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Abstract: We study the generalized Forchheimer flows of slightly compressible fluids in rotating porous media. In the
problem’s model, the varying density in the Coriolis force is fully accounted for without any simplifications. It results
in a doubly nonlinear parabolic equation for the density. We derive a priori estimates for the solutions in terms of
the initial, boundary data and physical parameters, emphasizing on the case of unbounded data. Weighted Poincaré-
Sobolev inequalities suitable to the equation’s nonlinearity, adapted Moser’s iteration, and maximum principle are used

and combined to obtain different types of estimates.

Key words: Forchheimer flows, porous media, compressible fluids, rotating fluids, doubly nonlinear equation, Poincaré—

Sobolev inequality, Moser iteration, maximum estimates

1. Introduction

We continue the investigation of the Forchheimer flows of slightly compressible fluids in rotating porous media,
which was initiated in our previous work [10]. In [10], we simplified the Coriolis force’s dependence on the density
in the model in order to reduce the complexity of the problem. The resulting partial differential equation (PDE)
was of degenerate parabolic type and we were able to understand its key nonlinear structure, and derived various
estimates for its solutions. In this paper, we study the full model without any simplifications. As we will see,
the PDE becomes a doubly nonlinear parabolic equation. We will analyze this more complicated equation in
more general context by realizing its new structure and utilizing other techniques with appropriate adaptations
and improvements.

We consider a porous medium, with constant porosity @ € (0,1) and constant permeability k > 0,
rotated with a constant angular velocity Ok , where Q > 0 is the constant angular speed, and k is a constant
unit vector. We study the dynamics of fluid flows in this porous medium.

The equation for the Darcy flows in rotating porous media written in a rotating frame is, see Vadasz [25],

o 2pQ2

E’U—F = kx v+ pQk x (k x z) = —Vp + pg, (1.1)

where p is the dynamic viscosity, v is the velocity, p is the fluid density, p is the pressure, z is the position in
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the rotating frame, g is the gravitational acceleration, 02k x (E xx) is centripetal acceleration, and (2p2/& )l; XV
represents the Coriolis effects in the rotating porous medium.

For fluid flows that obey Forchheimer’s two-term law, we have

QpQ
%)

Tk

Byg L kx v+ pQ%k x (F x 2) = —Vp + pd, (1.2)

[vjv 4+
where ¢p > 0 is the Forchheimer constant [26]. Other equations for Forchheimer’s three-term and power laws
can be obtained similarly.

Equations (1.1) and (1.2) can be written in one general form, namely, the generalized Forchheimer

equation in rotating porous media

v 28 o
Yy + %kxv+p92kx(kxx):—Vp+p§. (1.3)

v

N

(o7
E aip
=0

Regarding the first sum in equation (1.3), the dependence on the density is expressed by the term p®
which is obtained by using Muskat’s dimension analysis [20].

For the Forchheimer equations and other related models of fluid flows in porous media that differ from the
ubiquitous Darcy’s law, the interested reader is referred to the books [3, 21, 24]. Regarding their mathematical
analysis in the case without rotation, see [4, 5, 11, 13, 19, 22—24] for incompressible fluids, see [2, 6-9, 14-17] for
compressible fluids, and references therein. For more information about fluid flows in rotating porous media,
see [25] and, also, our previous mathematical study [10].

Hereafter, we fix the integer N > 1, the powers qp =0 < @ < a2 < ... < ay, and positive constant
coefficients ag,a1,...,an.

Define a function g : R™ — R™ by

N
g(s):a0+a15al+...+aNsaN:Zaisai for s > 0. (1.4)
=0

In (1.4) and throughout the paper, we conveniently use 0° = 1.

Set R(p) = 2pQ/&. Multiplying both sides of (1.3) by p gives
g(lpv)pv + R(p)k x (pv) = —pVp + p*F — p* %k x (k x x). (1.5)

We solve for pv from (1.5) in terms of the vector on its right-hand side and the R(p). To do that, we
define the function F, : R® — R3, for any z € R, by

F.(v) = g(|v))v+2Jv  for v € R?, (1.6)

where J is the 3 x 3 matrix for which Jz = k x  for all = € R3.

E(]uatl()ll (15) 1S IeWIltteIl as
.Z]Q ( ) ( 1[ l( g lz SZ J :!) (1 )
(p) p'U p
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Thanks to [10, Lemma 1.1], the function F, is odd and bijective for each z € R. Then we can invert
(1.7) to have

pv = —Fr (0¥ = p°G + p* P T%x). (1.8)

In article [10], R(p) was approximated by a constant R = 2p,Q/&, for some constant density p,. This
resulted in a simpler equation than (1.8). On the contrary, we will keep the dependence of R(p) on p in the
current paper, and treat equation (1.8) in that original form.

We recall that the fluid’s compressibility for isothermal conditions is

1dvV  1dp

Vip pdp’

where V', here, denotes the fluid’s volume. In many cases such as (isothermal) compressible liquids, w is assumed
to be a constant [3, 20]. In particular, it is a small positive constant for (isothermal) slightly compressible fluids
such as crude oil and water. This condition is commonly used in petroleum and reservoir engineering [1, 12],
where the fluid dynamics in porous media have important applications. The current paper is focused on

(isothermal) slightly compressible fluids; hence, we study the following equation of state

Ldp

=3 w, where the constant compressibility @ > 0 is small. (1.9)
p ap

The equation of continuity is

- Op _
®5+V~ (pv) = 0. (1.10)

Note, by (1.9), that pVp = w~1Vp. Then combining (1.10) with (1.8), we obtain

) L -
575 =V (Fripy(@ ' Vp = p*G + p*Q0*F%2)). (1.11)

The gravitational field in the rotating frame is g(t) = —Gé (t), where G > 0 is the gravitational constant,
and éy € C°(R,R?) with |é(t)] =1 for all ¢t € R.
We make a simple change of variable u = p/w, and corresponding scaling of parameters

@ =wd >0, g:w26, 0 =wq.

Note that
R(p) = R.u, where R, = 20/ = 2wQ/@. (1.12)

Then we obtain from (1.11) that

ou

o5 =V: (X (u, Vu + u?[—Géo(t) + Q2T%z])) (1.13)

where
X(z,y) = Fg*lz(y) for z € R, y € R3. (1.14)
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By making another transformation (z,t) = u(x, @t) and rewriting equation (1.13) for @(z,t) and then

removing the tilde notation, we obtain

% =V- (X (u,Vu—!— uzZ(aj,t))) , (1.15)
where
Z(x,t) = —Geo(t) + Q*T%z with eg(t) = é(2t). (1.16)

We will focus on the Dirichlet boundary condition for u(x,t). Let U be an open, bounded set in R?
with C! boundary I' = 9U. We study the initial boundary value problem (IBVP)

% =V (X (u, Vu+u?Z(z,1))) in U x (0,00)
u(z,0) = up(x) in U (1.17)
u(z,t) = P(a,t) in T x(0,00),

where ug(x) and 1(x,t) are given.

In a previous article [10], the maximum estimates for the solutions are achieved by the use of the maximum
principle. This method requires the initial data to be bounded. In this paper, we aim at treating also unbounded
initial data. For that, we will use the Moser iteration. Regarding the newly obtained PDE (1.15), it has extra
dependence on wu, in addition to Vu + u?Z(x,t). This dependence turns out to yield new weights, which
depend on the solution u itself, in the energy estimates. Therefore, more technical treatments are required.
Indeed, we establish suitable weighted Poincaré—Sobolev inequalities to deal with these weights. We are then
able to estimate the Lebesgue norms of the solutions, and, by the Moser iteration, their essential supremum.
These short-time estimates are combined with the maximum principle to give all time estimates. Moreover, we
highlight that our estimates are derived by appropriately handled techniques to provide explicit dependence on
physical parameters including the angular speed of the rotation.

The paper is organized as follows. In Section 2, we present crucial properties of the function X (z,y) by
recasting the corresponding results in [10] but with explicit dependence on z, see Lemmas 2.1 and 2.2. We
also establish some elliptic and parabolic Poincaré-Sobolev inequalities with certain weights. These particular
inequalities are then formulated in suitable forms for our treatment of the double nonlinearity in (1.15), see
Lemma 2.3, Corollary 2.4 and Lemma 2.5. In Section 3, we study the IBVP (3.3) for @(x,t), which, briefly
speaking, is a nonnegative solution u(z,t) of (1.17) shifted by the boundary data. We obtain the L“-estimates,
for sufficient large a € (0,00), for @ in terms of the initial and boundary data, see Theorem 3.2. We also
establish in Theorem 3.2 a weighted Li;a-estimate for the gradient of @, with the number a € (0,1) defined
in (2.9) and the weight function depending on the solution w. Section 4 is focused on the L -estimates for
. By adapting Moser’s iteration, we derive, in Theorem 4.5, an upper bound for @’s L°°-norm expressed in
terms of its L®-norm for some finite number « > 0. The main estimate, for small time ¢ > 0, is then obtained
in Theorem 4.6 in terms of certain L“-norms of the initial and boundary data. All estimates’ dependence on
the physical parameters is expressed via the number x., see (3.4). It is meticulously tracked in each step of
the complicated iteration. In Section 5, we establish the maximum principle for classical solutions of (1.15) in
Theorem 5.1. Combining this maximum principle with the short-time estimates in Section 4, we obtain the
maximum estimates in Theorem 5.2 for nonnegative solutions of the IBVP (1.17) for all time ¢ > 0 even when

the initial data is unbounded.
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2. Preliminaries
2.1. Notation

A vector € R™ is denoted by a n-tuple (z1,za,...,z,) and considered a column vector, i.e. a n X 1 matrix.

Hence, 2T is the 1 x n matrix (v1 oo2...2,).

