 values of EERL for AChE were measured as 2.21 μg/mL, while tacrine was used as 
positive control for AChE inhibition with a IC50 value of 0.124 µM against AChE [46]. A very low IC50 value of AChE means 
very high inhibition, and EERL showed an IC50 value was not high but efficient. AD is a chronic neurodegenerative brain 
disease characterized by oxidative stress, dementia, and memory impairment in the elderly, and nowadays there are few 
drugs with various side effects for AD [47]. This situation makes it an effective force in conducting research to define plant 
products to create new medicines with protective effects for the treatment of AD [48]. Modulation of acetylcholine levels 
at synapses by AChE inhibitors is one of the useful methods used to treat AD [49]. It has long been known that medicinal 
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herbs can be used as a source of cholinesterase enzyme inhibitors. Medicinal plants contain phenolic compounds which 
give them the ability to inhibit cholinergic enzymes. Some of them were reported to acquire high AChE inhibition [9]. 
Kaempferol was reported to have very potent neuroprotective effect through modulation of various pathways involved in 
AD progression [24].

When we evaluate the results for antidiabetic enzyme inhibition of R. lutea, which was determined by using α-glycosidase 
and α-amylase enzymes, the IC50 values for α-glycosidase were measured as 1.38 μg/mL for EERL and 22.80 μM for 
acarbose [44]. In addition, the IC50 values for α-amylase were measured as 0.11 μg/mL for EERL and 10.01 μM for acarbose, 
respectively (Table 3) [45]. When the results are evaluated, EERL has higher affinity than α-amylase and α-glycosidase 
enzymes. Furthermore, α-glycosidase and α-amylase inhibition by EERL was more effective than acarbose, which is a 
standard inhibitor. Diabetes mellitus, which is a metabolic disease that causes hyperglycemia due to defects in insulin 
secretion and/or action, can cause chronic hyperglycemia that leads to dysfunction and failure of various organs such as 
nerves, eyes, heart, kidneys, and blood vessels [50]. During hyperglycemia, increased flow of glucose causes osmotic stress 
and cellular damage, especially in lenses [51]. It is known that these effects cause one or more of the secondary diabetic 
complications such as nephropathy, cataract, retinopathy, and neuropathy in patients with DM [52]. The α-glycosidase and 
α-amylase enzymes hydrolyze polysaccharides, converting them into simple sugar units or monosaccharides. Inhibition of 
the two enzymes is considered a route for therapeutic trials for DM treatment. Many plant species have high α-glycosidase 
and α-amylase inhibition [9]. Worldwide 800 herbs were reported to have strong antidiabetic potential, mainly by increased 
insulin secretion, α-glycosidase inhibitory activity, antiinflammatory effects, increased insulin resistance, regeneration of 
pancreatic β cells, and reduced diabetes-associated oxidative stress. Plenty of natural drugs mediate increased glucose 
uptake and suppression of hepatic glucose output by reducing glycogen degradation and gluconeogenesis, as well as 
glycolysis, glucose oxidation and glycogenesis [53]. It was determined that kaempferol improves hyperglycemia and also 
plays a beneficial role in diabetes by preventing oxidative damage in pancreatic β cells [54]. In our literature review, we 
could not find any publication which evaluated the enzyme inhibition of R. lutea extracts against α-glycosidase, α-amylase 
and acetylcholinesterase. This study provides a reference for this for the first time.

Cytotoxic activity
Cancer is described as the rapid and uncontrolled growth of certain cells that can multiply in the body and initiate 
abnormal growth in other areas. These cells can clump together to form a tumor. Cancer is an extremely deadly disease, 
and, lung cancer is the leading cause of death among cancer types [55]. Most lung cancer patients initially respond to 
chemotherapy, but later develop resistance to the drug, resulting in cancer recurrence  [56]. Chemotherapeutics are used 

Table 2. The total phenolic and flavonoid contents of WERL and EERL.

Extracts Total phenolics (μg/mg extract) Total flavonoids (μg/mg extract)

EERL 47.73 ± 0.32 84.43 ± 2.72
WERL 7.73 ± 0.13 9.83 ± 0.41

Table 3. The enzyme inhibition (IC50, μg/mL) of EERL against α-glycosidase, α-amylase and 
AChE.

