Clairaut Riemannian maps

KIRAN MEENA

AKHILESH YADAV

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://journals.tubitak.gov.tr/math/vol47/iss2/26

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Clairaut Riemannian maps

Kiran MEENA∗, Akhilesh YADA V

Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India

Received: 31.08.2022 • Accepted/Published Online: 14.02.2023 • Final Version: 09.03.2023

Abstract: In this paper, first we define Clairaut Riemannian map between Riemannian manifolds by using a geodesic curve on the base space and find necessary and sufficient conditions for a Riemannian map to be Clairaut with a nontrivial example. We also obtain necessary and sufficient condition for a Clairaut Riemannian map to be harmonic. Thereafter, we study Clairaut Riemannian map from Riemannian manifold to Ricci soliton with a nontrivial example. We obtain scalar curvatures of $\text{range} F_*$ and $(\text{range} F_*)^\perp$ by using Ricci soliton. Further, we obtain necessary conditions for the leaves of $\text{range} F_*$ to be almost Ricci soliton and Einstein. We also obtain necessary condition for the vector field $\dot{\beta}$ to be conformal on $\text{range} F_*$ and necessary and sufficient condition for the vector field $\dot{\beta}$ to be Killing on $(\text{range} F_*)^\perp$, where β is a geodesic curve on the base space of Clairaut Riemannian map. Also, we obtain necessary condition for the mean curvature vector field of $\text{range} F_*$ to be constant. Finally, we introduce Clairaut antiinvariant Riemannian map from Riemannian manifold to Kähler manifold, and obtain necessary and sufficient condition for an antiinvariant Riemannian map to be Clairaut with a nontrivial example. Further, we find necessary condition for $\text{range} F_*$ to be minimal and totally geodesic. We also obtain necessary and sufficient condition for Clairaut antiinvariant Riemannian maps to be harmonic.

Key words: Riemannian manifold, Kähler manifold, Riemannian map, Clairaut Riemannian map, antiinvariant Riemannian map, Ricci soliton

1. Introduction

The geometry of Riemannian submersions has been discussed widely in [8]. In 1992, Fischer introduced Riemannian map between Riemannian manifolds as a generalization of an isometric immersion and Riemannian submersion that satisfies the well-known generalized eikonal equation $\|F_*\|^2 = \text{rank} F_*$, which is a bridge between geometric optics and physical optics [9]. Further, the geometry of Riemannian maps was investigated in [2, 3, 20–26].

An important Clairaut’s relation states that $\tilde{r}\sin \theta$ is constant, where θ is the angle between the velocity vector of a geodesic and a meridian, and \tilde{r} is the distance to the axis of a surface of revolution. In 1972, Bishop defined Clairaut Riemannian submersion with connected fibers and gave a necessary and sufficient condition for a Riemannian submersion to be Clairaut Riemannian submersion [5]. Further, Clairaut submersions were studied in [1, 12, 14]. In [25], Şahin introduced Clairaut Riemannian map by using a geodesic curve on the total space and obtained necessary and sufficient conditions for Riemannian map to be Clairaut Riemannian map.

∗Correspondence: kirankapishmeena@gmail.com

Further, Şahin gave an open problem to find characterizations for Clairaut Riemannian maps (see [26], page 165, open problem 2). In Section 3, we introduce a new type of Clairaut Riemannian map by using a geodesic curve on the base space and obtain necessary and sufficient conditions for a Riemannian map to be Clairaut Riemannian map.

A Riemannian manifold (N, g_2) is called a Ricci soliton [11] if there exists a smooth vector field Z_1 (called potential vector field) on N such that $\frac{1}{2}(L_{Z_1}g_2)(X_1, Y_1) + \text{Ric}(X_1, Y_1) + \lambda g_2(X_1, Y_1) = 0$, where L_{Z_1} is the Lie derivative of the metric tensor of g_2 with respect to Z_1, Ric is the Ricci tensor of (N, g_2), λ is a constant function and X_1, Y_1 are arbitrary vector fields on N. We shall denote a Ricci soliton by (N, g_2, Z_1, λ). The Ricci soliton (N, g_2, Z_1, λ) is said to be shrinking, steady or expanding accordingly as $\lambda < 0$, $\lambda = 0$ or $\lambda > 0$, respectively. It is obvious that a trivial Ricci soliton is an Einstein manifold [4] with Z_1 zero or Killing (Lie derivative of metric tensor g_2 with respect to Z_1 is vanishes). Ricci soliton can be used to solve the Poincaré conjecture [17]. A Ricci soliton (N, g_2, Z_1, λ) becomes an almost Ricci soliton [18] if the function λ is a variable. The Ricci soliton (N, g_2, Z_1, λ) is said to be a gradient Ricci soliton if the potential vector field Z_1 is the gradient of some smooth function f on N, which is denoted by (N, g_2, f, λ). Moreover, a non-Killing tangent vector field Z_1 on a Riemannian manifold (N, g_2) is called conformal [7] if it satisfies $L_{Z_1}g_2 = 2fg_2$, where f is called the potential function of Z_1. The submersions and Riemannian maps from a Ricci soliton to a Riemannian manifold were studied in [10, 13, 15, 29, 30]. In [32], present authors introduced Riemannian map from a Riemannian manifold to a Ricci soliton. In Section 4, we introduce Clairaut Riemannian map from a Riemannian manifold to a Ricci soliton.