For two vectors z,y € R™, their dot product is = -y = 2Ty = yTz, while zy" is the n x n matrix

(miyj)i,jzl,Q ..... n-

Let A = (a;j) and B = (b;;) be any n x n matrices of real numbers. Their inner product is

n
A B trace (ABT) = Z ai;bij.
ij=1
The Euclidean norm of the matrix A is
1/2
_ . 1/2 __ 2
‘A|—(A'A)/ = Zaij

,j=1

(Note that we do not use |A| to denote the determinant in this paper.)

When A is considered a linear operator, another norm is defined by

A
|Alop = max {||;|C xRz £ 0} = max{|Az|: z € R", |z = 1}.

It is well-known that
||A||0P <|Al< C*HA”OP’

where ¢, = ¢,.(n) is a positive constant independent of A.

Clearly, the matrix J in (1.6) satisfies

\Jz| < |k||z| = |z| and |J%z| < |Jz| < |z| for all z € R>.

For a function f = (f1, fa,..., fm) : R™® = R™ its derivative is the m x n matrix
of
Df = ( fl) .
0xj/1<i<m,1<j<n

In particular, when m =1, i.e. f:R"™ — R, the derivative is

of of of
pf=(2L 2L 2L
f <8x1 8£E2 8$n ’
while its gradient vector is Vf = (%7 é%, ces a%) = (Df)".
The Hessian matrix is
0% f
2,0 _
D°f=D(V[)= (83:]-6:51‘)1',]':1,2,‘..@'

We also write D, f for Df in (2.3) in case the variables need to be indicated explicitly.

(2.1)
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2.2. Auxiliary inequalities
The following is a convenient consequence of Young’s inequality. If x; > 0 and z; > 1 for i = 1,2,...,k with

k > 2 such that Zle 1/z; =1, then
k k
[Tz <> a7 (2.4)
i=1 i=1

For the sake of brevity, we call (2.4) Young’s inequality in this paper.
For z,y > 0, one has
xﬁgxo‘—i—x”forogagﬁgm (2.5)

(z +y)? < 207D (2P + yP) for p > 0, (2.6)
where 2+ = max{z,0} for any z € R. We also frequently use the following alternative form of (2.6)
(x +y)? <2P(zP +4P) for all z,y > 0, p > 0. (2.7)
By the triangle inequality and inequality (2.6), we have
|z £ y|P > 27(p71)+|x\p —|y|? forall z,y e R", p>0. (2.8)

The interpolation inequality for the Lebesgue integrals: if 0 <p < s < ¢ and 1/s=0/p+ (1 —0)/q for
6 € (0,1), then

(/msd“)i = </|f|Pdﬂ)g (/fwu)lqe

2.3. Characteristics of the function X(z,y)

def

Note that v = X(z,y) = F.!(y) is the unique solution of the equation

G(z,y,v) ef F.(v)—y=g(v))v+2Jv—y=0for € R,y,veR3.

The partial derivatives of G are

vt
[v]
DUG(z,y,O) = DFZ(O) = g(O)IS + ZJ?

D,G(z,y,v) = DF,(v) = ¢'(Jv]) + g(Jv))Iz + 2J for v # 0,

D.G(z,y,v) = Jv, DyG(z,y,v) = —Is.

One can verify that G € CY(R7). Same as in [10, Lemma 2.3], D,G is invertible on R7. By the

Implicit Function Theorem, the solution v = X (z,y) belongs to C'(R*). Consequently, the function X (z,y) =
X(R.z,y) belongs to C*(R*).
Throughout the paper, we denote

_ N
an
= 0,1 =g(1) = i 2.9
= Tray O x=gm=3 e (2.9)
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The properties of the function X (z,y), which is defined by (1.14), are similar to those established in [10,
Lemmas 2.1 and 2.4]. Now that X depends on z, we need some explicit dependence on z for the inequalities
there. In fact, thanks to (1.12), we can replace x1 = xo + R in [10, Lemmas 2.1 and 2.4] with x¢ + R.z and

hence rewrite those two lemmas as Lemmas 2.1 and 2.2 below. Denote R4 = [0, 00).
Lemma 2.1 (i) One has

ca(Xxo + R.2)?|y|
1+ Jyl)*

c1(xo + Riz) "yl
(1+ Jy[)*

<|X(z,y) < for all z € Ry, y € R3, (2.10)

where ¢; = min{l, xo}* and cy = 2“0;1 min{ag,anx} 1. Alternatively,

(X0 + Rez) "' =1 <X (2,9)] < calyl' ™ for all z € Ry, y € R?, (2.11)

where c3 = (an)* 1.

(ii) One has

ca(xo + Riz) 7 2|yl? c2(xo + Ri2)|y|?

< X(z,y) y < for all z € Ry, y € R3, 2.12
T+ e =) (7 ) ' 212
where cq = (min{1, ag,ay}/29¥)1T2 . Alternatively,

cs(xo + Rez) 2(lyP ™" = 1) < X(2,9) -y < caly*™" for all z € Ry,y €R?, (2.13)

where c¢5 = 27 %y .

Although inequalities (2.10) and (2.12) provide more precise dependence on |y| than (2.11) and (2.13),

the latter two are sufficient and more convenient in this paper.
Lemma 2.2 For all z € Ry and y € R?, the matriz D, X of partial derivatives in the variable y satisfies

co(xo + Ru2) ML+ Jy)) ™" < [DyX (2,9)] < er(1+ xo + Re2) (1 + [y]) 7, (2.14)

E'Dy X (2,9)¢ > cs(xo + Re2) (L + [yl)"*[¢]? for all £ € R?, (2.15)

where
ce = V327 min{1,an})?/(an + 2), ¢7 = 2% /min{ag, an}, cs = cs/(an + 2)?

with ¢, = c.«(3) given in (2.1).

To complement the estimate of DyX in (2.14), we derive in (2.17) and (2.18) below some estimates for

D, X . Taking the partial derivative in z of the equation G(R.z,y, X(z,y)) =0, we have
0=R.JX(z,y) + DFg,.(X(2,9)D.X(2,y) = R.JIX(2,y) + (D, X (2,9)) 'D.X(z,v),

which implies
D.X(z,y) = —R.DyX(z,y)I X (2,y). (2.16)
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Combining formula (2.16) with estimates (2.14) and (2.10), respectively, (2.11) yields
DX (2,y)] < caerRu(1+ x0 + Rez)* [yl (1 + [y]) >, (2.17)

respectively,

|D.X (2,y)| < eserRa(1+ X0 + Ru2) [y (1 + [y]) (2.18)

2.4. Weighted Poincaré—Sobolev inequalities

In this subsection, we consider the space R™, with n > 2, and an open, bounded set U C R™. For a number
p € [1,n), its Sobolev conjugate is p* = np/(n—p). We establish some specific inequalities of Poincaré—Sobolev

type with weight functions.

Lemma 2.3 (Elliptic version) Suppose p and 7. are positive numbers that satisfy

1
" cr <land-<r <> (2.19)
n+p p P

Let r, s, and o be numbers such that

r>0 a>0, a>s>0, anda>w. (2.20)
Denote
p

Let u(z) be a function that vanishes on AU with |u|™ € WE™P(U), and W (zx) be a positive function on
U. Then one has, for any € > 0, that

p _0
J e < [l R W e ) Pl W (222)
where
* 9 -
- T c(1), polFos=p (2.23)

nre(p — 8) + a(r«(n+p) —n) 1-0

and positive constant ¢, which appears in (2.25) below, depends on U and r.p, but not on u, W,r, a, s.

Proof We can use the calculations in the proof of Lemma 2.1(ii) up to inequality (2.17) in [9] applied to
Pi=71yp, @:=7Tyeq, and §:=7r.s.

Then other numbers m in [9, (2.8)] and ¢ in [9, (2.16)] become

=2 er:mandcj:ﬁ*m:(r*p)*m:—. (2.24)

ESTR RV
3
|
<
*
=
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Thanks to the last condition in (2.19) and the first condition in (2.20), one has 1 < p < n, & > § and
m =m > 1. Because m > 1 and u vanishes on U, we have the following Poincaré—Sobolev inequality for

|u|™, which corresponds to inequality [9, (2.14)],
Hul™ | o < el V(Jul™)ll s, (2.25)

where ¢ > 0 depends on U and p. Elementary calculations, see inequality [9, (2.17)], yield from (2.25) that

1/(a—5+p)
e < (@m)™ ( / |u|a3|w|pdx)
U

= e ([ [t w)] " wyan) "

Denote I = [, [u|*"*|Vu[PWdz and note that ov—s+p = mp. Applying Hélder’s inequality with powers
1/r. and 1/(1 —r,) to the last integral gives

(2.26)

N
lullze < (@m)=I7e W47,
Thanks to the fact 7, > n/(n + p), we have r,(n+p) —n > 0 and nr. > n — r.p, which, together with
the last assumption in (2.20), yield

nrer +nre(s —p) _ (n—rop)r +nri(s —p)
r«(n+p)—n r«(n+p)—n '

o >

This implies o +r < §.
Because oo < ao+ 1 < @, we can find a number 6y € (0, 1) such that

1 67?+1—60.
a—+r q a

In fact, 6y is explicitly given by

_ rq
%= e (2.27)

Applying interpolation inequality and combining it with (2.26), we have

a+r atr _ M 90( +) 7n 1—6, a—+r
/U jul**da < (lulfolul52%) " < (em) ™5 W . (28)
Denoting
0
9:@7 (2.29)
mp

we rewrite (2.28) as

|(1—90)(04+7")> ] (2.30)

[ s < (10 - (= em) W
U
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Using the values of m, ¢, and 6y in (2.21), (2.24), and (2.27), respectively, we calculate the number 6
in (2.29) and find that it is the same as in (2.23).