Enzymes
EERL Standards

IC50 r2 IC50 

α-Glycosidase a 1.38 0.97 22.80
α-Amylase a 0.11  0.97 10.01
AChE b 2.21 0.99 0.124

a Acarbose was used as positive control for α-glycosidase and α-amylase enzymes and taken 
from reference of [44], [45], respectively.  b Tacrine was used as positive control for AChE 
enzyme and taken from reference of [46].
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in cancer treatment, but these drugs can cause serious side effects and excessive damage to normal cells. This encouraged 
researchers to discover new and less toxic anticancer compounds through chemical synthesis or isolation from plants. 
Many compounds with medicinal plant origin have potential cytotoxicity against various cancer cells [55]. Isolated plant-
derived bioactive compounds such as paclitaxel, vinblastine and camptothecin, which are used frequently in recent years, 
can be used to treat various types of cancer [57]. Kaempferol, isorhamnetin, myricetin, and quercetin flavonoids have 
anticancer effects on different cancer cell lines through apoptosis [58]. Studies indicated that flavonoid-induced apoptosis 
may be dependent on the number of hydroxyl groups in the 2-phenyl group and the presence of 3-hydroxyl group [59]. The 
IC50 values   of isorhamnetin glycosides purified from Opuntia Ficus-indica against NIH 3T3, HT-29 and Caco2 cell lines 
were determined to range from 8.6 ± 1.8 to 65.9 ± 0.9 μg/mL [58]. In this study, it was demonstrated by the MTT test that 
EERL caused dose-dependent cytotoxicity in A549 human lung cancer cell lines (p < 0.001) (Table 4). The EERL extract 
was found to significantly reduce the survival of the A549 cell line with an IC50 value of 3.58 ± 1.10 µg/mL (Table 4 and 
Figure 6). It is thought that this strong cytotoxicity is due to the high amounts of flavonoids and α-glycosides contained in 
R. lutea [18–20]. In a study, treatments of human A375 (melanoma) cell lines for 24 h with increasing concentrations of 
R. lutea autolysates (root, flower and fruits) were examined and the flower of R. lutea significantly reduced the survival of 
the cell line with IC50 value of 5.0 ± 0.2 μg/mL [7].  These results appear to agree with the present study and according to 
our literature review, this study is the first to demonstrate the cytotoxic effect of R. lutea on A549 (lung cancer cell line).
3.3. Molecular docking studies
Molecular docking studies provide very important information in the drug discovery and evaluation process. With accurate 
docking scoring functions, rapid and accurate determination of new inhibitors against molecular targets is possible [60]. 
Based on the results from all these in vitro studies, the binding of isolated compounds with AChE, α-glycosidase and 
α-amylase enzymes was investigated using molecular docking simulation. Molecular docking analysis was performed 
using Autodock tools 1.5.7 [36]and BIOVIA Discovery Studio.

Table 4. Descriptive statistics and comparisons of MTT tests.

