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1. Introduction
In recent years, carbonaceous nanomaterials have been gaining significant attention in various application areas. Among 
them, carbon quantum dots (CQDs), as a new class of carbonaceous nanomaterials, have become a rising member due to 
their superior properties including, visible-light absorption, water solubility, biocompatibility, low cost, and producibility 
by easy synthetic approaches [1]. CQDs are photoluminescent nanomaterials having an approximate size in the range 
of 2–10 nm and their properties could be easily improved by tailoring the size and composition of them [2]. Therefore, 
the potential of CQDs for applications in optoelectronic devices [3], sensors [4], bioimaging [5], catalysis [6], and so 
on has emerged. Especially, it has been claimed that the doping of hetero-atoms to CQDs is one of the best routes to 
enhance electrical and photophysical qualifications of CQDs to enlarge these application areas [7]. Without doping 
with hetero-atoms, CQDs typically consist of a composition of carbon (C) atoms majority in addition to hydrogen (H) 
and oxygen (O) atoms [8]. In case of the doping with hetero-atoms, CQDs gain improved physicochemical properties 
and photoluminescence phenomenon, since the hetero-atoms doped could influence the characteristics of electronic 
transitions in CQDs due to the extension of orbital overlapping [9]. 

Up to date, the incorporation of various hetero-atoms (e.g., nitrogen, sulfur, or phosphorus) into CQDs has been 
studied by hydrothermal/solvothermal method, pyrolysis, solid phase method, microwave-assisted method and so on 
[10–12]. In comparison to other methods, the hydrothermal method allows low-cost one-step nanomaterial synthesis 
in addition to its being eco-friendly, nontoxicity, and availability. Several studies have been reported on the synthesis of 
hetero-atoms doped CQDs by hydrothermal method. For example, Wu et al. reported that nitrogen doped CQDs with high 
fluorescence stability and quantum yield were synthesized by a one-step hydrothermal method to be used as a fluorescent 
probe [13]. Taking into account similar studies reported, it could be predicted that using boron as hetero-atom to dope 
could improve the optical properties of CQDs, similar to nitrogen doped CQDs. 

With the increasing industrialization, pollutants discharged from various industries get more attention day by day. 
Organic dyes, which are nonbiodegradable, have a highly carcinogenic effect on mammals and are toxic to the aquatic 
medium used in textile [14], paper [15], leather [16], and so on as major pollutants in industry. Therefore, organic dyes 
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must be treated before being discharged into the environment. Many different treatment methods such as adsorption 
[17], membrane filtration [18], and photocatalysis [19, 20] etc. have been used in dye degradation. In recent years, the 
photocatalytic organic dye degradation process has attracted much attention. In this method, the photocatalyst induces a 
light source, an electron (e-), and a hole (h+) produced on the surface [21]. These e-/h+ pairs react with very active reactive 
species and so on; the organic dyes in wastewater are degraded to harmless species [22]. Lately, photocatalysis by CQDs has 
attracted a great attention to reduce hazardous and toxic compounds in wastewaters due to their excellent photocatalytic 
performance [23]. Additionally, CQDs offer tunable optical properties, thereby energy band gap value, as well as 
improved photoelectrochemical properties. To improve their photoluminescence properties, different approaches have 
been investigated including functionalization, size tuning, hetero-atom doping, or preparation of their nanocomposites. 
Especially, hetero-atom doped CQDs are considered to be good candidates for expensive traditional semiconductor 
photocatalysts, as they provide high photoresponsiveness and electron transport properties after doping [24]. Therefore, it 
is observed that the hetero-atom doped CQDs seem to be promising for enhanced photocatalytic degradation of dyes in an 
aqueous medium. It is also worth noting that the photocatalytic degradation of organic dyes is economically feasible and 
environmentally friendly since it requires low energy consumption and low-cost materials. 

