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1. Introduction 
Functional textile materials have attracted great attention for their electrical conductivity [1, 2], antibacterial [3, 4], fire 
retardant [5, 6], superhydrophobic [7, 8], ultraviolet (UV) blocking [9, 10], energy storage [11], sensing properties [12, 
13]. These textiles have potential applications in biomedical monitors, high performance textiles, sportswear, wearable 
displays, military garments [14, 15]. Functional textiles can be prepared by approaches such as spinning, knitting, weaving, 
coating, and printing.  Cotton is the predominant natural fiber in the textile industry because of its natural softness, high 
hygroscopicity, superior wear comfort and skin-friendliness [16]. Nonwoven fabrics are one of the fastest growing part 
of textiles of the global textile industry [17]. The nonwoven fabrics have large number of applications such as sound 
absorption [18], reinforcing fibers [19], healthcare [20, 21], filter media [22], electromagnetic shielding [23, 24] and 
membrane [25], etc. Therefore, nonwoven fabric can be an ideal supporting material for functional textiles, in particular 
for electrically conductive textiles. Spunlace nonwoven fabrics are manufactured through entangling loose fiber webs 
by using jets of water. High velocity jets of water are passed through a closely spaced nozzle to mechanically interlock 
fibers through displacement, twisting and rearrangement or reorientation to create fabrics [26]. This process provides 
unique nonwoven fabrics without damaging fibers and without the need for a binder [27]. In the manufacturing process of 
spunlace nonwoven fabrics, short staple fibers with an average fiber length of 38–40 mm are used [28]. Cotton nonwoven 
fabric possess a hierarchical structure with high porosity, large surface area and hydrophilic functional groups [14] and 
also, have lots of advantages such as low cost, light weight, environmentally friendliness [29].

Graphene, one of the allotropes (carbon nanotube, fullerene, diamond) of elemental carbon, is a planar monolayer 
of carbon atoms arranged into a 2-dimensional (2D) honeycomb lattice [30, 31]. Graphene has attracted great attention 
because of its excellent properties, such as high thermal and electrical conductivity [32]. Chemical conversion of graphite 
to graphene oxide (GO) that is a process with low cost and high reaction yield, has emerged to be a viable route to obtain 
graphene or reduced graphene oxide [30, 33]. Compared to pristine graphite, GO is heavily oxygenated hydroxyl and 
epoxy groups on the basal plane, in addition to carbonyl and carboxyl groups located at the sheet edges [30, 34]. Hence, 
GO is highly hydrophilic and readily exfoliated in water, yielding stable dispersion. On the other hand, GO is electrically 
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insulating due to the disruption of the conjugated electronic structure by these functional groups. Chemical reduction 
of graphene oxide usually takes place to obtain electrically conductive form [35, 36]. GO is more suitable for functional 
textiles because it can be applied to textiles in various techniques, including dip coating [37], screen printing [38], ink-
jet printing [39], dyeing [40]. Regarding these various techniques to produce functional textiles, the most widely used 
method is the dip coating which is simple, easy to apply and scalable [41]. Recently, several studies were reported on 
the modification of textiles by coating with graphene oxide for obtaining functional textiles. Mengal et al. [42] produced 
a stable textile electrode from plain woven lyocell fabric by coating with reduced graphene oxide (RGO). Xu et al. [43] 
coated the cotton fabric with graphene oxide followed by the reduction process in order to obtain flexible electrode 
material for electrochemical capacitors. Tian et al. [44] prepared cotton fabric coated with graphene oxide and chitosan 
via the electrostatic layer-by-layer technique which has ultraviolet (UV) protection property. Tang et al. [9] prepared 
multifunctional cotton fabric with electrical conductivity and UV protection properties by coating graphene oxide and 
then synthesizing polyaniline (PANi) by in situ chemical polymerization process. Mizerska et al. [45] obtained the electrical 
conductivity and hydrophobicity in cotton fabric through a sol-gel method by coating with an organosilicon sol containing 
graphene oxide followed by reduction of graphene oxide by thermal treatment. Du et al. [46] fabricated graphene based 
wearable textile strain sensors by coating nonwoven fabric with graphene oxide followed by chemical reduction. Zhou 
et al. [47] coated cotton fabric with silica (SiO2)/reduced graphene oxide (RGO) to obtain functional properties such as 
asymmetric wettability, air permeability and thermal insulating properties. 

There is limited information available in the literature about coating spunlace nonwoven fabrics with graphene oxide 
and imparting multifunctional properties to the nonwoven fabrics. As mentioned above, cotton spunlace nonwoven 
fabric is environmental friendly, light weight and low cost material. Also, the nonwoven fabric has large surface area 
and hydrophilic functional groups which makes it an ideal substrate material to use with graphene oxide. The oxygen 
containing functional groups both from the GO and cotton nonwoven fabric form hydrogen bonds with each other which 
enhances the adhesion and allows efficient coating. These functional groups make the dip coating process realizable.