In [28], Watson studied almost Hermitian submersions. In [23], Şahin introduced holomorphic Riemannian map as generalization of holomorphic submersion and holomorphic submanifold. In [2, 3, 20, 22] invariant, antiinvariant and semiinvariant Riemannian maps were studied from a Riemannian manifold to a Kähler manifold. Recently, present authors introduced Clairaut invariant Riemannian map from a Riemannian manifold to a Kähler manifold in [31]. In Section 5, we introduce Clairaut antiinvariant Riemannian map from a Riemannian manifold to a Kähler manifold.

2. Preliminaries

In this section, we recall the notion of Riemannian map between Riemannian manifolds and give a brief review of basic facts.

Let $F : (M^m, g_1) \to (N^n, g_2)$ be a smooth map between Riemannian manifolds such that $0 < \text{rank}F \leq \min\{m, n\}$, where $\text{dim}(M) = m$ and $\text{dim}(N) = n$. We denote the kernel space of F_* by $\nu_p = \text{ker}F_{*p}$ at $p \in M$ and consider the orthogonal complementary space $\mathcal{H}_p = (\text{ker}F_{*p})^\perp$ to $\text{ker}F_{*p}$ in T_pM. Then the tangent space T_pM of M at p has the decomposition $T_pM = (\text{ker}F_{*p}) \oplus (\text{ker}F_{*p})^\perp = \nu_p \oplus \mathcal{H}_p$. We denote the range of F_* by $\text{range}F_*$ at $p \in M$ and consider the orthogonal complementary space $(\text{range}F_{*p})^\perp$ to $\text{range}F_{*p}$ in the tangent space $T_{F(p)}N$ of N at $F(p) \in N$. Since $\text{rank}F \leq \min\{m, n\}$, we have $(\text{range}F_*)^\perp \neq \{0\}$. Thus the tangent space $T_{F(p)}N$ of N at $F(p) \in N$ has the decomposition $T_{F(p)}N = (\text{range}F_{*p}) \oplus (\text{range}F_{*p})^\perp$. Then F is called Riemannian map at $p \in M$ if the horizontal restriction $F^h_p : (\text{ker}F_{*p})^\perp \to (\text{range}F_{*p})$ is a linear isometry between the spaces $((\text{ker}F_{*p})^\perp, g_1(p)|(\text{ker}F_{*p})^\perp)$ and $(\text{range}F_{*p}, g_2(p_1)|(\text{range}F_{*p}))$, where $F(p) = p_1$. In other words, F_* satisfies

$$g_2(F_*X, F_*Y) = g_1(X, Y), \quad (2.1)$$
for all X,Y vector field tangent to $\Gamma(\ker F_p)^\perp$. It follows that isometric immersions and Riemannian submersions are particular Riemannian maps with $\ker F_e = \{0\}$ and $(\text{range } F_e)^\perp = \{0\}$, respectively. The differential map F_* of F can be viewed as a section of bundle $\text{Hom}(TM, F^{-1}TN) \to M$, where $F^{-1}TN$ is the pullback bundle whose fibers at $p \in M$ is $(F^{-1}TN)_p = T_{F(p)}N$, $p \in M$. The bundle $\text{Hom}(TM, F^{-1}TN)$ has a connection ∇ induced from the Levi-Civita connection ∇^M and the pullback connection ∇^F. Then the second fundamental form of F is given by [16]
\[(\nabla F_*)(X,Y) = \nabla^N_{F_*} F_* Y - F_* (\nabla^M_N Y),\tag{2.2}\]
for all $X,Y \in \Gamma(TM)$, where $\nabla^N_{F_*} F_* Y \circ F = \nabla^N_{F_*X} F_* Y$. It is known that the second fundamental form is symmetric. In [20] Sahin proved that $(\nabla F_*)(X,Y)$ has no component in $\text{range } F_*$ for all $X,Y \in \Gamma(\ker F_*)^\perp$. More precisely, we have
\[(\nabla F_*)(X,Y) \in \Gamma(\text{range } F_*)^\perp.\tag{2.3}\]