Cell lines Concentrations (μg/mL) n Mean ± SD p

A549

100 (a) 5 0.98 ± 0.05 

0.001

20 (b) 5 1.40 ± 0.03 a

4 (c) 5 1.48 ± 0.04 a,b

0.8 (d) 5 1.71 ± 0.05 a,b,c

0.16 (e) 5 1.72 ± 0.03 a,b,c,d

0.032 (f) 5 1.90 ± 0.02 a,b,c,d,e,g

0.064 (g) 5 2.19 ±0.02 a,b,c,d,e

0 (Control) (h) 5 3.15 ± 0.08 a,b,c,d,e,f,g

Different letters in the same column indicate statistically significant difference between the means.
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Molecular docking analysis was performed to investigate the interactions that occurred during inhibition between 
isolated compounds and AChE. According to the results, compound-2 had a docking score of –10.8 kcal/mol, the 
highest score (Table 5). The TRP279 region, which is a hydrophilic pocket in the protein structure, is important 
in terms of π-π interactions with the A and C rings of the aglycon in compound-2 (Figures 1 and 2) and also 1 H 
bonding with -(6-p-coumaryl)-β-D glucopyranosyl (R1). There was π-anion interaction between the hydrophobic 
pocket formed by the phenyl ring of R1 and the amino acid residue ASP276; 3 hydrogen bonds between amino 
acid residues TRP84, SER81 and ASP72 and -O-α-L-rhamnopyranosil attached to the aglycone; and 2 hydrogen 
bonds formed between and ARG289 and -O-β-D-xylopyrosyl (R2). In total, there were 11 hydrogen bonds formed 
between compound-2 and the active site residues ASP72, TRP84, GLN272, TRP279, TRY121, SER122, PHE288 and 
ARG289 of AChE (Figures 7A and 7D; see also supporting information). These interactions ensured that the ligand 
binds to the protein structure with strong affinity. Compound-1 had the second highest score with binding energy 
of –9.3 kcal/mol. According to the molecular docking studies between other ligands and AChE, it was observed that 
the binding took place in regions other than the active region. Therefore, compounds 3, 4a, 4b, 5a, and 5b did not 
have any docking score (Table 5). According to the results, only the isolated compounds-1 and 2 were determined 
to display strong binding with AChE. These docking scores support the in vitro results of this study. Compound-4a 
exhibited the highest docking score with the α-glycosidase enzyme, calculated as –10.5 kcal/mol (Table 5). Figure 
7B represents 3D interactions and 7E represents 2D interactions. There were 2 π-anion interactions between the 
amino acid residue GLU411 and the A and C rings of the aglycon of compound-4a (Figures 1 and 3) and π-alkyl 
interactions between the C and B rings of the aglycon with ARG315 residue. The strong H bonds, occurring between 
the amino acid residues ARG442, ASP215 and ASP69 and the aglycon-bound O-α-L-rhamnopyranosyl (R1) as well 
as ASP242 and the aglycone-bound -O-β-D glucopyranosyl (R2), were found to support strong affinity between 
protein and ligand. Compound-4a formed 9 hydrogen bonds with the active site residues ASP69, LYS156, ARG213, 
ASP215, ASP307, THR310, ARG315, HIS351 and ARG442 of α-glycosidase (see supporting information). Figure 7C 
represents 3D interactions and 7F represents 2D interactions from the compound-3 and the α-amylase docking study. 
The docking score of compound-3 with α-amylase (–10.0 kcal/mol) was the highest score (Table 5). There were 3 π-π 
stacked interactions between TRP59 in the protein structure and the A, B and C rings of the aglycon of compound-3 
(Figures 1 and 3), and hydrogen bonds between GLN 63 and the C ring. It was shown that O- α-L-rhamnopyranosil 
(R1) bound to aglycone interacted hydrophobically with HIS101, and R1 also formed 2 hydrogen bonds with ARG195 
and ASP197. -O-xylopyrosyl-α-L-rhamnopyranosyl (R2) bound to aglycone formed an H bond with VAL163. In total, 
there were 11 hydrogen bonds formed with the active site residues GLN 63, GLY104, VAL163, ARG195, ASP197, 
ALA198 and HIS 299 between compound-3, which supported the binding of the ligand to the protein with a strong 
affinity (Figures 7C and 7F; see also supporting information). All 7 compounds were determined to bind strongly 
with α-glycosidase and α-amylase (Table 5). The results supported the strong interaction between protein and ligand 
structures. In this study, the high docking score for α-glycosidase and α-amylase enzymes with 7 kaempferol and 
isorhamnetin molecules isolated from R. lutea supported the in vitro results showing that R. lutea significantly 
inhibited these antidiabetic enzymes. 

As a result, this study provides very important information about the phytochemical properties and bioactivity 
of Reseda lutea L. regarding antioxidant activity, phenolic and flavonoid contents and inhibition potential for some 
enzymes related to the treatment of Alzheimer’s disease and diabetes mellitus, and cytotoxic activity. It was determined 
EERL and WERL plant extracts had powerful antioxidant potential. Moreover, EERL showed very high inhibitory effect 
against AChE, α-amylase and α-glycosidase enzymes. Also, the highly cytotoxic effect of EERL, which is thought to be 
caused by R. lutea’s high flavonoid content detected in vitro, was observed on human lung cancer cell lines (A549). In 
silico studies were included in order to determine the effects of isolated flavonoid compounds on Alzheimer’s disease 
and diabetes mellitus mechanisms and to support the results of in vitro experiments. The affinities of 7 kaempferol 
and isorhamnetin rhamnopyranosides molecules isolated from R. lutea to AChE, α-amylase and α-glycosidase were 
determined by molecular docking studies. Molecular docking studies demonstrated that strong anticholinergic and 
antidiabetic activity of R. lutea was associated with the ability of its flavonoid content to inhibit AChE, α-amylase and 
α-glycosidase enzymes. In vitro and in silico studies support the potential pharmacological activity of R. lutea for 
drug design processes related to the treatment of Alzheimer’s disease, diabetes mellitus and lung cancer. This study is 
also a preliminary study in terms of performing in vivo experiments.
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Figure 7. Interactions of AChE (PDB ID 1ACJ) with compound-2; (A) (three-dimensional) 
and (D) (two-dimensional) represents diagrams. Interactions of α-glycosidase (PDB ID 3A4A) 
with compound-4a; (B) (three-dimensional) and (E) (two-dimensional) represents diagrams. 
Interactions of α-amylase (PDB ID 3L2M) with compound-3; (C) (three-dimensional) and (F) 
(two-dimensional) represents diagrams. Ligands are represented in orange sticks.