Therefore, the aim of this study is the fabrication of cotton spunlace nonwoven fabric by coating with graphene oxide 
and then by the reduction of graphene oxide with chemical method to obtain multifunctional nonwoven fabric with 
electrically conductivity. In textile dyeing process, especially in the coloration of cellulose fibers, vat (including indigo) 
and sulphur dyes are widely used. Currently, sodium dithionite is the most important reducing agent used in the industrial 
reduction of vat dyes and sulphur dyes [48–50]. Recently, new fields of application have been developed such as chemical 
reduction of graphene oxide [40, 51–55]. Chemical reduction method is more suitable for GO coated textile materials 
than the thermal reduction method due to the process temperature lower than 100 °C. Therefore, chemical reduction of 
graphene oxide coated cotton spunlace nonwoven fabric was carried out with sodium dithionite as reducing agent. To 
examine the effect of basis weight of nonwoven fabric, cotton spunlace nonwoven fabrics with four different basis weights 
were coated with GO and reduction reactions applied. Subsequently, the surface morphology and elemental analysis, 
chemical structure, tensile strength, color coordinates, surface electrical resistance, water contact angle, UV blocking 
properties were investigated. 

2. Experimental
2.1. Materials
The 100% cotton spunlace nonwoven fabric with 4 different basis weights (40, 50, 60, and 70 g/m2) was kindly supplied 
by Ihsan Sons Limited, Pakistan. The tensile property of the cotton spunlace nonwoven fabrics was indicated in Table 
1 according to the data shared by the supplier. All chemicals were of analytical reagent grade and used without further 
purification. Graphite flakes were purchased from Sigma Aldrich. Hydrogen peroxide (H2O2, 35%), sulfuric acid (H2SO4, 
95%–98%), phosphoric acid (H3PO4), potassium permanganate (KMnO4) and hydrochloric acid (HCl, 37%), sodium 
dithionite were purchased from Merck. Distilled water was used throughout the experiments.

Table 1. Specifications of cotton nonwoven fabrics with corresponding sample codes.

Sample code Basis weight (g/m2) Tensile strength (MD) (N) Elongation (%)

NF40 40 23.21 ± 5 28.32 ± 10
NF50 50 35.54 ± 5 33.10 ± 10
NF60 60 38.94 ± 5 34.45 ± 10
NF70 70 48.28 ± 5 34.54 ± 10
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2.2. Synthesis of GO
Graphene oxide was synthesized from flake graphite by the improved Hummer’s method according to Ref. [56]. Briefly, a 
9:1 mixture of concentrated H2SO4/H3PO4 (360:40 mL) was added to a mixture of graphite flakes (3 g) and KMnO4 (18 g). 
The reaction was then heated to 50 °C and stirred for 12 h. The reaction was then cooled to room temperature and poured 
onto ice (400 mL) with 35% H2O2 (6 mL). The resulting suspension was washed by repeated centrifugation (each at 8000 
rpm for 30 min), first with 400 mL of 1 M HCl and 200 mL of ethanol (2´), then with distilled water until a pH of 4–5 was 
achieved. The obtained solid product was dried overnight in an oven at 60 °C.  
2.3. Coating of cotton nonwoven fabric with GO
The synthesized GO nanosheets were dispersed in distilled water by bath sonication method for about 60 min to obtain 2 
mg/mL GO aqueous dispersion. The cotton spunlace nonwoven fabric was dip coated in a bath with liquor to goods ratio 
(L:G) = 40:1 containing 2 mg/mL GO dispersion for about 30 min at 60 °C. Because of the strong adsorption, the cotton 
nonwoven was quickly coated by the GO. Then, the coated fabric was kept in an oven at 70 °C for 30 min. The coating 
process was repeated 5 times in order to increase the GO adsorption on the nonwoven fabric. The obtained fabrics were 
coded as GONF according to the basis weights. For example, GONF40 corresponds to the 40 g/m2 basis weight nonwoven 
fabric coated with GO. 
2.4. Reduction of GO coated cotton nonwoven fabric
The reduction process of graphene oxide coated cotton nonwoven fabrics was carried out using sodium dithionite (Na2S2O4) 
as a reducing agent. The GONF samples were immersed into the reduction bath containing 0.1 M aqueous solution of 
Na2S2O4 for about 60 min. The liquor to goods ratio (L:G) was adjusted as 70:1. The temperature of the reduction process 
was kept at 95 °C. The resulting fabrics were rinsed with distilled water to remove the remaining reducing agent. The 
fabrics were dried in an oven at 90 °C. The obtained fabrics after reduction process were coded as RGONF. For example, 
RGONF40 corresponds to the 40 g/m2 basis weight nonwoven fabric coated with reduced GO. The GO coating and 
reduction process is given schematically in Figure 1.
2.5. Characterization
Scanning electron microscopy (SEM, FEI Sirion) was employed to observe the morphology of coated samples. The surfaces 
of the samples were coated with gold at 1.5 kV for 100 s before analysis. An attenuated total reflection Fourier transform 
infrared spectrometer (ATR-FTIR, Perkin Elmer Spectrum Two) was used at 450–4000 cm–1. The Raman spectra were 
acquired using a WITec alpha300 RA with a 523 nm laser (WITech, Germany). The mechanical properties were tested with 
a tensile mechanical tester (Instron 4411) at the machine direction (MD). It is noteworthy to mention that the almost all 
nonwoven fabrics are anisotropic, having more fiber orientation in the machine direction (MD) than the cross direction 
(CD) [57]. The specimens were prepared at dimensions of 75 × 50 mm. The crosshead speed was 300 mm/min. Each 
sample was tested at least five times and the average value was calculated. The tensile strength and elongation at break 
were determined. Color coordinates were determined by Datacolor SF600+, using SAV aperture and SI mode, and the 
color differences were calculated in accordance with the CIELab system with D65/10° observer values. In CIE Lab system, 
the lightness L* represents the darkest black at L* = 0 and the brightest white at L* = 100, a* represents redness (a* is +)/
greenness (a* is –) and b* represents yellowness (b* is +)/blueness (b* is –). a* and b* represent true neutral gray values at 
a* = 0 and b* = 0. The color difference (ΔE) was determined using the following equation [9]: 