In literature, the researchers widely focused on synthesizing metal-based photocatalysts for different dye degradation, 
which could bring additional environmental risk and cost, as well as requiring time-consuming processes. Our work 
presents a simple fabrication of CQDs using abundant and nontoxic chemicals with excellent dispersibility in aqueous 
solutions. With the motivation of the above considerations, we present here a comparative study of the degradation of 
different dyes under visible light irradiation using nondoped (CQDs) and boron-doped CQDs (B-CQDs) synthesized by 
the hydrothermal method. Even though CQDs have been widely studied due to their unique properties, there are limited 
reports on photocatalytic degradation of dyes [25, 26]. 

The aim of this study is to clarify the photocatalytic performance of the B-CQDs for photocatalytic degradation of 
MB and MR dyes under visible light irradiation. MB and MR dyes were photodegraded over 95% by B-CQDs in 90 and 
150 min visible light irradiation, respectively. B-CQDs have excellent photocatalytic performance compared with neat 
CQDs under visible light irradiation. Furthermore, a possible mechanism is proposed for photocatalytic dye degradation 
process over B-CQDs after active kinds of scavenge experiments. The improved photocatalytic degradation of dyes studied 
proves that the incorporation of boron into CQDs enhanced photoresponsiveness and reduced photo-induced e−/h+ 
recombination [27]. B-CQDs were obtained from precursors abundantly available and the process efficiency increased. 
Therefore, economic feasibility was successfully improved. It is worth saying that B-CQDs could be successfully utilized in 
analytical chemistry and environmental applications. 

2. Experimental
2.1. Synthesis of CQDs and B-CQDs
The hydrothermal method was adopted for the synthesis of CQDs and B-CQDs. Certain amounts of urea (Sigma-Aldrich, 
99%) and citric acid (Sigma-Aldrich, 99%) were dissolved in 80 mL distilled water in a beaker for the preparation of 
CQDs, while a certain amount of boric acid (Merck) as boron source was additionally added into the same solution for 
the preparation of B-CQDs. After that, hydrothermal synthesis of both CQDs was performed in a stainless-steel cylinder 
autoclave at 120 °C for 12 h. After allowing to cool to room temperature, the black-green solutions were vacuum evaporated 
to remove water and unreacted chemicals. Then, CQDs and B-CQDs were dried at 80 °C in an oven overnight.  
2.2. Characterizations
For the determination of particle size distribution and particle shape, transmission electron microscopy (TEM) images 
were taken with JEOL JEM-2100 with 200 kV acceleration voltage. To illuminate the changes in optical properties of CQDs 
and B-CQDs, ultraviolet-visible (UV-Vis) absorption spectrum was recorded at room temperature on a Biochrom Libra 
S22 UV-vis spectrometer. The photoluminescent (PL) spectrums of CQDs and B-CQDs were recorded using Perkin Elmer 
LS55. 
2.3. Determination of photocatalytic activity
The photocatalytic performances of CQDs and B-CQDs were investigated by the degradation of MB (Merck) and MR 
(Merck) as model organic pollutants. Hundred μL B-CQDs (1 mg/mL) were added to 3 mL model organic pollutants (1 × 
10–5 M) in a quartz cuvette. The temperature of the mixture was maintained at 25 ± 1 °C. To reach adsorption-desorption 
equilibrium, B-CQDS-dye mixture was stirred for 60 min in a dark environment. Then, B-CQDs-dye mixture was placed 
under a visible light source (75 W halogen lamp) to start a photocatalytic reaction. At 15 min intervals, the concentration 
of dyes was measured as a function of irradiation time using UV-vis absorbance measurements. The photocatalytic 
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performance tests were repeated at least 2 times for CQDs and B-CQDs. The concentration of dyes was estimated with 
the absorbance intensity decreases of MB and MR at 664 and 523 nm, respectively with a calibration line according to 
Lambert-Beer law. 