By, again, the last assumption in (2.20), we have 6 € (0,1). Then applying Young’s inequality (2.4) with
powers 1/6 and 1/(1 — 0) to the product on the right-hand side of inequality (2.30) gives

(1=6g)(atr)

_6
/ |u|*t"dz < 5[+5_%(6m)1%\|w_1||2 e ullpe 0 (2.31)
U

1—7rx
Recalculating the last power, with the use of identity in (2.29), we have

(1—0p)(a+7) _ (oz—|—7")—0mp: (a+7r)—60(a—s+p)
1—6 1-90 1-0

=a+p. (2.32)

Then we obtain (2.22) from (2.31). Since 6,60 € (0,1) in (2.32), we have o + pu > 0, which gives ¢ > —a in
(2.23). O

Note from (2.19) that p > 1/r, > 1. Conversely, if p > 1, then the set of r, that satisfies (2.19) is not
empty.

Lemma 2.4 Assume (2.19) and (2.20), and let ¢, m,0,u be defined as in Lemma 2.3.

Let u(zx) be as in Lemma 2.3, and ¢(x) be a function on U, and define v =u+ ¢. Let > 0 and
e >0.

(i) Then one has

/ [+ < a/ == | VulP (1 + [v])~Pda
U U

. . (2.33)
0(+(B=1)r.) 89 8o
27T e () P Jul| 2 (B, L+ Tl R ).
Li—7x Li—7x
(ii) If, in addition,
a> pro/(1—ry), (2.34)
then one has
/ |+ de < 5/ [l [FulP (1 + Jo])~Pda
v v . . (2.35)
001+ (B~ D)ra) B(a(1=rs)=Bra) 8o 8o
+ 27 T-0)r« gfﬁ(ém)ffpe (‘U| ars (1—0) ”u”zjl‘ﬂL =0 4 ”uH%;ruul 4 |90||| IL)
L1-7«
Proof (i) Applying inequality (2.22) to W (x) = (1 + |v|)~”, we have
/ lu|*T"dz < E/ lu|=*|Vul|P(1 + |v]) " Pda
U U
(2.36)

A—rsx)6

e em) g ([ (o) )T
U
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Now, for the last integral on the right hand side of (2.36), using v = u+¢ and then by applying inequality
(2.7) twice, we have

(1—r4)0 (A—rs)0

(/(1+|v\)ﬁ+idx) e gz%(/ |u|i%dx+/(1+|¢|)ﬁ%dx) S
U U U

£ = fre O\ RO bre |\ R
<2 288 (i) T ([ T
v U

Then we obtain (2.33).

(ii) In case (2.34) is satisfied, by Holder’s inequality

_Bo_ 0(a(1—74)—Brs) _Bo_
ull 5., < U om=0=0 lul| o’
L1
This and (2.33) yield inequality (2.35). O

Next, to carry out Moser’s iterations in Section 4 below, we need the following parabolic multiplicative

Sobolev inequality.
Lemma 2.5 (Parabolic version) Assume (2.19) and

(s — p)nr.

a>0, a>s, a> ———.
re(n+p)—n

(2.37)

Let m and ¢ be defined as in Lemma 2.3, and T > 0. Let u(x,t) be function defined on U x (0,T) such
that |u(-,t)|™ € WE™P(U) and u(-,t) vanishes on OU for all t € (0,T).

(i) Suppose W (x,t) is a positive function on U x (0,T). Then one has

_ P _ L _d
Lra@x(0,ry) < (@m)7a esssup |[W (-, )[| " esssup [[u(-,t)]|}.’

[[ul .
te(0,T) L1=m te(0,T)
. a (2.38)
« / / oS VP Wdadt |
o Ju
where
B r«(n+p)—n p-—s 5 1
k=1 + nr., + o > 1, 9 = W S (0, 1) (239)
nry(a—s+p)

(ii) Let p(x,t) be a function on U x (0,T), and define v=u+ ¢. Then one has, for any 5 >0, that

- lorey,  p
l|wl| Lre (v x 0,1)) < 9rm B+ (em)

1

g (eSSSuPHH AN o +esssup||u<-,t>%> esssup lu(-, 1) 12"
,T) L te L

tE(O T—rs 1—7x tE(O,T) (240)

)

T wa
X </ / |u|* 7% Vul|P (1 + |v|)_ﬂdxdt> .
o Ju

959



CELIK et al./Turk J Math

Proof (i) Let ¢ = (r«p)*m as in (2.24). Denote

I(t):/U|u(x,t)\a_S|Vu(x,t)\pW(%t)dx.

Suppose, at the moment, x > 1 and 6 c (0,1) are two numbers such that

! 2 1-0 (2.41)
q

This particularly implies a@ < kv < §. Applying the interpolation inequality gives
7] —6
lu(s t)l[pre < flu 6 Zallul, )17

Applying inequality (2.26) to estimate ||u(-,t)||rz on the right-hand side, and raising both sides of the

resulting inequality to power ka yield

S Ora 5
e e, (2.42)

/|u(:p7t)|mdx§ (em)m I(t)™7 |[W (-, 1) s
U

We impose the condition
mp = Oka. (2.43)

Then (2.42) becomes

/U fue.1)["dz < @Em)P @)W, 1) oo u, D)) (2.44)

Integrating (2.44) in ¢ from 0 to T, we have

T .
/ / Ju(e )| ddt < (em)P esssup [WH( D) . esssup Ju(- £) [ % / I(t)dt.
o Ju te(0,T) L= yeo,1) 0

Taking power 1/ka of both sides of the last inequality gives (2.38).
It remains to verify (2.41) and (2.43). We compute x and 6 explicitly from these two equations.

Multiplying (2.41) by ka and then using relation (2.43), we have

L. S . )

1= "
m(rep)* «a nry

Solving for x and using the value of m given in (2.21), we have

Hzlin—r*er@:T*(n+p)fn+afs+p. (2.45)
nry ! nr o

Then formula (2.39) of & follows. Using formula of x in (2.45), and again, formula (2.21) for m, we calculate

6 from (2.43) by

i— D a—s+p _ 1
Ko a(rs(n+p)—n) +a—s+p aé:*gztz)j;)t) +1

Nri
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We then obtain the formula of # in (2.39). Because a >0, a > s and 7, > n/(n + p), we have § € (0,1). By
the last condition in (2.37), we have k > 1. The proof of (2.38) is complete.

(ii) Applying inequality (2.38) to W (z,t) = (1 + |v|)™" with v = u + ¢, we have
1—

_ L & 7'*}\',;; 7~
[ul| oo (U x 0,7y) < (Em)*= ess sup (/ (1+Jol)T== dx) esssup [|u(-,t)] "
U

t€(0,T) t€(0,T)
) (2.46)
T Ra
X / / ([ [V lP(1+ o) Pdedt |
o Ju
By triangle inequality and (2.7), we have
([arinar)™ sof ([arieh™ars [ )
U U U
- L (2.47)
< 97RQrs (/ (1+|ga)1ﬂ—rridx) - (/ |u|&dw> b .
U U
Combining (2.46) and (2.47) yields (2.40). O

3. Estimates for the Lebesgue norms

Let u be a nonnegative solution of problem (1.17) in a domain U C R®. We will derive estimates for the
L% -norms of uw for a > 0. To do so, it is convenient to shift u by its boundary values and deal with a function
vanishing on the boundary.

Let W(x,t) be an extension of the boundary data 1 (z,t) from T' x (0,7] to U x [0, T].

Define @(z,t) = u(z,t) — U(x,t) and do(x) = up(z) — ¥(x,0). We derive from (1.17) the equations for

8—1: =V (X(u,®(z,t)) — U, on U x (0,00),
i(z,0) = to(x) on U, (3.1)
a(z,t) =0 on I'x(0,00),
where ¥; = 0¥ /0t and
®(z,t) = Vu(z,t) + u*(z, t) Z(z,t). (3.2)

We will focus on estimating solution @ of (3.3). Clearly, corresponding estimates for v = @ + ¥ will
easily follow.
By definition (1.16) of Z(-,t) and (2.2), we have

QQTU
452

def

|Z(2,t)| G+ QT2 < Mz = G+ Q% =G+ R% (3.3)

where 7y = max{|z| : x € U}. Set
X« = max{1, R? x2 Mz}. (3.4)

961



CELIK et al./Turk J Math

We will use x, as the main parameter to measure the effect of the rotation. Our estimates in this paper

will be expressed in terms of x. .
It follows (3.3) and (3.4) that

|Z(z,t)] < x« forall z €U and ¢t > 0. (3.5)

We start estimating the Lebesgue norms of the solutions with the following differential inequality.

Lemma 3.1 Assume

<r,<1 > 1 (3.6)
5—a " v Tx= 2—a’ '
and
2r, 3r«(4 — 3a)
> _— 3.7
=T a>r*(5—a)—3 (3.7)
Then one has
d s C4 1 —2| T~ (2—a|-[a—2
— | |u|%dx + —x; (1+w) " |Val|*~ %l “dx
dt Ju 8 U
_ I+ 14+ 20 (3.8)
<ot {([rarar) ([ aean) e e oo
U U L1-7x
where
1 26 , M _ 3—2a+80
==—4+ —+ >0, ==>0, =—>0 3.9
7 oz+a(1—0) T 1-6 (3:9)
with
12(1 — a)r. 41 —a)+ab
0= 0,1 =————>0 3.10
a((5—a)r*—3)—3ar*e(’)’ a 1-90 - (3.10)
positive constants Cy is defined in (3.32) below, which depends on o, and
M(t) = i / (1+ [@(, )00 4 x 0 / (1+ [V, t)) = da
v v (3.11)

_(3—2(@)(04—1) (1—a)
+x. oM / |\I/t(a:,t)|a§4—iaa dx.
U

Proof We proceed in two steps. In the calculations below, the constants ¢;’s are independent of o and .,

while C}’s are independent of x., but dependent on a.