Figure 1. Coating and reduction processes of GO onto cotton nonwoven fabric.



GÜLTEKİN / Turk J Chem

971

ΔE = √ΔL∗" 	+ Δa∗" 	+	Δb∗"	. 
 

UPF =
∫ E#	´	e#	´	dl
$%%
"&%

∫ E#	´	e#	´	T#	´	dl
$%%
"&%

 

 
UPF = UPFaverage - ta/2,n-1 

'
√)

 , 
 
 

	 (1)

The surface electrical resistance of the fabrics was measured using a standard four-point probe. 
The setup consists of a sourcemeter (Keithley 2450 Sourcemeter) and a four point probe station (Everbeing Int’l 

Corp). Each sample was measured at least five times and the average value was calculated. The water contact angle of the 
cotton nonwoven fabrics was measured by using of a PGX Goniometer (FIBRO Systems, Sweden). In the measurements, 
deionized water was used as standard liquid that was deposited on the nonwoven fabric surface. The UV protection ability 
was recorded by a UV transmittance analyzer (UV 1000F, Labsphere, SDL ATLAS). Each sample was measured at least 
five times and the average value was calculated. The protection activity of a fabric to block ultraviolet light is defined as the 
ultraviolet protection factor (UPF) value. The test was done under the wavelength range of 290–400 nm. The mean UPF 
value and UVA and UVB transmittance of GONF and RGONF coated fabrics were calculated according to the EN 13758-
1:2001 [58, 59]. UPF was calculated as follows:ΔE = √ΔL∗" 	+ Δa∗" 	+	Δb∗"	. 
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where El is the solar irradiance, el is the erythema action spectrum, Tl is the spectral transmittance of the specimen 
(incoming light that passes through the specimen), dl is the wavelength increment (nm), and l is the wavelength (nm).

The UPF rating was calculated as follows: 
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where s is the standard deviation, n is the number of the specimens and ta/2,n-1 is the table value for a = 0.05. A fabric 
having UPF rating higher than 40 (UPF 40+) can be labelled as UV protective. The durability of electrical surface resistivity, 
water contact angle and UV protection against to the washing was performed according to ISO 105 C06-A1S.

3. Results  
3.1. Surface morphology and elemental analysis
The SEM images of neat cotton nonwoven, GO coated cotton nonwoven and RGO coated cotton nonwoven fabric were 
presented in Figure 2. From Figure 2a, it can be seen that the surface of the neat cotton fibers are smooth and the typical 
longitudinal fibril structure with some convolutions along its length is evident. After coating with GO, the cotton fibers 
are covered by the GO sheets which appears as a wrinkled and rough surface on the fibers (Figure 2b). Some RGO sheets 
could be seen on cotton fibers after reduction process (Figure 2c). RGO sheets covered the cotton fibers and stacked to 
each other. The wrinkled and rough structure of RGO sheets on cotton fibers were remained, indicating the presence 
of reduced nature of GO sheets on fibers [60]. Moreover, the roughened surface composed of micropores is important 
for the hydrophobicity [61]. Furthermore, the elemental analysis of the neat cotton nonwoven fabric and RGO coated 
cotton nonwoven fabric were shown in Figures 2d and 2e, respectively. Also, the atomic and weight percentage ratios of 
neat cotton and RGO coated cotton nonwoven fabrics were presented in Table 2. The results show that the neat cotton 
nonwoven fabric composed of C and O having the atomic percentage ratio of 62.01% and 37.99%, respectively. However, 
the atomic percentage ratio of C and O for the cotton nonwoven fabric changed after the reduction process of GO. The 
atomic percentage ratio of C and O for the RGO coated nonwoven fabric was found as 68.44% and 31.56%, respectively. 
This results indicates that the C/O ratio increased with the reduction of GO, showing the formation of RGO sheets on 
cotton fibers. 
3.2. FTIR spectroscopy
The FTIR spectra of the neat cotton (NF70), GO coated (GONF70) and RGO coated (RGONF70) cotton nonwoven fabrics 
were given in Figure 3. The FTIR spectra of the neat cotton nonwoven fabric shows all the characteristic peaks of pure 
cotton, including hydrogen bonded OH stretching at 3333–3270 cm–1, asymmetrical C-H stretching at 2894 cm–1, O-H 
bending at 1638 cm–1, CH2 symmetric bending at 1426 cm–1 and the C-H bending at 1359 cm–1 [16, 62]. However, some 
changes in the FTIR spectra occurred after the GO coating. A new peak appears at the 1743 cm–1 which corresponds to 
C=O stretching arising from the carboxyl groups and the carbonyl containing groups in the GO [14, 62, 63]. The C-H 
stretching peak at 2894 cm–1 shifted to 2921 cm–1 and a new peak appeared at 2850 cm–1 because of the p-p conjugation 
between cotton and GO which leads to decreased bond strength. This indicates that the cellulose macromolecules chains 
were subjected to minor changes in intra and/or inter hydrogen bonding during GO coating and reduction processes [64, 
65]. The peaks changed after the reduction process. The intensity of peak at 1638 cm–1 was decreased in the RGO coated 
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cotton nonwoven fabric as compared to the neat cotton nonwoven fabric. Also, the peak at 1743 cm–1 became narrower 
than that of the GO coated cotton nonwoven fabric indicating the GO was successfully reduced into the RGO after the 
chemical reduction process with Na2S2O4 [16]. A broad peak appeared at 1553 cm–1 is attributed to C=C skeletal vibration 
of graphene [43].
3.3. Raman analysis
The structural changes before and after GO coating and after reduction process of GO were further characterized by 
Raman analysis. Raman spectra of cotton spunlace nonwoven fabric, GO and RGO coated sample are given in Figure 4. 
The spectrum of cotton spunlace nonwoven fabric (NF70) shows the characteristic peaks assigned to cotton. The strong 
peak at 1099 cm–1 is assigned to the asymmetric vibration of glycoside links in the cotton nonwoven fabric [66]. After GO 
coating process, the spectrum of cotton nonwoven changed prominently and the presence of GO nanosheets onto the 
cotton fibers can be easily differentiated by two characteristic peaks of carbon materials. The GONF70 and RGONF70 