3. Results and discussion
3.1. Characterization
The structural analysis of CQDs and B-CQDs synthesized was carried out by the TEM technique. TEM images of CQDs 
(Figures 1 (a) and (b)) and B-CQDs (Figures 1 (c), (d), and (e)) were given for different scale bars. It could be seen that 
they were spherical in shape. Their average diameters were calculated to be smaller than 20 nm. The images demonstrated 
well-dispersed quantum dots. In Figure 1 (d), there are no obvious lattices in B-CQDs as expected, since the CQDs have 
a mostly amorphous nature, instead of graphitic-CQDs [28]. Undesirably, the cloudy appearance can be seen in Figure 
1 (e). This indicates the small agglomeration of B-CQDs. In contrast, other TEM images support the well distribution of 
both CQDs with no noticeable agglomerates. Additionally, the EDX image with color mapping of B-CQD (Figure 1 (f)) 
presented that the B and C elements were placed homogeneously over the sample surface, which indicates that the hetero-
atoms uniformly dispersed on CQDs.

The optical properties were analyzed by recording UV-vis absorption and optical band gap (Eg) estimation of CQDs 
and B-CQDs and the results are shown in Figures 2 (a) and (b), respectively. UV-vis absorption spectra of CQDs and 
B-CQDs showed similar main peaks observed in the UV region. Additionally, the absorption shoulders seen at around 
280 nm in both spectra could be attributed to π–π* and n–π*transitions of C=C and C=O bonds, respectively [2]. Eg 
of CQDs and B-CQDs are estimated via Tauc Plots [29, 30] as (αhν)n versus hν from the UV-vis adsorption spectrum 
where α absorption coefficient, h Planck constant, ν light frequency, and n = 2 for direct band gap material here (Figure 
2 (b)). Eg values are estimated 3.00 and 2.96 eV for CQDs and B-CQDs, respectively. The interaction between B and 
CQDs after composite formation ensues in the declined of band gap value. According to the quantum confinement effect, 
the energy gap values decrease with the increase in the particle size of CQDs, which matches with the findings in TEM 
characterization results. Further, the decreased bandgap value provides acquiring more light from longer wavelengths 
[31]. It results to absorb visible light and near-IR range due to narrow band gap and improved performance of CQDs [32]. 

The PL spectra of B-CQDs with a variation of excitation wavelength (300–360 nm) were given in Figure 2 (c) since the 
PL intensity is related to the excitation wavelength. The PL spectra showed that the B-CQDs have high PL intensity, which 
could be related to the availability of sp2 sites, aromatic conjugated systems, or structure defects [33]. As well-known, 
the variation of the emission peak position is dependent on the size of the B-CQDs. Therefore, the PL mechanism can 
be easily controlled by the size of quantum dots, as well as surface functional groups. As seen, the PL emission spectra 
showed strong peaks at 430 nm at every excitation wavelength without any shift, which could be related to the uniform size 
distribution of B-CQDs [34]. In a similar study, the arginine-modified CQDs presented a luminescence peak at around 
470 nm with a variation of excitation wavelength (320–560 nm) and it was reported that the particle size distribution was 
determined to be about 2.5 nm (average diameter) by TEM technique [35]. 

Figure 1. TEM images of the (a and b) CQDs, (c, d and e) B-CQDs and (f) 
EDX with color mapping of B-CQDs.
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3.2. Photocatalytic activity of B-CQDs
The photocatalytic activity of B-CQDs has identified the degradation of MB and MR dyes under visible light irradiation. 
Figure 3 indicates the variation of the absorption spectra of a) MB and b) MR dyes under visible light using B-CQDs as a 
photocatalyst. Before the start of the photocatalytic reaction, B-CQDs –dye suspension was stored in a dark environment, 
and the results were given as adsorption spectrum in Figure 3. The characteristic absorbance band intensity of dyes 
suddenly decreases in 15 min after visible light irradiation. The band intensity of MB and MR gradually decreases under 
visible light after 90 and 120 min, respectively.