The tension field of F is defined to be the trace of the second fundamental form of F, i.e. $\tau(F) = \text{trace}(\nabla F_*) = \sum_{i=1}^m (\nabla F_*)(e_i, e_i)$, where $m = \dim(M)$ and $\{e_1, e_2, \ldots, e_m\}$ is the orthonormal frame on M. Moreover, a map $F : (M^m, g_1) \to (N^n, g_2)$ between Riemannian manifolds is harmonic if and only if the tension field of F vanishes at each point $p \in M$.

Lemma 2.1 [21] Let $F : (M^m, g_1) \to (N^n, g_2)$ be a Riemannian map between Riemannian manifolds. Then the tension field of F is given by $\tau(F) = -r F_*(H) + (m - r) H_2$, where $r = \dim(\ker F_*)$, $(m - r) = \text{rank } F$, H and H_2 are the mean curvature vector fields of the distribution $\ker F_*$ and $\text{range } F_*$, respectively.

Lemma 2.2 [22] Let $F : (M, g_1) \to (N, g_2)$ be a Riemannian map between Riemannian manifolds. Then F is umbilical Riemannian map if and only if
\[(\nabla F_*)(X,Y) = g_1(X,Y) H_2,\]
for $X,Y \in \Gamma(\ker F_*)^\perp$ and H_2 is the mean curvature vector field of $\text{range } F_*$. For any vector field X on M and any section V of $(\text{range } F_*)^\perp$, we have $\nabla^F X V$, which is the orthogonal projection of $\nabla^N_X V$ on $(\text{range } F_*)^\perp$, where ∇^F is linear connection on $(\text{range } F_*)^\perp$ such that $\nabla^F g_2 = 0$.

Now, for a Riemannian map F we define S_V as ([24], p. 188)
\[\nabla^N_{F_*X} V = -S_V F_* X + \nabla^F X V,\tag{2.4}\]
where ∇^N is Levi-Civita connection on N, $S_V F_* X$ is the tangential component (a vector field along F) of $\nabla^N_{F_*X} V$. Thus at $p \in M$, we have $\nabla^N_{F_*X} V(p) \in T_{F(p)}N$, $S_V F_* X \in F_{*p}(T_p M)$ and $\nabla^F X V(p) \in (F_{*p}(T_p M))^\perp$. It is easy to see that $S_V F_* X$ is bilinear in V, and $F_* X$ at p depends only on V_p and $F_{*p} X_p$. Hence from (2.2) and (2.4), we obtain
\[g_2(S_V F_* X, F_* Y) = g_2(V, (\nabla F_*)(X,Y)),\tag{2.5}\]
for $X,Y \in \Gamma(\ker F_*)^\perp$ and $V \in \Gamma(\text{range } F_*)^\perp$, where S_V is self-adjoint operator.
3. Clairaut Riemannian map between Riemannian manifolds

In this section, we define Clairaut Riemannian map between Riemannian manifolds by using a geodesic curve on the base space and investigate geometry.

The notion of Clairaut Riemannian map was defined by Şahin in [25]. According to the definition, a Riemannian map $F : (M, g_1) \rightarrow (N, g_2)$ between Riemannian manifolds is called Clairaut Riemannian map if there is a function $\tilde{s} : N \rightarrow \mathbb{R}^+$ such that for every geodesic β on N, the function $(\tilde{s} \circ \beta)\sin \omega(t)$ is constant, where, for all t, $\theta(t)$ is the angle between $\dot{\alpha}(t)$ and the horizontal space at $\alpha(t)$.

Thus, the notion of Clairaut Riemannian map comes from a geodesic curve on a surface of revolution. Therefore, we are going to give a definition of Clairaut Riemannian map by using geodesic curve on the base space.