d

Figure 2. SEM images of cotton nonwoven fabric (a), GONF70 (b), RGONF70 (c), EDS spectra of cotton nonwoven fabric (d) 
and RGONF70 (e).

Table 2. Elemental analysis of cotton nonwoven and RGO coated nonwoven fabric 
obtained by EDS.

Sample

Atomic ratio (%) Weight ratio (%)

Elements Elements 

C O C O 
NF 62.01 37.99 55.06 44.94
RGONF 68.44 31.56 61.95 38.05
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samples exhibit two prominent peaks correspond to the D band and G band, indicating the main characteristics of carbon 
materials, which reveal the coating of GO and RGO onto nonwoven fabric. From the spectra, it can be seen that the D 
band is located at 1351 cm–1 for both GONF70 and RGONF70 samples. G band is located at 1604 cm–1 for GONF70 and at 
1600 cm–1 for RGONF70. The intensity ratio of D and G band (ID/IG) for GONF70 and RGONF70 was obtained as 1.02 and 
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Figure 3. FTIR spectra of NF70, GONF70 and RGONF70.

Figure 4. Raman spectra of NF70, GONF70 and RGONF70.
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1.07, respectively. The intensity of D band is higher than the G band of RGONF70 sample which reveals the presence of 
defects. It can be understand that not only the oxidation but also the chemical reduction process using sodium dithionite 
contributed to an increase of the structural disorder. The increase in ID/IG ratio after reduction suggests a decrease in the 
average size of the sp2 domains upon the removal of oxygen containing functional groups [14, 67, 68].
3.4. Mechanical property
The mechanical performance of GO coated and RGO coated cotton nonwoven fabrics were tested in terms of tensile 
strength and elongation properties in the machine direction (MD). The detailed results are listed in Table 3. The tensile 
strength and elongation of the neat cotton nonwoven, GO coated cotton nonwoven and RGO coated cotton nonwoven 
fabrics is given in Figures 5 and 6, respectively. In Figure 5, it can be seen that the tensile strength of GO coated cotton 
nonwoven fabric decreased in comparison with the neat cotton nonwoven fabric. After the reduction process is applied 
to GO coated cotton nonwoven fabric, the decrease in tensile strength still continued. The highest tensile strength value 
was obtained at the GONF70 as 44.89 N showing percent change as low as 7.02%. The highest tensile strength value after 
reduction was obtained at the RGONF60 as 9.43 N. It can be seen from the tensile strength values of reduced samples, the 

Table 3. Tensile strength and elongation of GO and RGO coated cotton nonwoven fabrics.

Sample code Tensile strength (MD)
(N)

Tensile strength (MD)
(cN/tex)

Elongation
(%)After coating

GONF40 14.30 ± 0.760 0.64 ± 0.024 27.89 ± 2.667
GONF50 26.11 ± 1.543 0.69 ± 0.010 31.84 ± 2.613
GONF60 22.86 ± 0.201 0.65 ± 0.026 31.84 ± 3.953
GONF70 44.89 ± 1.077 1.03 ± 0.026 27.88 ± 1.769

After reduction Tensile strength (MD)
(N)

Tensile strength (MD)
(cN/tex)

Elongation
(%)