Step 1. We derive a weaker version of (3.8) first, namely, inequality (3.28) below.
Since 7. > 1/(2 —a) > 1/2, one has
o, 2(1/2)

> — 2. 3.12
I T 1-1)2 (3.12)

Then we can use the following identities
;%) = alal*Pazr, V(ju[*?a) = (o - D}a|* " Va.
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Multiplying the PDE in (3.3) by |u4|*~ 2%, integrating over domain U, and using integration by parts, we
have

1d

77/ |ﬂ|°‘dx:f(a71)/ X(u,@(m,t))~(|ﬁ|“*2Vﬁ)dx7/ U |a|* 2adz.
(6% dt U U U

On the right-hand side, we write Vi = Vu — V¥ and use relation (3.2) for Vu to have
Vi(z,t) = ®(x,t) — u?(z,t) Z(x,t) — V¥ = ®(x,t) — (@4 U)?Z(z,t) — V.

‘We obtain
1d

- —|a — _ o . —|a—2
ozdt/U|u| dx (a 1)/UX(u,<I>(x7t)) dla|* “dx

+(a—1)/UX(u,q>(x,t))-Z|a|a—2(a+\p)2dx (3.13)
+(a—1)/UX(u,<I>(x,t))oV\Il|fa|o‘*2dxf/U\I/t|ﬂ|“’2ﬂda:.

For the first integral on the right-hand side of (3.13), we use the first inequality in (2.13) to estimate

X (u,®) - ® > e5(x0 + Rou) 2(|@** - 1)
> csmax{xo, R} 2 (1 +u) " 2[®*7% — c5xp

> osxi (1) PR —exg

For the second integral on the right-hand side of (3.13), we use Cauchy-Schwarz inequality, the second
inequality in (2.11) and (3.5) to have

X (u, ®) - Z|(a+ V)2 < | X (u,®)||Z] - 2(a® + U?) < 2e3]®|'x, (@ + T).
By the triangle inequality, (3.5) and then (2.6),
91 < (Vul +ux)' < [Tul' e 4 POy
Therefore,
[X (1, @) - Z|(T+ )* < 2e5x (|Vul' ™+ X3 u) (@ + 02).
Similarly, for the third integral on the right-hand side of (3.13),
X (1, ®) - VO] < [X (0, D) [V] < ]|V < (| Tul'~ + x1~[uf20-)[ 70,

Combining the above estimates of the terms in (3.13) gives

1d

7*/ |’l_l,|ad.’£§ (Ck—].)(—.[o+11+I2+I3+I4)+I5, (314)
adt U
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where

Iy = esx;! / (14 u)~ 2| @[> 2de, I = co / a2,
U U

L2 = 203/ O V' = + x 2P [a|“d,
U

13 :263/(X*‘vu|17a+Xzfa|u|2(17a))|ﬁ|a72\1/2d1‘7
U

Iy = 3/ (IVu' = + Xt |u* =) | V| a]* 2 dz, s = / |a] Wy |da
U U

with ¢g = C5X62.
Estimation of Iy. Applying inequality (2.8) and estimate (3.5), we have
|q)|2—a _ |VU 4 UZZ|2_a > 2a—1‘vu|2—a _ |u‘2(2—a)|z|2—a

> 2a_1|VU‘2_a _ |u|2(2_a)Xi_a'
Hence,

—Ip < —2""lesx ! / (1 +w) 2 Vul*~a|*?de + Csxi_a/ (1 +u) 2 uf a2 de.
U U

Regarding the last integrand, we note, for 5 > 0 and v > 0, that
WPlal” < (|al + 12 |a]” < 2°(|lal” + [9|%)|a]” = 2°(|a)”™ + |a]|2|?). (3.15)
Use (1+u)"2 <wu? and (3.15) with 3 =2 —2a and v = a — 2, we have
(14 u) "2 [uf2C~D|a|o"2 < |u)?~20|g|o2 < 22720(|g[o20 4 @2~ 2a|g|o—2).

Therefore,

—Ip < =27 "eax ! / (1 + u) 2| Vu|>~a|* 2dz + Jo,
U
where

Jo 41%5;(1“{/ |a\°‘*2“d:c+/ |ﬂ|“2|\11|22“dm}.
U U

Estimation of Io. We will use the following estimates.
Let P >0 and ¢ > 0. We write

IVull=op = <€(l—a)/(2—a)‘vu|1—a(1 +u)—2(1—a)/(2—a)> % (5_(1_“)/(2_“)(1 +u)2(1—a)/(2—a)P) .

Applying Young’s inequality (2.4) with powers (2 — a)/(1 —a) and 2 — a to the last product, and

multiplying the resulting inequality by |i|%~2, we obtain

[Vl =*a|* 2P < e|Vul*~* (1 + u) 2[a|* % + e~ (1 4 w)* " |g| 2 P2,
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For the last term, writing 1 +u =@+ 1 + ¥, then using the triangle inequality and (2.7), we have
(14w < (Jaf + 1+ [2])207) < 22070 (a0 4 (14 @),

Thus,

[Vul' =l P < eVl (1 +u) 7@l

(3.16)
+ 41—a5—(1—a) (|a|a—2ap2—a + |1]|°‘_2(1 + |\I,D2(1—a)P2—a) ]
Letting P = |u|? in (3.16), we have
|Vl =l < eV~ (1 +u)~?|al*~?
(3.17)
+ 41—a€—(1—a)(|,a|a+4(1—a) + |ﬂ|a+2(1—a)<1 + |\I/|)2(1_a)).
For the rest of I, letting =2 —2a and v = « in (3.15), we have
u272a‘,a|a < 2272a(|ﬂ|a+272a 4 |\I/|272a‘a|a). (318)

Therefore, (3.17) and (3.18) yield
I =2 [ (cITulfal" 4 53 0 lal)do
U

< 2503)(*/(1 + )2Vl a2 de + Js,
U

where

Jy = 2'417%37(17“)03)(* {/ |ﬂ‘a+4(17a)dx+/ |a|a+2(lfa)(1+ \If|)2(1a)dm}
U U

+2. 4171103)&7(1/ (|1—L|a+272a + ‘ﬂ|a|\lf|272a)d1'.
U

Estimation of I3. Using (3.16) with P = W2 and applying (3.15) to 8 =2(1 —a) and v = a — 2, we obtain
B =2y [ Qe lTultoal 20 ] ) ds
U

< 2ec3)x / (1 +w) 2| Vau|*~*|a|* 2dz + Js,
U

where
J3 _ 2.41—115—(1—(1)03)(* {/ |a|a—2a|\:[,|2(2—a)dx+/ |a‘a—2(|1+ |\I/|)2(1_a)|\:[’|2(2_a)d$}
U U

+2.41—%3X§—a{/ \a|a_2“\112dx+/ |w—2|x1/|4—2adx}.
U U
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Estimation of 1. Let 6 > 0. Using (3.16) again with ¢ = § and P = |V¥|, and applying inequality (3.15) to
B =2—2a and v = a — 2, we have

I, < 503/ (1 +u) 2| V>~ a|* 2dx + Jy,
U

where

Jy :41—a035—(1—a) {/ |’E|a_2a|v\11‘2_ad$+/ |u|a_2(1+|\11|>2(1_a)V\If|2_ad$}
U U
ratrede [ japvwias s [ atep o).
U U
Combining (3.14) with the above estimates of I;, for ¢ = 0,2, 3,4, we have

“dr < - 1)C 1 2| Vul*~*a|*3d
wap [ < =1 [ @+ TRl

(3.19)
+(a=1)(Jo+ I +Jo+ J3+ Ju) + I,
where C. 5 =27 eyt — degexs — deg. We select
€= 3;—X* and 6 = 8—)(* , then Ce s = crox, U with ¢19 = cy /4. (3.20)

We estimate the first integral on the right-hand side of (3.19), using (2.8) and the fact 1 +u > 1, by
(1) 2| Vul*a| "% = (1 +u)"2|Va + VO al* 2
2 (1 _|_u)72 (2a71|v,a‘27a _ ‘V\If|27a) |ﬂ|a72

> 27 (1 +u) 7| Val T al - Ve,

Then
/| e < C“’( 1>/(1+u)—2|w|2—a|a|a—2dx
Oédt U

+(Oz—1)(J0+Il+J2+J3+J4+IG)+I5,

(3.21)
where
16 = Cloxgl/ |ﬂ|°‘*2|V\P|2*“d1¢.
U

We continue to estimate the right-hand side of (3.21).

Estimation of Jy, I, Jy,Is. We combine Jy, Iy, Jy, with ¢ in (3.20), and Ig, and collect the corresponding

terms of |u|* 2% and |u|*"2. All together, they result in
Jo+I +Ji+1Is < cHX}:a/ (Ja|*=29(1 + |VP))?~2 + |a|* 72 (1 + |92 (1 4 |[VE)) > 9)dz,  (3.22)
U
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where ¢1; = 417 %5 + co + 2¢3(32¢3/c4)1 7% + c19. In the last integral, applying Young’s inequality (2.4) with

a+4—4a da+4—4a

to the product |a|* 2*(1 + |[V¥|)>~%, and

powers . an 152
a+4—4a a+4—4a a+4—4a

to th duct

powers ~ 5 5 9. 41_3a o the produc

[a|*"2(1 + |])20-9 (1 4 |V¥[)2~%, we obtain

Jot Tt it I < et [ {2fal 00 4 ()00 o+ (V) S Y,
U

We conveniently split the last integral with the use of the fact 1= < x2722 for the first two terms, and

obtain

Jo+ I+ Jy+1Is < cnxi”“/ (2a* 0= 4 (1 + @) H0-))dy
v (3.23)

at4(l—a)

+ 2011Xi_a/ (1+|VY|))~ 2 du.
U

Estimation of Jo, Js. With the value of € in (3.20), we evaluate and estimate Jy and J;. Note that the powers

for x4 in Jy and J3 are 3 —2a and 2 — a now. Since 3 —2a > 2 —a and x. > 1, we estimate
Jo < expxd [ {Jafe 00 a2 (0200 a2 (3.24)
U
where c12 = 2 - 417%3[1 + (32¢3/c4)!7%]. Similarly,
J5 < iy /U {172 (1 + |W)2E) 4 @221 + [9])2072} da. (3.25)