Figure 4 (a-b) shows the results of comparative tests to understand the illumination effect on photocatalysis. First, the 
dyes were stored in a dark environment without photocatalysts, and no change was observed in the absorption spectrum 
of dyes due to the hydrolysis mechanism. Hydrolysis is not shown in the figure. After dyes are placed under UV and visible 
light irradiation without photocatalyst to understand the photolysis mechanism, the degradation efficiencies are around 
2% for dyes. Before the initiate photocatalytic reaction, B-CQDs-dye suspension is put under the dark and the degradation 
efficiencies of MB and MR dyes are only 9.3% and 6.8%, respectively (Figure 4). After B-CQDs-dye suspension reaches 
adsorption-desorption equilibrium, the photocatalytic reaction initiates under visible irradiation. MB dyes were degraded 
with 95% photodegradation efficiency after 90 min visible light irradiation. Similarly, B-CQDs-MR stored under visible 
light irradiation within 120 min, a continuous reduction in MR concentration with time was observed with ~97.5% 
photodegradation efficiency of showing nearly complete degradation. Compared with pure CQDs, B-CODs showed more 
efficient photocatalytic performance for the degradation of MB and MR dyes, as shown in Figure 4c. The degradation rate 
constants kapp of CQDs and B-CODs for decomposing MB and MR were calculated by the pseudo-first-order kinetics 
model in Figure 4(d). Table 1 shows the degradation efficiencies and kapp values of CQDs and B-CODs for decomposing 
MB and MR under visible light irradiation.

As shown in Figures 4c–4d and Table 1, B-CQDs show increased photocatalytic activity under visible light irradiation. 
The kapp values of B-CQDs were about two times higher than that of the CQDs for photocatalytic decomposition of MB 
and MR under visible light irradiation. The increased photocatalytic activity of B-CQDs could be related to improved 
photogenerated e-/h+ separation and their effective transfer on the surface, since boron doping increased visible light 
absorption and quantum yield [36, 37]. 

To identify the primary free radicals in the photocatalytic dye degradation process, commonly trapping experiments 
are used. For this purpose, EDTA, IPA and BQ were added to the photocatalysis reaction medium to trap h+, OH– and 
•O2

− free radicals. Figure 5 shows the comparison of the degradation efficiency of MB and MR in the presence of different 
scavengers. The degradation efficiencies of MB and MR are remarkably compressed in the presence of EDTA and IPA. 
h+ and OH– play a more important role in the MB and MR photodegradation process by B-CQDs under visible light 
irradiation. After adding BQ to the medium, the degradation efficiency of MB and MR has been slightly decreased due to 
trapping •O2

− free radicals. In the photodegradation of MB and MR dyes using B-CQDs process under visible light, h+ and 
OH– prominent responsible reactive radicals, while •O2

− is the secondary free radical. 
When boron is introduced to the CQDs, new electron transfer pathways may be formed on the B-CQDs surface [38]. 

The photogenerated electrons can be grabbed by B-CQDs and their combination reduces remarkably. So, the photocatalytic 
degradation efficiencies of organic dyes are enhanced in the presence of B-CQDs. A possible photocatalytic degradation 
of dyes mechanism can be explained below. When the B-CQDs are illuminated under a visible light source, e- are excited 

Figure 2. (a) UV-vis adsorption spectra, (b) band gap estimation of CQDs and B-CQD and (c) the PL spectra of B-CQDs with variation 
of excitation wavelength.
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Figure 3. The change of absorption spectra of (a) MB and (b) MR dyes under visible light irradiation using B-CQDs as 
photocatalyst (dye concentration = 1.0 × 10–5 M).

Figure 4. The variation degradation versus irradiation time (a) MB 
(b) MR under dark and visible light irradiation (c) the comparison 
of the photocatalytic activity (d) estimation of kapp values of CQDs 
and B-CQDS for degradation MB and MR dyes under visible light 
irradiation (dye concentration = 1.0 × 10–5 M).

Table 1. The degradation efficiency %, kapp and R2 values of CQDs and B-CQDs for the photocatalytic degradation of MB and 
MR under visible light irradiation (irradiation time fixed up 90 min, dye concentration = 1.0 × 10–5 M)

Dye Photocatalyst Degradation % kapp (min–1) R2

MB
CQDs 76.85 0.0167 0.9874
B-CQDs 95.32 0.0318 0.9846

MR
CQDs 62.48 0.0118 0.8851
B-CQDs 89.03 0.0246 0.9923
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and transferred from valance band to conduction band and h+ are formed (Eq.1). e- are trapped by oxygen after superoxide 
radicals (•O2

−) have been generated (Eq. 2). At the same time, photogenerated h+ react with water to form hydroxyl radicals 
(•OH−) (Eq. 3). These reactive radicals react with MB and MR dyes and degrade them to carbon dioxide, water, and 
mineral end products (Eq. 4–5).