RGONF40 4.13 ± 0.725 0.21 ± 0.027 28.75 ± 4.428
RGONF50 8.03 ± 0.696 0.28 ± 0.023 31.65 ± 6.582
RGONF60 9.43 ± 0.532 0.32 ± 0.004 33.85 ± 3.767
RGONF70 3.82 ± 0.574 0.11 ± 0.020 27.58 ± 2.303
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Figure 5. Tensile strength of cotton nonwoven, GO and RGO coated cotton nonwoven fabrics.
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mechanical performance of spunlace cotton nonwoven fabric coated with graphene oxide nanosheets was become weaker 
with the further reduction treatments. The explanation for the obtained results can be attributed to the poor bonding 
characteristics of the spunlace nonwoven structure. The basic building material that constitute the nonwoven fabric used 
in this study is the short staple cotton fibers and these fibers have become nonwoven fabric by mechanically bonding 
with the help of water jets. Since the structural integrity of the fabric is disrupted after each wet treatment, heating and 
mechanical effect applied, there has been a significant decrease in the mechanical properties. 

On the other hand, the elongation of cotton spunlace nonwoven fabrics after GO coating showed little decrease at 
GONF40, GONF50 and GONF60 with percent change of 1.51%, 3.80% and 7.57%. The highest decrease in elongation after 
GO coating process is obtained at GONF70 with percent change of 19.28%. Besides, with the reduction of GO nanosheets 
coated on the cotton spunlace nonwoven fabrics, better elongation results were obtained. The elongation of RGONF40 and 
RGONF60 increased from 27.89% and 31.84% to 28.75% and 33.85%, respectively. 

In order to determine the effect of GO coating and reduction process on the mechanical properties of cotton spunlace 
nonwoven fabric, statistical analysis was performed. One way ANOVA test was conducted for the mechanical properties 
of the nonwoven fabric samples at significance level of 0.05. Table 4 indicates the variance analysis results of GONF and 
RGONF samples. According to the results, GO coating and reduction process had significant effect on tensile strength of 
cotton spunlace nonwoven fabric. However, it was found out that the effect of GO coating of NF70 sample on the tensile 
strength was not statistically important. On the other hand, GO coating and reduction process were found out as no 
significant effect on elongation of cotton spunlace nonwoven fabric.
3.5. Color coordinates and reflectance measurements
As an easy way for determination of deposition and reduction of GO, the color of the fabric can be considered. The color 
changes of the cotton nonwoven fabrics after GO coating and reduction processes were determined by reflectance spectra 
and color coordinates. The reflectance spectra of cotton nonwoven fabric, GO and RGO coated cotton nonwoven fabrics 
within 360–700 nm are given in Figure 7. The reflectance spectra of the neat cotton nonwoven fabrics show that the fabrics 
reflect the most of the light in the visible region. The common characteristics for the neat cotton nonwoven fabrics are the 
high reflectance values across all wavelength which imply the materials are white. For the cotton nonwoven fabrics coated 
with GO, the reflectance curves of the fabrics shift to lower values which indicates that the most of the light is absorbed 
by the fabric and the color becomes darker. However, the spectra of GO coated nonwoven fabrics shows a tendency to 
increase with high wavelengths between 550 and 700 nm. This indicates that the GO coated cotton nonwoven fabrics are 
reflecting the light in yellow region (560–590 nm), orange region (590–620 nm) and red region (620–700 nm). In the case 
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of RGO coated cotton nonwoven fabrics, the reflectance spectra show curves which are essentially flat at approximately 
5% denoting the absorption of the light in all wavelengths. This reveals that RGO coated cotton spunlace fabrics absorb 
the most of the incident light without showing a distinct peak at the visible region. It can be understand that RGO coated 
cotton spunlace fabrics had dark color close to black.

The color coordinates and the color differences of the cotton nonwoven fabrics were given in Table 5. From the results, 
it can be seen that the cotton nonwoven fabrics have the highest L* values showing the bright whiteness, which increases 
with the increase in basis weight. After the coating process of cotton nonwoven fabrics with GO, the L* values decrease 
which indicates that the color of the nonwoven fabric becomes darker. The coating with GO changes the color of the 
nonwoven fabric from white to yellow-brown and this indicates the deposition of GO sheets on the cotton nonwoven 
fabric. According to the data, the L* value of the cotton nonwoven fabric with 70 g/m2 basis weight decreased from 94.35 
to 51.41 after GO coating. There were also changes in a*, b* and C* values of fabrics. The coating of the cotton nonwoven 
fabrics with GO causes an increase in a* values towards redness with the increase in basis weight. Also, the significant 
increase in b* value indicates the increase in the yellowness. Furthermore, the b* value increases with the increase in 
basis weight from 40 to 70 g/m2 and the highest yellowness value is obtained with the highest basis weight which is 
GONF70. Also, the C* value increases for all GO coated nonwoven fabrics indicating that the color turned to yellow-
brown. However, when the reduction process takes place, the a*, b* and C* values of all of the fabrics decrease dramatically. 
The L* value of the RGONF70 sample decreased to 31.07 indicating the blackness in the color. The a*, b* and C* values of 
the RGO coated cotton nonwoven fabrics decrease to almost zero which indicates that there are no dominant color and the 
fabrics are neutral grey. Additionally, the ΔE values show the color differences of the GO coated and reduced GO coated 
cotton nonwoven fabrics compared to neat cotton nonwoven fabric. The increased ΔE value of the GO coated nonwoven 
fabrics shows high degree of color difference from the neat cotton nonwoven fabric. However, after the reduction process 
the ΔE value of the RGONF70 sample increases to 63.284 which denotes the increase in the color difference compared to 
the neat cotton nonwoven fabric. In conclusion, the obtained data from the reflectance spectra and the color coordinates 
simultaneously show that the GO sheets are successfully and effectively deposited on the cotton nonwoven fabric and 
reduced.  
3.6. Electrical surface resistance
The electrical surface resistance values of RGO coated cotton nonwoven fabrics before and after washing were given in 
Figure 8. The electrical conductivity is the prominent feature of the extent to which GO is transformed to RGO by the 
reduction process. The neat cotton and GO coated nonwoven fabrics have an insulating characteristic. After the reduction 
of GO coated nonwoven fabric by sodium dithionite, the surface resistance of fabrics as a function of basis weight was 
measured. The electrical surface resistance of RGO coated cotton nonwoven fabric before washing decreased from 1.16 
× 103 Ω/sq to 5.98 × 102 Ω/sq by the increase of basis weight of the nonwoven fabrics from 40 g/m2 to 70 g/m2. The 
basis weight of the nonwoven fabric plays an important role for the enhancement of the electrical conductivity of RGO 
coated cotton nonwoven fabrics. The decrease in surface resistance could be explained by the increase of the nonwoven 
fabric weight. Nonwovens have porous structure which affects their mechanical, thermal and comfort properties. With the 
increase in basis weight and thickness of the nonwoven fabric, the more number of fibers participate in entanglement, thus, 