For the integrals on the right-hand side (3.24) and (3.25), by applying Young’s inequality (2.4) with

4—4 4—4
ot ¢ and 2 i %o the product |a@|*T272¢(1 + |@])2(1—9),

POWES 1224 ™% T2 24
4 —4 4 — 4
powers ot ¢ and ot % to the product |a|*|¥|?~22,
« 4 —4a
4 —4 4 — 4
powers ot ? and 2 + % o the product |a@|*~2%(1 + |\IJ|)2(2_‘1)’
a—2a 4 —2a
4 —4 4 — 4
powers ot ¢ and & i ? to the product || *(1 + |\I’|)2(3_2a)7
oa—2 6 — 4a

we obtain

at4(l—a)

Jy + J3 < crax3 2 / (5lu| T4 4 3(1+ [[) =Y 4§ )de
U

< 012X2*2“/(5|a|a+4<1*“> +4(1 + @) A=) g, (3.26)
U
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Estimation of Is. We write
(3—2a)(a—1) _ (8=2a)(a—1)
|1—L|a71|\1}t| —_ (X* atd—4a |,a|a71> . (X* atd—4a |\I/t|)

Applying Young’s inequality (2.4) with powers (o + 4 — 4a)/(aw — 1) and (o +4 — 4a)/(5 — 4a) to the
last product yields

(3—2a)(a—1) a+4(1 a)
Is Sxifmz/ |a‘a+4(1fa)dx+x T 5-4a / | =i
U

(3—2a)(a—1) i a)
< X372 / o0 g oy, T / 0|5 da. (3.27)
U

Combining (3.21) with estimates (3.23), (3.26), and (3.27) gives

1d c1o(a—1) / e 12—al - a2
[e3 < a (e
adt/ |a|“dx T U(1+u) |Va|*~%a|* "dx

easx®2a( /|u|°‘+4(1 Dz + era® 2 (a — )/(1—|—|\IJ|)“+4(1‘“)dm (3.28)

ot (1 o) (3—2a)(a—1) QH(I a)
ey o — 1) / (1+ V) dot o o / v,
U

where c13 = 5c1a + 2¢11 + 1 and ¢4 = 4c12 + ¢11 -

Step 2. We improve inequality (3.28) to obtain (3.8).

We apply Corollary 2.4(ii)) to n = 3, p = 2—a, r = 4(1 —a), s = 2, f§ = 2, and functions
u = a(-t), ¢ = V(,t), v := a(-,t) + U(,t) = u(-,t) > 0. Note, in this case, that the number m in
221)is m=(a—a)/(2—a).

Because n/p = 3/(2—a) > 1, then condition (2.19) becomes (3.6). Also, because of (3.12), the conditions
on « in (2.20) and condition (2.34) become (3.7). Then it follows inequality (2.35), for any € > 0, that

/ ||+ =) gy gs/(1+u)*2|vm2*a|u|a*2dx
U U

(3.29)
at +1 — 1
+ Cie ™ (a3 + g+ L),
where
v (Ea—a)\*" alre)-2r, e
o= |2 () ae I (3.30)
2—-a
and, according to (2.23),
nrrs, 12(1 — a)rs

nr(p—s)ta(r.(n+p) —n)  af(5—a)r. —3) - 3ar,’
_r+0(s—p) 4(17a)+a9.

1—-46 1-6
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The positive constant ¢ in (3.30) is the one in (2.25) that corresponds to the domain U C R?, number 7, in
(3.6) and p =2 — a. The fact that 6 € (0,1) in (3.10) comes from (2.23).

We utilize inequality (3.29) in (3.28) with e chosen to satisfy

Cio . C10 _
3—2a 2a—4
C13EX & = N , e, &€ = ——

It results in

-1
v [aear < =D [ 2 ap-eja -t
U
(3.31)

0(4

g, MizPw) 225
+ ol —1)xI 20 7 {| [ 6 + ||la ||a+”|\1+|‘1’|||1 e

—Tx

} + c15(or — 1)M(t),

where CQ = 013C1 (4013/610)% and Cl5 — max{l, 2011, 614}.
Note that the explicit power of y. in the second term on the right-hand side of (3.31) is
0(4—2a) 3—2a+0

_2 = :_.
3-2at = 1-6 H

Multiplying (3.31) by «, and using the fact a(a — 1) > 2 for the negative term on the right-hand side,
we obtain (3.8) with

Co = max{Cs, c15ta(a — 1). (3.32)
With «a,6 € (0,1), it is clear that u, &, v, 4" are positive numbers. The proof is complete. O

We are now ready to obtain estimates for % in terms of its initial data and the boundary data W, at
least for a short time.

Theorem 3.2 Let r., o, 0, v, i, Cy be as in Lemma 3.1. Set

C.= Gy (1427 4240707 4 928850 (o)
Vo= 1+ [ fa@)de, vio =1+ [ jate ol ds,
U U

E(t) = Xf (1 + H\I/(’t)| o 2” ) _|_Xi 2a/ U (z t>|a+4(1 a) e

1 (3—2a)(a—1) atd(l—a)
Lyl / VU, )| e e / 0, (2, ) 55
U U

Suppose there are numbers T >0 and B € (0,1) such that

T
WC*V(?/ E(r)dr < B. (3.33)
0
Then

t -1/
Vi) < W <1 — WC'*VO’Y/ E(T)dT) for all t € [0,T]. (3.34)
0
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Consequently,
V(t) < Vo(1 — B)~Y7 for all t € [0,T], (3.35)

T
X« B
/ / (1 + u(z, ) "2|Va(z, )2 a(z, )| 2dadt < XV (14— ). (3.36)
o Ju C4 (1 —B)"*>
Proof Let dy = c4/(8x«) and
H) = [ (4 ula, ) Ve, O ae, )] 2da,
U
Let v/ and M(t) be defined by (3.9) and (3.11) in Lemma 3.1. Noticing from (3.9) that 7" < v, we

</U |ﬂ(fﬂ,t)|adﬂc>lﬂ, (/U |ﬂ(:r,t)|“dm)1ﬂ/ < V().

Combining this with (3.8), we have, for ¢ > 0, that

estimate

GV () + o (1) < CNTOV (D), (337

where

*

— _ _20
M (1) = xF (1 ST ) ().
LI—r

We find an upper bound for M (t) with a simpler expression in ¥. Using the triangle inequality for the

L™ -norm and (2.6) and (2.7), we estimate

1+ 12, t)

1—
274
L1-—7«

(1—74)0 %
R S N ACe)] Ry S

L1—7«

T <o <U

M(t) < X272a . 2a+4(17a)71 (|U| Jr/ |\I/(x,t)|a+4(1a)dx>
U

at4(l—a)

fylma. gt (|U+/ VO (2, )| dx)
U

_(B=2a)(a—1) ati(l—a)
+ Y 5—4a /|\I/t(l',t>| 5—1a .
U

Regarding the powers of x,, observe that i >3 —2a >1—a. Then

M(t) < (1427 4 ool g=5=1) (1 et ST e (4). (3.38)

Therefore, we obtain from (3.37) and (3.38) that

%V(t) +doH(t) < CLEDV (). (3.39)
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Neglecting doH (t) in (3.39) and solving the remaining differential inequality give (3.34).
As a consequence of (3.34), we have, for t € [0,7],

T _1/7
V() <V (1 - ’yC*VOA// E(T)d7'> < (1-B)"Y,.
0

Thus, we obtain (3.35).
Integrating inequality (3.39) in ¢ from 0 to T', we have
T T
do / H(t)dt <Vy+ C. / V()M E(t)dt.
0 0
Combining this with estimate (3.35) of V(¢) and condition (3.33), we obtain

T T
do/ H(t)dtgV0+((1—B)‘1/7VO)1+‘*C*/ £(t)dt
0 0
T B
<W+(1-B) Voy ' B=Vo |1+ ———7 |-
y(1-B)

Then estimate (3.36) follows. O

Remark 3.3 Inequality (3.36) gives an indirect estimate for the gradient Vu, or, in other words, for its
weighted L2~ -norm with the weight |u|*=2/(1 + u)? depending on the solution w. In [10] when X = X(y)
and a = 2, a similar L*~%-estimate (without a weight) was the starting point for other estimates of higher
L? -norms of Vu. They were obtained by the use of LadyZenskaja—Ural’ ceva’s iteration [18]. It is not known
whether this method still works for the PDE (1.15) with X = X(z,y).

4. Estimates for the essential supremum

We establish L -estimates for a solution 4 of (3.3) with possibly unbounded initial data. They will contain
some quantities that only involve the boundary data of the following form.

For numbers ¢1,¢2,¢3,q4 > 0 and T > T’ > 0, define

T a
Moz p(q1, 42,43, q4) = 14 x2~° (/ / (1+ |V\Il(x,t)|)(2“)q1dxdt>
rJu

1
a2

T
e ( |, [asmeapona s |w<x,t>|><“>qzdxdt> (4.

T a1
[ |q,t|q4dzdt) |
T U

We use Moser’s iteration and have technical preparations with key inequalities in Lemmas 4.1 and 4.2

T =
+x2e (/ /U(1+|xp(x,t)|)€?q3dzdt> +<

where ¢ = 2max{2 —a,3 — 2a}.

below. In the following, Q7 denotes the cylinder U x (0,T) in R*, and |Qr| denotes its 4-dimensional Lebesgue
measure.
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Lemma 4.1 Assume numbers & and p;, for i =1,2,3,4, satisfy
K > p1,p2,P3,Pa > 1.
For i=1,2,3,4, let q; be the Holder conjugate exponent of p;, that is,
1/pi+1/q; =1 fori=1,23,4.