Definition 3.1 A Riemannian map $F : (M, g_1) \rightarrow (N, g_2)$ between Riemannian manifolds is called Clairaut Riemannian map if there is a function $\tilde{s} : N \rightarrow \mathbb{R}^+$ such that for every geodesic β on N, the function $(\tilde{s} \circ \beta)\sin \omega(t)$ is constant, where, $F \circ X, F X \in \Gamma(\text{range}F_\ast)$ for $X \in \Gamma(\text{ker}F_\ast)$ and $V \in \Gamma(\text{range}F_\ast)^\perp$ are components of $\dot{\beta}(t)$, and $\omega(t)$ is the angle between $\dot{\beta}(t)$ and V for all t.

Note: For all $U, V \in \Gamma(\text{range}F_\ast)^\perp$ we define

$$\nabla^N_U V = \mathcal{R}(\nabla^N_U V) + \nabla^{F\perp}_U V,$$

where $\mathcal{R}(\nabla^N_U V)$ and $\nabla^{F\perp}_U V$ denote $\text{range}F_\ast$ and $(\text{range}F_\ast)^\perp$ part of $\nabla^N_U V$, respectively. Therefore $(\text{range}F_\ast)^\perp$ is totally geodesic if and only if

$$\nabla^N_U V = \nabla^{F\perp}_U V.$$

Note that from now, throughout the paper, we are assuming $(\text{range}F_\ast)^\perp$ is totally geodesic.

Lemma 3.2 Let $F : (M, g_1) \rightarrow (N, g_2)$ be a Riemannian map between Riemannian manifolds and $\alpha : I \rightarrow M$ be a geodesic curve on M. Then the curve $\beta = F \circ \alpha$ is geodesic curve on N if and only if

$$\nabla_\ast F(X, X) + \nabla^{F\perp}_{X V} V + \nabla^{F\perp}_{V X} X = 0, \quad (3.1)$$

$$-S_{V X} F_\ast X + F_\ast(\nabla^{N\perp}_X X) + \nabla^{N F}_{V X} X = 0, \quad (3.2)$$

where $F_\ast X \in \Gamma(\text{range}F_\ast), V \in \Gamma(\text{range}F_\ast)^\perp$ are components of $\dot{\beta}(t)$ and ∇^N is Levi-Civita connection on N and $\nabla^{F\perp}$ is a linear connection on $(\text{range}F_\ast)^\perp$.

Proof Let $\alpha : I \rightarrow M$ be a geodesic on M with $U(t) = \nu \dot{\alpha}(t)$ and $X(t) = \mathcal{H} \dot{\alpha}(t)$. Let $\beta = F \circ \alpha$ be a geodesic on N with $F_\ast X \in \Gamma(\text{range}F_\ast)$ and $V \in \Gamma(\text{range}F_\ast)^\perp$ are components of $\dot{\beta}(t)$.

Now,

$$\nabla^{N F}_{\beta X + V} (F_\ast X + V),$$

which implies

$$\nabla^{N F}_{\beta X + V} (F_\ast X + V) = \nabla^{N F}_{\beta X} F_\ast X + \nabla^{N F}_{\beta V} F_\ast X + \nabla^{N F}_V F_\ast X + \nabla^{N F}_V V.$$
Using (2.4) in above equation, we get
\[\nabla^N_{\beta} \dot{\beta} = \nabla^F_{\beta} F_\alpha X \circ F + (-S_{\beta} F_\alpha X + \nabla^F_{\alpha} V) + \nabla^N_{\beta} F_\alpha X + \nabla^N_{\beta} V. \]

Using (2.2) in above equation, we get
\[\nabla^N_{\beta} \dot{\beta} = (\nabla F_\alpha)(X, X) + F_\alpha (\nabla^M_{\alpha} X) - S_{\alpha} F_\alpha X + \nabla^F_{\alpha} V + \nabla^N_{\alpha} F_\alpha X + \nabla^N_{\alpha} V. \]

Since \((\text{range}F_\alpha)^{\perp}\) is totally geodesic, (3.3) can be written as
\[\nabla^N_{\beta} \dot{\beta} = (\nabla F_\alpha)(X, X) + F_\alpha (\nabla^M_{\alpha} X) - S_{\alpha} F_\alpha X + \nabla^F_{\alpha} V + \nabla^N_{\alpha} F_\alpha X + \nabla^N_{\alpha} V. \]