Table 4. One way ANOVA results for tensile strength and elongation of cotton 
nonwoven fabrics.

Source Tensile strength (N) Elongation (%)

GONF

40 0,04* 0,95
50 0,03* 0,84
60 0,00* 0,69
70 0,28 0,32

RGONF

40 0,00* 0,95
50 0,00* 0,84
60 0,00* 0,93
70 0,00* 0,31

*statistically important according to α = 0.05.
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Figure 7. Reflectance spectra of the cotton nonwoven fabric (a), GO coated cotton 
nonwoven fabric (b) and RGO coated cotton nonwoven fabric (c).
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the interfiber space is closed. Also, basis weight affects the porosity of nonwoven fabric. The increase in basis weight causes 
the decrease in pore size of the spunlace nonwoven fabric [26]. Hence, the RGO sheets covers the surface of constituent 
fibers and inter-fiber spaces uniformly. Consequently, the decrease in surface resistance could be attributed to the effective 
recovery of the sp2 network of carbon via chemical reduction and good RGO sheet-to-sheet connection throughout the 
nonwoven fabric. In other words, RGO nanosheets form a continuous conductive thin layer on the surface of the spunlace 
nonwoven fabric to shorten the electron transfer pathways [64, 69].

The electrical surface resistance of RGO coated nonwoven fabrics after washing increased slightly. The surface 
resistance of nonwoven fabrics after washing shows a similar trend like before washing. The increase in surface resistance 
after washing can be explained by the removal of loosely adsorbed RGO sheets. The change in percentage in surface 
resistance values of RGO coated cotton nonwoven fabrics before and after washing was also calculated. According to the 
results, the lowest % change was obtained with the nonwoven fabric having basis weight of 50 g/m2. This can be explained 
by the better coating of the GO sheets on the surface of cotton fibers, thus, less amount of RGO sheets removed during 
the washing process. However, the disruption of structural integrity of cotton spunlace fabric with wet processes has also 
affected the percentage change in surface electrical resistance. Due to the low dimensional stability and further loosening 

Table 5. Color coordinates and color differences of cotton nonwoven, GO coated cotton nonwoven and RGO coated cotton 
nonwoven fabrics.

Sample L* a* b* C* h X Y Z ΔE

NF40 93.07 1.48 2.03 2.51 53.97 79.56 83.13 86.36 -
NF50 92.57 1.50 2.00 2.50 53.10 78.48 81.99 85.20 -
NF60 93.17 1.33 1.33 1.88 45.18 79.71 83.37 87.58 -
NF70 94.35 0.11 1.44 1.45 85.53 81.67 86.08 90.29 -
GONF40 53.62 3.76 11.17 11.78 71.40 21.28 21.62 17.31 40.558
GONF50 54.57 3.88 11.39 12.04 71.20 22.17 22.51 17.99 39.220
GONF60 55.61 4.04 11.58 12.27 70.79 23.20 23.53 18.79 39.028
GONF70 51.41 3.17 10.26 10.74 72.83 19.22 19.62 15.96 43.940
RGONF40 31.36 0.29 0.76 0.81 68.90 6.48 6.80 7.10 61.742
RGONF50 31.71 0.28 0.79 0.84 70.56 6.62 6.96 7.25 60.886
RGONF60 31.36 0.19 0.56 0.59 71.34 6.47 6.81 7.16 61.827
RGONF70 31.07 0.21 0.72 0.75 73.48 6.35 6.68 6.98 63.284
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of the entanglement of staple cotton fibers after washing process, the interfiber space has widened, thus, the electrical 
pathway of RGO sheets was damaged. The reason of the higher % change in RGONF70 sample than the others could be 
the more deformation of dimensional stability and disruptions of fibers during wet processes. Besides, the lowest electrical 
surface resistance after washing was obtained as 1.49 × 103 Ω/sq for RGONF70 sample. Furthermore, Figure 9 shows the 
electrical conductivity of RGO coated cotton nonwoven fabric by integrating with the red LED light. The RGO coated 
cotton nonwoven fabric has potential as an electrical conductor in various functional application areas. 
3.7. Water contact angle
Figure 10 shows the water contact angle of GO and RGO coated cotton nonwoven fabrics with basis weight of 70 g/
m2. Figure 11 shows the digital photographs of the water droplets placed on the surface of the cotton nonwoven fabric, 
GO and RGO coated cotton nonwoven fabrics with basis weight of 70 g/m2. Cotton is hydrophilic in nature and has 
good water absorption property [16]. The neat cotton nonwoven fabric can be completely wetted by water due to the 
abundant hydroxyl groups in its structure (Figure 11) [7]. Also, the GO coated cotton nonwoven fabric shows a similar 
behavior due to the presence of sufficient oxygenated functional groups on the basal planes and edges of the GO sheets 
[70]. The GO coated cotton nonwoven fabric (Figure 10) shows hydrophilicity with an average water contact angle of 