Let T >Ty >T7 > 0. If

aZmaX{2,2p3(1_a) 4(1—a)}7

E—p3 = k-1
then one has

a+4 l1—a
sup /|u| (2. )de < K Mo([1972 oy oy + 1SS0 ),
te[T>,T]

X* a+4(1—a
/T / 1+u 2|VU‘2 a|u|a 2d$dt< KMO<||UI|L’W(U><(T1,T))+Hu||L~a(UX()T1 )))
P

where Mo = Mp, 17(q1,92,43,494) and

K2016(1+|QT|)<1+ ) with 016:9(1+011+012).

1
T, - T
Proof Let ¢ = ((t) be a C'-function on [0,T] with

(t)=0for 0<t<Ty, ((t)=1for Tp <t <T,

0<(¢(t)<land0<{'(t) <

for0<t<T.
2 — 13

Multiplying the PDE in (3.3) by |u|*2u¢?(t), integrating over U, and integrating by parts give

1d [ 0o 1 s
— [e4 _ 2 «
& [ arca =2 [ 2larccas

= —(a=1) [ X(.0@0)a"*Vacde - [ wfalacds.

(4.5)

(4.6)

(4.7)

(4.8)

Noticing that the function ¢ = {(t) > 0 is independent of x, we have, the same as inequality (3.14),

adt/ e dfﬂ—*/ a|*¢¢de < (a —1)(=Io+ Iy + Io + Iz + In) + I,
where I; = I;¢2 for i = 0,1,...,5. Then, similar to (3.21),
G =2 [ arccas < =G a—) [ @ w APl
ozdt U
+(O£71)(J0+j1+j2+j3+j4+f6)+j5,
where J; = J;i¢? for i =0,2,3,4, with ¢ and § particularly chosen in (3.20), and I = I¢2.
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On the one hand, neglecting the negative term on the right-hand side of (4.9) and integrating the resulting
inequality in time from 0 to ¢, for t € [Tz, T], with the use of the fact ((0) = 0, and then taking the supremum

in ¢ over [Ty, T], we obtain

1
— sup /|uxtadx—f sup /|ua:t\§2()dac<J (4.10)
X [Ty, T) & te[Ty, T
where
T T 9
J=(a—-1) / (Jo+ 11+ Jo+ Js + Jy + Ig)dt + / Isdt + > // |1E|O‘C§’dxdt. (4.11)
0 0 Qr
On the other hand, integrating (4.9) in ¢ from 0 to T gives
-1)
%// (1 + ) 2| Va|>~a|*2¢?dedt < J.
2X x -
Hence,

T T
/ /(1+u)*2|w|2*a|a\a*2dxdt:/ /(1+u)*2|w|2*a|a|a*2<2da:dt
T2 U TQ U

// (1 +u)~2|Val>~2|a*2dedt < LJ
. (o 1)

(4.12)

We focus on estimating the quantity J now. Define Y (« fo |a|*Cdxdt.

Using the fact 0 < ¢2 < ¢ and previous estimate (3.22), we have
r T
/ (Jo+ 11+ Js + Ig)dt < / (Jo+ I + Jy + Ig)(dt
0 0
<end™ [[Jal s (9 cdade
Qr

eyl / / [l 2 (14 2209 (14 [P dudt.
Qr

On the right-hand side of the preceding inequality, by applying Holder’s inequality with powers p1,q1 to
the first integral on the right-hand side, and with powers ps, g2 to the second integral, we obtain

T
/ (Jo+ I + Ja + Ig)dt < crixi “[Y(p1(a — 2a)) 71 By + Y (pa(a — 2)) 72 B, (4.13)
0

where

1

B = ( / / (1+ |V\If|)(2“)q1§dxdt> "

By = (// (1+ @)20-)az (1 4 |v\p|)<2—a>q2gdxdt) *

1
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Similarly, by the fact 0 < ¢? < ¢ and estimates (3.24) and (3.25), we have

T T T
/ (J2 + Jg)dt < / Jggdt + / Jngt
0 0 0

<o [ {000 PO e w0 et (49
Qr

e [ {jal (1 [ a0 )0} o,
QT

Note that each power of |¥| or (14 |¥|) in (4.14) are less than or equal to ¢. Then

T
/(j2+j3)dtgclgxi*2a{// |a|a+4(1*a)4dxdt+// (@[ (1 + [W])iCdadt
0 Qr Qr

+// |ﬂ|a+2_2“(1+|\If|)‘7Cda:dt—|—// |a|* 21 4 | |)I¢dadt
T Qr

+//Q la|e2(1 + |qz|)‘?gdxdt}.

Applying Hoélder’s inequality with powers ps and g3 to the last four integrals yields

T
/ (J2 + Ja)dt < exaxd 2 {¥ (0 +4(1 = @) + ¥ (p3) % B3 + Y (pa(a + 2 — 20)) 7 Fy
0

(4.15)
+Y (ps(a — 24))75 B3 + Y (ps (o — 2))%33},

where

Es = (//Ta + |\If|)(7%cdxdt)ql‘°’.

Next, by the fact 0 < ¢? < ¢ and Hélder’s inequality with powers py and g4,

T
/ Todt < // (]|, | Cdadt < Y (pa(a — 1))7 By, (4.16)
0 Qr

where

By = (// \Ilt|q4<da:dt> "
Qr

Finally, for the last term of J in (4.11), using the second property of (4.8), we have

i//QT |a|*¢¢ ddt < ﬁY(Q) < ﬁY(Q). (4.17)
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Combining formula (4.11) with the above estimates (4.13), (4.15), (4.16), and (4.17) yields

T < (o= Denxd = [Y (1 (0 = 20)) % By + Y (pa( - 2)) % B

1 1
+ (o= Denaxd 2V (@ +4(1 = @) + [V (psa) 75 + Y (pg(ar +2 = 20)) % (4.18)
EN E ES 2
+ Y (s = 20))75 + Y (palar = 2))7 | B} + Y (paler = 1)) 75 By + ———Y (@),
2 — 41
Define Y; = ||@| pre @ x 1y, 1)) - If 0 < B < Ra, then, by Holder’s inequality,
T B8
v(e) = [[ laicdsar< [ [ aPaedt < vPIQel A < VI +1Qr)). (4.19)
Qr T, JU

Under conditions (4.2) and (4.4), one has
p1(a—2a),pa(a —2),ps(a—1) < R and o +4(1 — a), ps(a+ 2 — 2a) < Ra.
Thus, we have from (4.18) and (4.19) that

J < (a—1)(1+ |QT|)C11X1_“ [Y*Q_Q“El + Y*G—QEQ]

(0 = (14 @ eraxd 2 YT [V 4 YR Y YR By

+ 1+ Q)Y By + 1+ [Qr)Y.

T, -T

It follows that

T < (ten+en)1+Qr(a—1)(1+

where

Mo =1+ xi"“(E1 + E2) + X3 “E3 + Ey,

J =2V oyt py el gy 4y time) g oyeraize),

Because 0 < ¢ <1 on [0,7] and ¢ =0 on [0,T}], we have My < M.
Thanks to inequality (2.5), one has

Y:kosza7 }/*(34717 Y*a, Y*a+2(1_11) < Y*oz72 + Y*a+4(1—a);
hence, J < 9(Y, 272 + Yf+4(1_a)). Therefore,
T < (a—1)KMy(Yo~2 4 yori-a)y, (4.20)

Then estimate (4.5) follows (4.10) and (4.20), while estimate (4.6) follows (4.12) and (4.20). The proof
is complete. O
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Lemma 4.2 Let r. satisfy (3.6) and set A\g = (r«(5 —a) — 3)/(3rs). Assume (4.2), (4.3),

2p3(1 — 4(1 —
o> maX{Q, pf’( a), (~ a)} and a > —. (4.21)
R —ps k-1 Ao
Let
a ~ 1 fa
TS W S S 122
K + Ao P 1+£, M1 + — ( )
If T >1T5 >1T, >0, then
) 1
||"_L||LW(U><(T2,T)) < (AaBa)E (HQH?M(UX(ThT)) + ”aHZZRa(UX(TI,T))) 3 (4~23)
where v1 = (a0 —2)py, vo = (a+4(1 —a))p1,
1
1 1 1 C 2-al =
A, = gui—1+5(2+50) | H1 4.24
ClO 2 —a 616’ ( )
1 a ~ 1 1 k1
B = xra?—tEE [(1 + \QT|)(1 + )Mo} (4.25)
T — T,

with Mo = Mp, 7(q1,92,¢3,94) and

E = esssup ||1+ |U(-,1)[|? 2r, + esssup Ha(,t)HzlzL
L L1-7s

te(T2,T) T te(T2,T)

Proof We apply Lemma 2.5(ii) to n = 3, p = 2—a, s = 2, § = 2, and functions v := u, ¢ = ¥,
v:=0u+ V¥ = u, and the interval (T5,T) in place of (0,7). Note, from (2.21), that m = (o — a)/(2 — a). The
same as in Step 2 in the proof of Lemma 3.1, condition (2.19) becomes (3.6). Clearly, condition (2.37) becomes
a

a>2and o > ,
Ao

which is satisfied thanks to (4.21). Then, by inequality (2.40), one has

1

Ko

T

AL AL _ -0 _loa— _ 12— -

[l e oy < OF B essoup [ )] =7 ( | [ raeiwakea ) dedt> .
tE(TQ,T) T> U

1—ry

where ¢ = 2277 (- 8=4)2-4 the numbers £ and 0 are given in (2.39), which assume the values in (4.22)
now.

We estimate the right-hand side of (4.26) by Lemma 4.1. Note that condition (4.4) is the first part of
(4.21). Recalling that K is defined in (4.7), we denote

Y, = |[all pre@ws (), Mi=o*KMy, S=DM(Y "+ Y*O‘H(l*“)).