Now \(\beta\) is geodesic on \(N\) if and only if \(\nabla^N_{\beta} \dot{\beta} = 0\). Then (3.4) implies \((\nabla F_\alpha)(X, X) + F_\alpha (\nabla^M_{\alpha} X) - S_{\alpha} F_\alpha X + \nabla^F_{\alpha} V + \nabla^N_{\alpha} F_\alpha X + \nabla^N_{\alpha} V = 0\), which completes the proof. \(\square\)

Theorem 3.3 Let \(F : (M, g_1) \to (N, g_2)\) be a Riemannian map between Riemannian manifolds such that \(\text{range}F_\alpha\) is connected and \(\alpha, \beta = F \circ \alpha\) are geodesic curves on \(M\) and \(N\), respectively. Then \(F\) is Clairaut Riemannian map with \(\dot{s} = e^g\) if and only if any one of the following conditions holds:

(i) \(S_{\alpha} F_\alpha X = -V(g) F_\alpha X\), where \(F_\alpha X \in \Gamma(\text{range}F_\alpha), V \in \Gamma(\text{range}F_\alpha)^{\perp}\) are components of \(\dot{\beta}(t)\).

(ii) \(F\) is umbilical map, and has \(H_2 = -\nabla^N g\), where \(g\) is a smooth function on \(N\) and \(H_2\) is the mean curvature vector field of \(\text{range}F_\alpha\).

Proof First we prove \(F\) is a Clairaut Riemannian map with \(\dot{s} = e^g\) if and only if for any geodesic \(\beta : I \to N\) with tangential components \(F_\alpha X \in \Gamma(\text{range}F_\alpha)\) and \(V \in \Gamma(\text{range}F_\alpha)^{\perp}\), \(t \in I\) the equation
\[g_{2\beta(t)}(F_\alpha X(t), F_\alpha X(t))g_{2}(\dot{\beta}(t), (\nabla^N g)) + g_{2}(S_{\alpha} F_\alpha X(t), F_\alpha X(t)) = 0, \tag{3.5} \]

is satisfied. To prove this, let \(\beta\) be a geodesic on \(N\) with \(\dot{\beta}(t) = F_\alpha X(t) + V(t)\) and let \(\omega(t) \in [0, \pi]\) denote the angle between \(\dot{\beta}(t)\) and \(V(t)\). If \(\dot{\beta}(t) \in \Gamma(\text{range}F_\alpha)^{\perp}\), then we have \(F_\alpha X(t_0) = 0\) (i.e. (3.5) is satisfied), which implies \(\sin \omega(t) = 0\) at point \(\beta(t_0)\). Thus for any function \(\dot{s} = e^g\) on \(M\), \((\dot{s}((\beta(t))\) \sin \omega(t) identically vanishes. Therefore, the statement holds trivially in this case. Now, we consider the case \(\sin \omega(t) \neq 0\), i.e. \(\dot{\beta}(t)\) does not belongs only in \(\Gamma(\text{range}F_\alpha)^{\perp}\). Since \(\beta\) is geodesic, its speed is constant \(b = ||\dot{\beta}||^2\) (say). Then
\[g_{2\beta(t)}(V, V) = b \cos^2 \omega(t), \tag{3.6} \]
\[g_{2\beta(t)}(F_\alpha X, F_\alpha X) = b \sin^2 \omega(t). \tag{3.7} \]

Now differentiating (3.7) along \(\beta\), we get
\[\frac{d}{dt} g_{2}(F_\alpha X, F_\alpha X) = 2b \sin \omega \cos \omega \frac{d\omega}{dt}. \tag{3.8} \]

On the other hand,
\[\frac{d}{dt} g_{2}(F_\alpha X, F_\alpha X) = 2g_{2}(\nabla^N_{\beta} F_\alpha X, F_\alpha X). \]