Figure 9. Digital photograph of a red LED light integrated with 
RGO coated cotton nonwoven fabric.

Figure 10. Water droplet images of GONF70 (a), RGONF70 before (b) and after washing (c).
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56.1°. When the reduction process performed, the change in water contact angle is remarkable. The water contact angle 
of RGO coated cotton nonwoven fabric increases to 108.2° with resulting hydrophobicity. The increase in water contact 
angle can be explained by the elimination of oxygen-containing functional groups after reduction. The phenomenon of the 
hydrophobicity can be referred as the contact angle value bigger than 90° [71].  After washing process, the water contact 
angle of RGONF70-W sample obtained as 106.6°. It is found out that the hydrophobic behavior of RGONF70 sample 
sustained after washing. 

The water droplets placed on the surface of the RGO coated cotton nonwoven fabric are stable and could maintain their 
spherical shapes for a long period of time (Figure 11). Hydrophobic behavior of the RGO coated cotton nonwoven fabric 
can be explained by the removal of oxygen containing functional groups during reduction process. 
3.8. UV protection property
The ultraviolet transmittance spectra of the cotton nonwoven fabrics, GO and RGO coated cotton nonwoven fabrics 
between 250 and 450 nm wavelength are given in Figure 12. In Figure 12a, the UV transmittance spectra of cotton spunlace 
nonwoven fabrics can be seen. The UV transmittance of neat cotton nonwoven fabrics has high values and gives different 
results depending on the basis weight. The highest UV transmittance was found at NF40 which has the lowest basis weight. 
With the increase in basis weight, UV transmittance decreases. Nevertheless, the UV transmittance of neat cotton spunlace 
nonwoven fabrics has high values throughout the UV region. Also, the UV transmittance curves of all fabrics show 
increasing trend with the increase of wavelength. The decline in UV transmittance can be seen in GO coated nonwoven 
fabric (Figure 12b). From the spectra, it is demonstrated that the coating of GO sheets acted as an effective material to 
block UV rays across fabric. UV rays can easily penetrate to the neat cotton nonwoven fabric whereas the penetration of 
UV rays are blocked considerably by the GO sheets on the cotton nonwoven fabric. Especially, GO coated cotton spunlace 
nonwoven fabrics with higher basis weights have lower UV transmittance percentage values in comparison with GO 
coated cotton spunlace nonwoven fabric with basis weight of 40 g/m2. The lowest UV transmittance values were obtained 
with GONF70. The UV transmittance spectra of RGO coated cotton spunlace nonwoven fabrics were given in Figure 12c. 
It can be seen that the homogenous coating of GO and successfully transformation of GO to reduced GO have affected 
the UV transmittance of the cotton spunlace nonwoven fabric in a positive way. Moreover, after the reduction process, 
the RGO coated cotton nonwoven fabric had much lower UV transmittance compared to neat and GO coated cotton 
nonwoven fabric. The attenuation in RGO coated cotton nonwoven fabric can be attributed to the UV absorption ability 
of reduced graphene oxide nanosheets. However, the basis weight of cotton spunlace nonwoven fabric has a prominent 
effect on UV transmittance. It can be obviously said that the higher the basis weight, the lower the UV transmittance. It is 
noteworthy to mention that the UV transmittance curves of the RGO coated cotton spunlace nonwoven fabrics became 
straighter without showing an increasing trend throughout the scanned UV region wavelengths. 