By estimates (4.5) and (4.6) in Lemma 4.1, we have

22X«
3 S. (4.27)

T
esssup/ la|*da < S, / /|a|°‘_2|V12|2_“(1+\u|)_2dxdt§
U T, JU Clox

te(T2,T)
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Then combining (4.26) and (4.27) yields

1

QX A\ R g 1
| o < ~CE)  §=070)
[l pre @ x (15,1y) < (cloa2 >

B

1 1
2%« A a) " —f4+1 o NS
- {<613<QQCE) ML (Yf‘2+Y* +4a >) } . (4.28)

Using the formula of £ in (2.43), we have

175:970475: (26! b= O(s—p)  ba
K

mp a—s+p a—s+p a—a

It follows that the power 1— §+% in (4.28) is exactly the number py > 1 defined in (4.22). Applying inequality
(2.6) to (Yo~2 + Y279 iy (4.28), we obtain

o

1
2 * AL g L — a— o —a
|l Lre @ x (1a,1)) < {( X 2CE> Mirgm—l(yle-Dm  y et ))ul)}

C1o&
(4.29)
1
1 2¥s A )"
=My (Y + Y2)w | where My = 2171 <X 2C’E> M
C1o
Simple bound a — a < « in the formula of C, and elementary calculations give
M, < 2m—1 s ca E
C1002 2—a
(4.30)
5 M1
1 (1 ) — A,B,.
X |:016( +1Qr[)(1+ o1 )" Mo}
Therefore, we obtain (4.23) from (4.29) and (4.30). O

We simplify inequality (4.23) to make it more suitable to the Moser iteration below.

Firstly, observe that 1 < pu; < 1+ a/(a — a); hence, the powers vy and vy in (4.23) can be simply
bounded by r3 < 11 < vy < v4, Where

Vs =U3q e —2and vy = Vo e (o +4(1—a)) (1 + > i a> . (4.31)

Then, thanks to (2.5),

18050 ) 1oy < 2 (Nl e,y + Wl e s ) - (4.32)

Secondly, using the facts pu; < 2 and k > 1, we estimate A, in (4.24) by

_ 2—a
1
Ay < 23+i510?67 where ¢ = max {1, . (2 f a) } . (4.33)
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Thirdly, we estimate B, given by formula (4.25). Regarding the powers in that formula, note that

0 1
0 g 14+Xo

& def a
<1+4+6a< =1 . 4.34
M1 S + ba < 125 + 1+ )\0 ( )
Property (4.34) and the fact k <14 A yield that the power of « satisfies
a def a
2y — — < 2y — ——— = . 4.35
M1 He = 7 o = 3 + 1+ ho ( )
Concerning the remaining power 1/x, one has, thanks to the fact o > 2, that
. def a
e (4.36)
Therefore,
. o H2 B .
B, < M Fats BUR [(1 + \QT|)(1 + )Mo} , where E = max{1, B}. (4.37)
2 — 11
Fourthly, assume
K>k >1. (4.38)
By Hoélder’s inequality,
_ 4 iyig_ EI
18l Lo e (1 1) < 1Q S ™) 3 [l Lo (1)) < (1 +1Q7 ) [ Lo (1 x (7,7 - (4.39)
Combining (4.39) with (4.23), and making use of estimates (4.32), (4.33), and (4.37) yield
1
il ooy < {AB (1w iy zyy + N8z ) (4.40)
where
_ _ A=1/n 1 B2
A=2"75c2, B =Y EYRL 4 |Qr|) e (1 + Tl) Mz, (4.41)

Obviously, (4.40) is only useful when &’ > &, which will be satisfied in Theorem 4.5 below.

Next, we recall a lemma on numeric sequences that will be used in our version of Moser’s iteration.

Lemma 4.3 ([9], Lemma A.2) Let y; >0, k; >0, s; >r; >0 and w; > 1 for all j > 0. Suppose there is
A >1 such that

“i L )
Yir1 < A% (i +y;')~ ¥j>0. (4.42)
Denote B; =rj/k; and v; = s;j/Kk;. Assume
o] o0 (o]
a % Z —J < 0o and the products H Bj, H v; converge to positive numbers 3,75, resp.
=0 .7

j=0  j=0

Then
y; < (2A)GJ'5‘ max {yg" - 1,y§°”ﬂj‘1} Vi > 1,
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where G; = max{l, VmYm+1...7n : 1 <m <n < j}. Consequently,

limsupy; < (24)%¢ max{yg,yg}, where G = limsup G;. (4.43)

j—o0 j—o0
Some conditions on involved parameters will be imposed and are summarized here.

Assumption 4.4 Let number 1, satisfy (3.6) and set A\g = (r«(5—a)—3)/(3r«). Fiz a number i € (1,/1+ Xo)
and let p; > 1, q¢; > 1, for i =1,2,3,4, satisfy (4.2) and (4.3).

We obtain the first estimate for the essential supremum of @(z,t).

Theorem 4.5 Under Assumption 4.4, let ag be a positive number such that

2p3(1 —a) 4(1—a) a a
> — . .
ao_max{ Pyt S S and ap > max 27)\0 (4.44)

There are positive constants fi < U and w, which can be identified by (4.55) and (4.57) below, such that
if T>0 and o € (0,1), then

s 1/ L \#2 ]
ol wnioray < |encen (14 o) 1+ @t L7
o (4.45)

x 8% {11 0 (170,19 15 e 00, |

where &y = (2&)** A, numbers po, ps, k, A are respectively given in (4.34), (4.35), (4.36), (4.41), My =
Mo, r(q1,92,43,q1) and

E.=max<{ 1, esssup ||1+|T(,0)|]|* 2. + esssup [Ja(-,t)]|? 2n - (4.46)
te(oT/2,T) Li=rx« te(oT/2,T) Li=rx«

Proof We prove (4.45) by adapting Moser’s iteration. We iterate inequality (4.40) with suitable parameters.

For our convenience, redenote x defined in (4.22) by k.. Then k, is increasing in a.

Set B; = Rap for j > 0. Since & > 1, the sequence (Bj)32o is increasing. In particular,
B > Bo = g for all j > 0. (4.47)

This relation and (4.44) imply that a = (; satisfies condition (4.21), and

Kg, > Fap =14 Ao — o% > i2. (4.48)

Set x’ = &2 > 1. Then property (4.48) implies that (4.38) holds for a = f3;.
For j >0, let t; = oT(1 — 55). Then to = 0, t; = 0T/2, t; is strictly increasing, and t; — oT as
j — 00.
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For j > 0, applying inequality (4.40) to o = f8;, T1 =t; and T» = tj41, we have

1

AB;B*)% + llall}; (4.49)

B;
HUHL” Fi(U(tj41,T)) = =< (”u”LﬂJ‘H(UX(t ) LPi+1(Ux(t; T))) ’

where 7; = v3.5,, 5; = V4,3, , see (4.31), number A is given in (4.41), and

— i R +u 1 He
B; Xi/ 1/ 1+ Q) 12(1 751775) M, (g1, 92,93, q1)"
“ i1 —t

with Ej; = max {1 esssupge () 11+ 19 ( )|||2 2 +esssup;e(q,,, 1y Ul )HQL% }
Note from (4.34) and (4.35) that 1+ ps = p3. Clearly, My, r(q1,q2,93,94) < My, and comparing E;
with F, in (4.46) gives Ej < E,. Let
_ 1/kpl/k 3 B2

Then one can estimate

1

j+1

— - 14 —_

AB;p < AM3(1 n ) “pra = AM3(1 + =
_ . 1 \#2 .

< AM5212G+1) (1 + 07T) (7 ag )12,

This yields

AB;Bl < AFF | for all j > 0, (4.51)

where
B L 1 \ #e2
At oy = 2ﬂ2fwsag‘sAM3(1 n —) > 1. (4.52)
ol

For j > 0, define Y; = ||11||L5j+1(Ux(tj ))- Note that k'8 = &*B; = Bj+2. Then we have, by (4.49) and

(4.51),
o - S
Vi < Apd (Y] + Y (4.53)

Hence, we obtain inequality (4.42) in Lemma 4.3 for the sequence (y;)72, = (Y;)3%,.
We check other conditions in Lemma 4.3. Because < > 1, we have

e}

]+ 1 EZQ def
E R = 4.54
§j=0 =0 R (i —1)? b1 € (0,00). (4.54)

Using the definitions in (4.31) and the fact 5; > ag > 2, see (4.47) and (4.44), we have

B2 €(0,1) and 2 = (1+4(1_a)> (1+ - )e(l,oo)

Bj 5]' 6j ﬁj ﬁj —a
Then
[e%s} - 00 ) 0o 5
0<- —— | <) ——— < oo,
j;o Bj z:o T ; < ’fjao—2> jz:OHJaO—Q
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0<Zln— Zln(H ))+Zln<”mo£—a>
§=0

7=0
oo oo
4(1 —
SE 7(~. a)+ 7~‘a < 00.
- K . Jag — a
Jj=0 Jj=0

Therefore, Y772 In(7;/6;) = £2 € R and Y 77 In(5;/8;) = £3 € R. Consequently,
def TT 75 def TT &
= <L —¢2and v = 21— ¢ are positive numbers. 4.55
o 2 (55

J j=0 J

By (4.53), (4.54), and (4.55), we can apply Lemma 4.3 to the sequence (Y;)32,, and obtain from (4.43)

that
limsup Yj < (247,0.0,)* max{Y", Y7}, (4.56)
Jj—oo
where
w = l40; with ¢4 = limsup (max{l,sm- Smtl Sy <m<m <j}> (4.57)
j—oo B Bm+1 Bm/

In fact, we have, thanks to the property §;/5; > 1, that

Note that limsup;_, .. Y; = [|@llo=wx@r.1)> Yo = @l 151 (rx(0,r)) and, by (4.52) and (4.50),

_ 1 \m - -
247,05 = 2R AL+ Qe (14 — ) X/ FBY MG
(4.58)

1 \H2 N &
= @0l (14 [Qrl) (L4 ) x B,

Then estimate (4.45) follows (4.56) and (4.58). O

Combining Theorem 4.5 with the L“-estimate in Theorem 3.2, we have the following L°°-estimate in

terms of initial and boundary data, at least for small time.