798
By putting $\dot{\gamma} = F_*X + V$ in above equation, we get
\[
\frac{d}{dt} g_2(F_*X, F_*X) = 2g_2(\nabla^N_{F_*X} F_*X + \nabla^N_{F_*X} F_*X, F_*X),
\]
which implies
\[
\frac{d}{dt} g_2(F_*X, F_*X) = 2g_2(\nabla^F_{F_*X} F_*X \circ F + \nabla^N_{F_*X} F_*X, F_*X). \tag{3.9}
\]
Using (2.2) and (3.2) in (3.9), we get
\[
\frac{d}{dt} g_2(F_*X, F_*X) = 2g_2((\nabla F)_*(X, X) + F_*(\nabla^M_{F_*X} X + \mathcal{S}_V F_*X - F_*(\nabla^M_{F_*X} X), F_*X). \tag{3.10}
\]
Using (2.3) in above equation, we get
\[
\frac{d}{dt} g_2(F_*X, F_*X) = 2g_2(\mathcal{S}_V F_*X, F_*X). \tag{3.10}
\]
Now from (3.8) and (3.10), we get
\[
g_2(\mathcal{S}_V F_*X, F_*X) = b\sin \omega \cos \omega \frac{d\omega}{dt}. \tag{3.11}
\]
Moreover, F is a Clairaut Riemannian map with $\tilde{s} = e^g$ if and only if $\frac{d}{dt}(e^{g \circ \beta} \sin \omega) = 0$, that is, $e^{g \circ \beta} \sin \omega \frac{d(e^{g \circ \beta})}{dt} + e^{g \circ \beta} \cos \omega \frac{d\omega}{dt} = 0$. By multiplying this with nonzero factor $b\sin \omega$ and using (3.7), we get
\[
g_2(F_*X, F_*X) \frac{d(g \circ \beta)}{dt} = -b\sin \omega \cos \omega \frac{d\omega}{dt}. \tag{3.12}
\]
Now from (3.11) and (3.12), we get
\[
g_2(\mathcal{S}_V F_*X, F_*X) = -g_2(F_*X, F_*X) \frac{d(g \circ \beta)}{dt},
\]
which means
\[
g_2(\mathcal{S}_V F_*X, F_*X) = -g_2(F_*X, F_*X) g_2(\nabla^N g, \dot{\beta}). \tag{3.13}
\]
Indeed assuming (3.5) and considering any geodesic β on N with initial tangent vector which belongs in $\Gamma(range F_*)$, then by using $V(t_0) = 0$ in (3.13), we get g is constant on $range F_*$ and since $range F_*$ is connected, $\nabla^N g \in \Gamma(range F_*)^+$. Then by (3.13), we get
\[
g_2(\mathcal{S}_V F_*X, F_*X) = -g_2(F_*X, F_*X) g_2(\nabla^N g, V). \tag{3.14}
\]
Thus $\mathcal{S}_V F_*X = -V(g)F_*X$, where $V(g)$ is a smooth function on N, which implies the proof of (i). Now, by using (2.5) in (3.14), we get
\[
g_2(V, (\nabla F_*)(X, X)) = -g_2(F_*X, F_*X) g_2(\nabla^N g, V), \tag{3.15}
\]
for $F_*X \in \Gamma(\text{range}F_*)$ and $V \in \Gamma(\text{range}F_*)^\perp$. Now using (2.2) in (3.15), we get
\[g_2(\nabla_X^NF_*X) = -g_2(\nabla^Ng)g_2(F_*X,F_*X). \]
Thus by comparing, we get
\[\nabla_X^NF_*X = -(\nabla^Ng)g_2(F_*X,F_*X). \tag{3.16} \]
Taking trace of (3.16), we get
\[\sum_{j=r+1}^m \nabla_{X_j}^NF_*X_j = -(\nabla^Ng)(m-r), \tag{3.17} \]
where $\{X_{r+1},X_{r+2},...,X_m\}$ and $\{F_*X_{r+1},F_*X_{r+2},...,F_*X_m\}$ are orthonormal bases of $(\ker F_*)^\perp$ and $\text{range}F_*$, respectively.
Moreover, the mean curvature vector field of $\text{range}F_*$ is defined by (21), page 199
\[H_2 = \frac{1}{m-r} \sum_{j=r+1}^m \nabla_{X_j}^NF_*X_j, \tag{3.18} \]
where $\{X_j\}_{r+1 \leq j \leq m}$ is an orthonormal basis of $(\ker F_*)^\perp$. Then from (3.17) and (3.18), we get
\[H_2 = -\nabla^Ng. \tag{3.19} \]
Also, by (3.15), we get
\[(\nabla F_*)(X,X) = -g_2(F_*X,F_*X)(\nabla^Ng). \tag{3.20} \]
Since F is Riemannian map, using (2.1) in (3.20), we get
\[(\nabla F_*)(X,X) = -g_1(X,X)(\nabla^Ng). \tag{3.21} \]
From (3.19) and (3.21), we get
\[(\nabla F_*)(X,X) = g_1(X,X)H_2. \]
Thus by Lemma 2.2 F is umbilical map, which completes the proof.