B-CQDs + hν → B-CQDs(e-) + B-CQDs(h+) 	 (1)
O2 + B-CQDs (e-) → .O2

- + B-CQDs	 (2)
B-CQDs (h+) + H2O → .OH- + H+ + B-CQDs	 (3)
Dye + .OH-  → CO2 + H2O + mineral end products	 (4)
Dye + .O2

- → CO2 + H2O + mineral end products	 (5)

The photocatalytic performance of the B-CQDs was compared with that of the other reported CQDs based photocatalysts 
as shown in Table 2. It is observed that the B-CQDs photocatalyst perform enhanced photocatalytic activity compared to 
the previously reported various photocatalysts for degradation of model dyes under visible light irradiation. Additionally, 
the excellent photocatalytic activities for the degradation of dyes were faster than previously reported carbon quantum dots 
(with/without hetero-atom doped) and their composite photocatalysts [41]. With this, especially, B-CQDs demonstrated 
in this work are  good candidates for organic dye degradation and wastewater treatment. 

Table 2. Comparison of the photocatalytic activity of various CQDs based photocatalysts.

Photocatalyst Pollution Light Source Degradation (%), time (min) Ref

CQDs MB Visible light ~99.5, 130 [39]

NCQDs
MB

Sunlight
97, 180

[25]
MG 98, 120

NCQDs RhB Visible light 100, 240 [37]
ZnO/N,S-CQDs MB NIR light 72.8, 180 [39]

B-CQDs
MB

Visible light
100, 170

[40]
RhB 100, 170

B-CQDs
MB

Visible light
95.32, 90 min

This work
MR 97.3, 120 min

RhB: Rhodamine B, NIR: Near-infrared, NCQDs: Nitrogen doped CQDs, ZnO/N,S-CQDs: Zinc oxide/nitrogen, sulphur doped 
CQDs

Figure 5. A comparison of photocatalytic activity of B-CQDs in the presence of the various trapping materials (a) MB 
(90 min) and (b) MR (120 min).
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4. Conclusion
In summary, CQDs and B-CQDs were synthesized by a facile hydrothermal method, and their photocatalytic performance 
was studied for the degradation of MB and MR dyes under visible light irradiation. The UV-Vis, PL, TEM, and EDX 
techniques were used to check the effect of the boron doping on the morphological and optical properties of CQDs 
synthesized. The particle sizes and the structural properties were examined by TEM and EDX methods. It was revealed 
that both products were composed spherical in shape with less than 20 nm in diameter. The EDX analysis of B-CQDs 
presented that there were boron elements confirming the successful synthesis of hetero-atom doped CQDs. Additionally, 
the findings showed that B and C elements were placed homogeneously over the sample surface. The calculated band 
gap value from UV-vis spectra of products showed that the boron doping narrowed the band gap value, which leads to 
absorbing visible light and near-IR range. The PL spectroscopy results revealed that B-CQDs have higher PL intensity and 
the PL emission spectra of B-CQDs showed strong peaks at 430 nm at every excitation wavelength, which could be related 
to uniform particle size distribution. Photocatalytic activities of CQDs and B-CQDs were examined by degradation of 
MB and MR dyes. B-CQDs performed excellent and enhanced photocatalytic performance compared with CQDs under 
visible light irradiation. MB dye degraded over 95% by B-CQDs in 90 min visible light illumination. Similarly, MR dye 
nearly completely degraded in the presence of B-CQDs as photocatalyst after 120 min of visible light illumination. At the 
same time, CQDs were used as a photocatalyst for the MB and MR dyes photodegraded 76% and 62%, respectively in 90 
min under visible light irradiation. The incorporation of boron into CQDs enhanced photocatalytic performance due to 
interaction between boron and CQDs and narrowed bang gap value of B-CQDs. Consequently, facile synthesized B-CQDs 
could be successfully utilized as a photocatalyst in the photocatalytic degradation of organic dyes under visible light.
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