Theorem 4.6 Under Assumption 4.4, let ag be a positive number such that

2p3(1 — 4(1 — 2r, 4—
aOZmax{ p?( a) 41-a) a ! )} anda0>max{2,;, E%a}. (4.59)

R—ps = R—1"14+X—&2 &1-r, 0 Aok
Let w and U be the same constants as in Theorem 4.5. Denote

f1 = Rag, w1 =w/R, wy = ligw, W3 = 13w,
. . (4.60)
w4:w3+i andw5:w3+M.

61 Tx
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Let My(t) = Mo(q1,4q2,93,494) be defined as in (4.1), and 7, Cy, Vo, E(:) be defined as in Theorem 3.2

for a=p;.
Suppose T > 0 satisfies (3.33) for a = By and some number B € (0,1). For t € [0,T], let

—1/y

¢
V() =W (1 - 'yC*VOV/ 5(7’)d7’> and By(t) =1+ esssup [|U(,7)|| 2r . (4.61)
0 re(ot/2,t) Li=r«
Then one has, for any t € (0,T] and o € (0,1), that
— 2w+
Jll o (1 ey < Coxs (14 0™ M7= (1 4+ )% Mo (822 B, ()2 V() H (4.62)

where Cy = 2*1&5 a8 (1 + |U|)s.

Proof Thanks to condition (4.59), aq satisfies (4.44), and o = (; satisfies (3.7). Let f be the number as in
Theorem 4.5. Applying estimate (4.45) to T :=t and using definitions of constants in (4.60), we have

all Lo 0 x o,y < Caxs™ (1 4+ 0772 (14 | Q)" M5 B (1)

. ) (4.63)
< max {[ls, 0,002 180501 0 0. -
where C3 = (G20)*)* and
E.(t) =max {1, esssup [[1+[®(,7)[[* 2 + esssup [a(,7)]* 2 -
TE(at/2,t) Li=r=  rg(ot/2,t) Li-r«
Note that V(t) is increasing in ¢ € [0,7]. By (3.35), we have, for all 7 € [0,?],
/ (e, 7)| P dz < V(r) < V(L). (4.64)
U
Hence,
¢
/ / i, 7) [P dwdr < V(2).
0o Ju
Combining this estimate with the facts 7 > & and V() > 1 yields
mase {1y 0,9 10700 0.} < i { V()P (00 % |
_ ~ (4.65)
< (1+t)P V(1)

For E.(t), we, on the one hand, use the triangle inequality to estimate

1—7y 2
esssup [[14 (D)2 o, < esssup (JUIT 4 [W(,T)] e ) < (14 UDTF T B0 ()2
re(ot/2,t) LI=7  re(ot/2,t) Li=r«

On the other hand, we use Holder’s inequality and (4.64) to obtain

IR Y ORI

142
esssup ||a(-,7)||? 2n. < |U|7- =7 esssup ||12(-,7‘)H2L31 <(1+4+|U
L1-7x

TE(at/2,t) - TE(at/2,t)
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Hence,
E () <201+ [U])7 1B, (£)2V(t)¥/ . (4.66)
Combining (4.63), (4.65), and (4.66) with the fact 1+ |Q:| < (1 +|U|)(1 +t), we have
]| oo (U (ot,)) < Caxs (1 + 07112 (14 8)3 (1 4 |U[)“s Mo (t)**
< [20 + U= 2,200 1+ FE V)
— 21 (1 + (U)X (14 o~ D)2 (1 + £ Mo ()2 By ()2 V() P
Then inequality (4.62) follows. O

5. Maximum principle

In this section, we estimate the classical solutions of (1.17) by the maximum principle. Recall that the functions
X(z,y), Z(z,t), and ®(z,t) are defined by (1.14), (1.16), and (3.2), respectively. We rewrite equation (1.15)

in the nondivergence form as
up = Dy X (u, @) : (D*u +u?Q*I? + 2uVuzZ®) + D, X (u, ®) - Vu. (5.1)

For T > 0, denote Ur = U x (0,7}, its closure Ur = U x [0,T] and its parabolic boundary 8,Ur =
Ur\Ur =U x {0} UT x [0,T].

Theorem 5.1 Assume u € C(Ur) N Ci:tl(UT), u >0 on Ur and u satisfies (1.15) in Ur. Then one has

max % = max u. (5.2)
U7T apUT

Proof Given any € > 0, let u®(z,t) = e “'u(z,t) and M, = maxu®. We claim that
Ur

M, = max u®. (5.3)
> Ur

Suppose (5.3) is false. Then M. > 0 and there exists a point (xg,ty) € Ur such that u®(zg,tg) = M..

At this maximum point (zg,to), we have
us (zg, to) > 0 and Du®(zg,tg) = 0. (5.4)

It is proved in [10, Theorem 3.1], based mainly on property (2.15) in Lemma 2.2, that

Dy X (u,®) : (D*u +u?Q2J?) <0. (5.5)

(z,t)=(z0,to)

The second property of (5.4) deduces Du(zg,tg) = 0. This fact, (5.5) and (5.1) imply wus(x,t0) < 0.
Therefore,

us (20, t0) = —eu (20, t0) + e uy (9, t0) < —eM. < 0,
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which contradicts the first inequality in (5.4). Thus, (5.3) holds true. Note that

e T maxu < M. = max u® < maxu < maxu.

UT BPUT - BPUT UT
Then passing € — 0, we obtain (5.2). O
In the following, T} € (0, 00] is fixed.
Clearly, if u € C(U x [0,T,)) N C’ig(U x (0,T)) is a nonnegative solution of problem (1.17), then, by

the virtue of Theorem 5.1, we have the maximum estimates in terms of the initial and boundary data:

sup u(z, t) < max {sup up(xz),  sup ¢(x,7)} for all ¢t € (0,T%). (5.6)
zeU zeU (z,7)€lx(0,t]

In case the solution u belongs to C(U x (0,T%)) but not C(U x [0,T%)), estimate (5.6) is not applicable.
For instance, initial data wug is unbounded. However, under certain weaker conditions, the maximum estimates

can still be established by combining Theorems 4.6 and 5.1.

Under Assumption 4.4, let «g satisfy (4.59). We use the same notation as in Theorem 4.6. Assume
further that

(i) Ma(t) is finite for all ¢ € (0,7,) and € € Li _([0,T%)),

loc
(ii) ¥ e O x (0,T.) nC([0,T.), LA (U)).
Because of the second property in (i), we can find a number ¢ such that 0 < tg <1, tg < Tk, and (3.33)

is satisfied for T' = ty, @ = 81, and some number B € (0,1).

Theorem 5.2 Let u € C(U x (0,T%)) N Citl(U x (0,T.)) N C([0,Ty), LP1(U)) be a nonnegative solution of
problem (1.17).
If t € (0,to], then

— 2w+
supu(e,t) < Cox t™“2 Mo ()2 B, (1 V() 5 + sup [U(a, 1)), (5.7)
zeU zeU
where Cy = 3“2294C and
PB.(t) =1+ esssup ||\Il(,r)||L127A (5.8)

TE(t/4,t)

If t € (to,Tx), then
zeU zeU (z,7)elX[to,t

supu(x,wgmax{%x:wg@o)m||ao||m>2“1“+sup|¢f<x,to>|, sup ]wxﬁ}’ (5.9)

where Cy = Co(1— B) ™ B and M (to) = 52 Ma(to)** B.(t0)2 .
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to o =1/2, we have

2wy

@l oo (/2,6 < C1x (1 +2¢71)92 (14 )4 Mo (£)> B (8)*1 V(1) P

2wy 47

< CIxS (3t71)22% Mo ()2 B, (1)1 V()

— 2wq 47U
= Oox 12 Mo ()2 B. ()21 V(1) P
By the continuity of @ on U x [t/2,1],

2w+

SUBW(%W < all oo st/ < CoxPt™2 Mo ()2 B (t)*1 V(1) 71 .
xre

Combining this estimate with the triangle inequality u(z,t) < |a(x,t)| + |¥(x,t)| gives (5.7).

Proof First, note that %, (t) in (5.8) is, in fact, % ,5(t) in (4.61). Let ¢ € (0,%o]. By estimate (4.62) applied

Let t € (tg,Tx) now. Applying the maximum principle in Theorem 5.1 for the interval [tg,¢] in place of

[0,T], we have

sup u(z,t) < max 4 sup u(z, to), sup v(x,7) p.
zeU zeU (z,7)€lX[to,1]

Estimating u(x,to) by using (5.7) for t =t yields

2wy +7

sup u(z, to) < Coxty“* Ma(to)*> Ba(t0)* V(te) 1 + sup [W(z, o).
xeU xeU

Thanks to estimate (3.35) for ¢ = ¢, we have
v(to)l/ﬁl < Vol/Bl(l _ B)*l/(ﬂw).
Applying inequality (2.6) to x =1, y = fU |ug(z)[Prdx and p=1/B; < 1 gives
Vo! P < 1 fluo| s

Then estimate (5.9) follows from (5.10), (5.11), (5.12), and (5.13).

Remark 5.3 The following final remarks are in order.

(5.10)

(5.11)

(5.12)

(5.13)

(a) As a sequel of our previous work [10], the current paper only considers slightly compressible fluids.

Nonetheless, the methods developed here and in [8, 9] can be applied to analyze other types of (compressible)

gaseous flows in rotating porous media.

function X is only required to have similar properties to those in Lemmas 2.1 and 2.2.

(b) Our analysis can be easily adapted for more general PDE of type (1.15) in space R™ not just R3. The
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