Remark 3.4 In [25], Sahin considered geodesic curve on the total manifold of a Riemannian map F, then by using Clairaut relation fibers of F are totally umbilical. On the other hand, in Definition 3.1, we considered geodesic curve on the base manifold of F, then by using Clairaut’s relation F becomes totally umbilical.

Theorem 3.5 Let $F : (M^m,g_1) \to (N^n,g_2)$ be a Clairaut Riemannian map with $\tilde{s} = e^g$ between Riemannian manifolds such that $\ker F_*$ is minimal. Then F is harmonic if and only if g is constant function on N.

Proof Since $H = 0$, then by Lemma 2.1 F is harmonic if and only if $H_2 = 0$ if and only if $\nabla^Ng = 0$, which completes the proof.

Theorem 3.6 Let $F : (M^m,g_1) \to (N^n,g_2)$ be a Clairaut Riemannian map with $\tilde{s} = e^g$ between Riemannian manifolds. Then $N = N_{(\text{range}F_*)^\perp} \times_f N_{\text{range}F_*}$ is a twisted product manifold.
Then, we get
\[\nabla^X F_Y = g_1(X, Y)H_2 \]
for \(X, Y \in \Gamma(\ker F_*) \), which implies \(\text{range} F_* \) is totally umbilical. Then proof follows by [19].

Proof By (3.20), (3.21) and Theorem 3.3, we have \(\nabla^X F_Y = g_1(X, Y)H_2 \) for \(X, Y \in \Gamma(\ker F_*) \), which implies \(\text{range} F_* \) is totally umbilical. Then proof follows by [19].

Example 3.7 Let \(M = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \neq 0, x_2 \neq 0\} \) be a Riemannian manifold with Riemannian metric \(g_1 = e^{2x_2}dx_1^2 + dx_2^2 \) on \(M \). Let \(N = \{(y_1, y_2) \in \mathbb{R}^2\} \) be a Riemannian manifold with Riemannian metric \(g_2 = e^{2x_2}dy_1^2 + dy_2^2 \) on \(N \). Consider a map \(F : (M, g_1) \to (N, g_2) \) defined by

\[F(x_1, x_2) = (x_1, 0). \]

Then, we get
\[\ker F_* = \text{span}\{U = e_2\} \] and \(\text{range} F_* = \text{span}\{X = e_1\}, \]
where \(\{e_1 = e^{-x_2} \frac{\partial}{\partial x_2}, e_2 = \frac{\partial}{\partial x_1}\} \) and \(\{e'_1 = e^{-x_2} \frac{\partial}{\partial y_2}, e'_2 = \frac{\partial}{\partial y_1}\} \) are bases on \(T_pM \) and \(T_{F(p)}N \), respectively, for all \(p \in M \). By easy computations, we see that \(F_*(X) = e'_1 \) and \(g_1(X, X) = g_2(F_*X, F_*X) \) for \(X \in \Gamma(\ker F_*) \). Thus \(F \) is Riemannian map with range \(\text{range} F_* \). By easy computations, we see that \(g_2(X, F_*X) = 1 \)
and \(g_2(F_*X, F_*X) = 1 \).

Now to show \(F \) is Clairaut Riemannian map we will verify Theorem 3.3, for this we will verify (3.14). Since \(V \) and \((\nabla F_*)(X, X) \in \Gamma(\text{range} F_*) \), here we can write \(V = ae'_2 \) and \((\nabla F_*)(X, X) = be'_2 \) for some \(a, b \in \mathbb{R} \).

Then we get
\[g_2(V, (\nabla F_*)(X, X)) = g_2(ae'_2, be'_2) = ab, \]
and
\[g_2(F_*X, F_*X) = g_2(e'_1, e'_1) = 1. \]

Since \(\nabla^N g = \sum_{i,j=1}^{2} \frac{\partial^2 g}{\partial y_i \partial y_j} \frac{\partial}{\partial y_i} \). Therefore for the function \(g = -by_2 \)

\[g_2(\nabla^N g, V) = -ab. \]

Thus by using (2.5), (3.22), (3.23) and (3.24) we see that (3.14) holds. Thus \(F \) is a Clairaut Riemannian map.

4. Clairaut Riemannian map from Riemannian manifold to Ricci soliton

In this section, we study Clairaut Riemannian map \(F : (M, g_1) \to (N, g_2) \) from a Riemannian manifold to a Ricci soliton and give some characterizations.