Table 5. The docking scores of isolated compounds from R. lutea.

No Compounds
Docking scores

AChE α-glycosidase α-amylase

1 Compound-1 -9.3 -9.5  -9.1
2 Compound-2 -10.8 -10.4 -9.6
3 Compound-3 - -10.4 -10.0
4 Compound-4a - -10.5 -9.2
5 Compound-4b - -9.5 -9.3
6 Compound-5a - -9.5 -9.8
7 Compound-5b - -9.5 -9.4
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Supplementary material

Table. The parameters of the H-bond interactions between the for 7 phenolic compounds isolated from R. lutea and enzymes. 

R. lutea AChE 
(PDB ID 1ACJ)

α-glycosidase 
(PDB ID:3A4A)

α-amylase
(PDB ID: 3L2M)

H-bond Residues Bond length (A) Residues Bond length (A) Residues Bond length (A)

Compound-1

Asp72 2,89 Gln279 3,01 Trp59 2,75
Arg289 2,37 His280 2,89 Ala198 2,98
Gly335 3,31 Ala281 2,95 Lys200 2,19
Try121 2,61 Asn302 2,07 His201 2,89
Ser122 1,84 Ser304 1,96 Glu233 3,42
Phe288 3,28 Asp307 2,64 His299 3,3

Gly309 2,1 His305 2,84
Thr310 3,26; 2,95 Asp356 1,91
Arg315 2,44; 3,29
Asp352 3,29
Arg442 3,08

Compound-2

Asp72 2,93 Gln279 2,7 Trp59 2,4
Trp84 2,25 His280 1,73 Tyr151 3,19
Gln272 2,85 Ala281 2,19; 2,67 Ala198 3,31
Trp279 2,28; 3,14 Asn302 2,14 Lys200 3,18
Try121 2,35 Ser304 2,78 His201 2,75
Ser122 1,79; 1,81 Ser304 2,78 Glu233 2,67
Phe288 3,14 Arg315 2,78; 2,82 Glu240 2,77
Arg289 2,46; 2,10 Asp352 2,23 Asp300 2,11

Glu411 3,25

Compound-3    

Asp69 1,53 Gln63 2,45
Lys156 2,71; 3,29 Gly104 3,29
Arg213 2,7 Val163 2,38
Ser241 3,08 Arg195 2,77; 2,55
Asp242 1,97 Asp197 2,8
Pro312 2,64; 2,77 Ala198 3,28
Arg315 2,88 His299 2,82
His351 1,84
Asp352 2,55
Arg442 3,19

Compound-4A    

Asp69 1,66 Trp59 2,4
Lys156 3,37 Gln63 2,57
Arg213 2,51 Arg195 2,6
Asp215 2,28 Ala198 3,6
Asp307 3,48 His201 2,33
Thr310 4,03 Glu233 2,60; 2,62
Arg315 2,16 Asp300 2,29
His351 1,82 His305 2,47; 2,20
Arg442 3.59
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Table. (Continued).

Compound-4B    

His280 2,04 Gln63 2,41
Asp307 2,56 Val163 2,29
Thr310 2,02 Arg195 3,45; 2,28
Arg315 3,34 Ala198 3,48
Glu411 2,87 His201 2,76

Glu233 2,72; 2,19
His299 2,45
His305 2,39

Compound-5A    

Lys156 2,43 Arg195 3,18; 2,20
Thr310 3,57; 3,58 Lys200 3,49
Glu411 2,55; 1,90 His201 2

Glu233 2,22
His299 1,82

Compound-5B    

Ser157 2,55 Arg195 2,89; 2,01
Asp242 3,31 Asp197 2,32
Asp307 2,39; 3,26 Ala198 3,67
Gly309 2,96 Lys200 3,36
Pro312 2,69 His201 2,26

    His299 1,74
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