In order to assess the degree of UV protection of cotton nonwoven, GONF, RGONF and RGONF-W samples as a 
function of the basis weight, the ultraviolet protection factor (UPF) was measured and given in Figure 13. The neat cotton 
spunlace nonwoven fabrics had the lowest UPF values. However, the UPF value showed a slight increase with the increase 
in basis weight of the cotton spunlace nonwoven fabrics. For the cotton nonwoven fabrics coated with GO, with the 
sequential increase in basis weight as 40, 50, 60 and 70 g/m2, the UPF values increased to 9.3, 33.35, 37.59 and 59.2, 
respectively. Fabric construction and composition are important parameters to the assessment of UV protection. As higher 
the basis weight of the nonwoven fabric, higher the thickness of the nonwoven fabric. The increase in thickness affects 

Figure 11. Digital image of colored water droplets on the cotton nonwoven fabric (NF70) (a), GO coated nonwoven fabric 
(GONF70) (b), RGO coated cotton nonwoven fabric (RGONF70) (c).
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Figure 12. UV transmittance spectra of cotton nonwoven fabrics (a), GO coated cotton nonwoven fabrics (b) and RGO coated nonwoven 
fabrics (c).
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the ability of UV protection in a positive way. When the reduction process is applied to the GO coated cotton nonwoven 
fabrics, the highest UPF values as a function of basis weight were obtained. The UPF value of the RGONF40 is 19.77 
while the UPF value of the RGONF70 is 167.34 which has an excellent protection with a UPF rating 40+ (according to 
the EN 13758-1:2001). After washing process, UPF values of RGONF samples showed a slight decrease. Also, UPF values 
of RGONF-W samples change in direct proportion with the increase in basis weight. The UPF values for RGONF40-W, 
RGONF50-W, RGONF60-W and RGONF70-W samples obtained as 13.81, 55.65, 62.15 and 149.18, respectively. The 
UPF ratings of cotton nonwoven, GONF, RGONF and RGONF-W samples as a function of basis weight according to the 
EN 13758-1:2001 standard are listed in Table 6. As it can be seen that RGO coated cotton spunlace nonwoven fabrics at 
higher basis weight which were coded as RGONF60 and RGONF70 have excellent UV protection property. After washing, 
the UPF ratings show slight decrease for RGONF40 and RGONF50 samples. On the other hand, the higher basis weight 
samples continued to show excellent UV protection after washing.

The transmittance of UVA and UVB rays of the cotton nonwoven, GONF, RGONF and RGONF-W samples were shown 
in Figure 14. The neat cotton nonwoven fabrics have the highest transmittance percentage for both UVA and UVB rays 
that decrease with the increase in basis weight. For the GO coated cotton nonwoven fabrics, the transmittance percentage 
for both UVA and UVB decreased prominently compared to the neat cotton nonwoven fabric (Figure 14a). Besides, the 
sharp decrease in transmittance percentage can be seen in samples GONF40 and GONF50 as a result of increase in basis 
weight. The decrease in transmittance percentages for both UVA and UVB rays further continued with increase of basis 
weight of cotton spunlace nonwoven fabric to 70 g/m2. On the other side, from Figure 14b it can be seen that the RGO 
coated cotton spunlace nonwoven fabrics had the lowest transmittance percentage in both UVA and UVB which imply 
the high level of blocking the penetration of UV rays through the fabrics. The UVA and UVB transmittance percentages 
of RGO coated cotton spunlace nonwoven fabrics were obtained below 5% for RGONF50, RGONF60 and RGONF70 and 
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Table 6. UPF ratings of cotton nonwoven fabrics, GO coated cotton nonwoven 
fabrics and RGO coated cotton nonwoven fabrics as a function of basis weight.

Sample code

UPF rating
(EN 13758-1:2001)

NF GONF RGONF RGONF-W

40 2.32 8.61 17.61 12.74
50 2.67 26.56 48.19 47.16
60 3.71 34.67 50+ 50+
70 4.27 48.45 50+ 50+
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at 5% for RGONF40. After washing, the transmittance percentage of RGONF-W samples increased slightly. The lowest 
transmittance percentage was obtained with the highest basis weight sample in consistent with above mentioned results. 

4. Discussion 
Cotton spunlace nonwoven fabrics were successfully coated with GO nanosheets and chemical reduction process were 
applied with aqueous solution of sodium dithionite. The effect of basis weight of the cotton spunlace nonwoven fabrics on 
the properties of final material was investigated. Mechanical properties, color coordinates and color differences, surface 
electrical resistance, water contact angle and UV blocking property are studied. It is revealed that the basis weight of the 
cotton nonwoven fabrics has an improving effect on the surface electrical resistance and UV protection properties. The 
surface electrical resistance decreased by about 1.94 times with the increase in basis weight from 40 to 70 g/m2. The lowest 
surface electrical resistance was obtained at the RGO coated cotton nonwoven fabric with the highest basis weight (70 g/
m2). After the washing process, the surface electrical resistance of all RGO coated cotton nonwoven fabrics increased and 
the lowest value is obtained at the 70 g/m2 basis weight nonwoven fabric with the percentage change in electrical resistance 
of 59.9%. Hydrophobicity was obtained with the reduction of GO. The UV transmittance of cotton spunlace nonwoven 
fabrics decreased prominently after the reduction of GO. Besides, UPF of cotton spunlace nonwoven fabrics increased 
with the reduction of GO and also, it is revealed that the UPF of RGO coated cotton nonwoven fabrics mainly affected 
by the basis weight of the initial cotton spunlace nonwoven fabric. The RGO coated cotton spunlace nonwoven fabric is 
a promising candidate with advantages such as low cost and easy processability for application areas such as wearable 
devices and smart textiles where flexibility, lightweight and functionality required.
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