Lemma 4.1 [32] Let \(F : (M^m, g_1) \to (N^n, g_2) \) be a Riemannian map between Riemannian manifolds. Then the Ricci tensor on \((N, g_2) \) given by

\[
\text{Ric}(F_*X, F_*Y) = \text{Ric}^{\text{range} F_*}(F_*X, F_*Y) - \sum_{k=1}^{m} \left\{ g_2(S_{F_*X} F_*X, F_*X) - g_2(\nabla^N_{e_k} S_{F_*X} F_*X, F_*X) + g_2(\nabla^N_{e_k} F_*X, S_{F_*X} F_*X) + g_2(\nabla^N_{e_k} F_*X, S_{F_*X} F_*X)\right\},
\]

\[
\text{Ric}(V, W) = \text{Ric}^{\text{range} F_*}(V, W) - \sum_{j=r+1}^{m} \left\{ g_2(S_{F_*X} F_*X, F_*X) + g_2(S_{F_*X} F_*X, S_{F_*X} F_*X) - \nabla^N_V (g_2(S_{F_*X} F_*X, F_*X)) + 2g_2(S_{F_*X} F_*X, \nabla^N_F X, F_*X)\right\},
\]

801
\[
Ric(F, X, V) = \sum_{j=r+1}^{m} \left\{ g_2((\tilde{\nabla}_X S)\nu F, X_j, X_j) - g_2((\tilde{\nabla}_X S)\nu F, X, X_j) \right\} - \sum_{k=1}^{n_1} g_2(R^F_{\perp}(F, X, e_k)V, e_k), \tag{4.3}
\]

for \(X, Y \in \Gamma(\ker F)^\perp\), \(V, W \in \Gamma(\text{range} F)^\perp\) and \(F, X, F, Y \in \Gamma(\text{range} F_{\ast})\), where \(\{F, X_j\}_{r+1 \leq j \leq m}\) and \(\{e_k\}_{1 \leq k \leq n_1}\) are orthonormal bases of \(\text{range} F_{\ast}\) and \(\text{range} F_{\ast}^\perp\), respectively.

Theorem 4.2 Let \(F : (M^m, g_1) \to (N^n, g_2)\) be a Clairaut Riemannian map with \(\tilde{s} = e^g\) between Riemannian manifolds. Then the Ricci tensor on \((N, g_2)\) given by

\[
Ric(F, X, F, Y) = Ric^{\text{range} F_{\ast}}(F, X, F, Y) - \sum_{k=1}^{n_1} (e_k(g))^2 g_2(F, X, F, Y) + \sum_{k=1}^{n_1} g_2(\nabla_{e_k} e_k, \nabla N g) g_2(F, X, F, Y) - \sum_{k=1}^{n_1} (\nabla^N e_k(g)) g_2(F, X, F, Y),
\]

\[
Ric(V, W) = Ric^{\text{range} F_{\ast}^\perp}(V, W) + (m - r) g_2(\nabla^N g, \nabla F^\perp_{\nu} W) - (m - r) V(g) W(g) - (m - r) \nabla^N W(g),
\]

\[
Ric(F, X, V) = \sum_{j=r+1}^{m} g_2((\tilde{\nabla}_X S)\nu F, X_j, X_j) - \sum_{j=r+1}^{m} g_2((\tilde{\nabla}_X S)\nu F, X, X_j) - \sum_{k=1}^{n_1} g_2(R^F_{\perp}(F, X, e_k)V, e_k),
\]

for \(X, Y \in \Gamma(\ker F)^\perp\), \(V, W \in \Gamma(\text{range} F)^\perp\) and \(F, X, F, Y \in \Gamma(\text{range} F_{\ast})\), where \(\{F, X_j\}_{r+1 \leq j \leq m}\) and \(\{e_k\}_{1 \leq k \leq n_1}\) are orthonormal bases of \(\text{range} F_{\ast}\) and \(\text{range} F_{\ast}^\perp\), respectively.

Proof Using Theorem 3.3 and (3.14) in (4.1), we get

\[
Ric(F, X, F, Y) = Ric^{\text{range} F_{\ast}}(F, X, F, Y) - \sum_{k=1}^{n_1} (e_k(g))^2 g_2(F, X, F, Y) + \sum_{k=1}^{n_1} g_2(\nabla^N e_k, \nabla^N g) g_2(F, X, F, Y) - \sum_{k=1}^{n_1} g_2(\nabla^N F e_k, F, Y) + \sum_{k=1}^{n_1} g_2(\nabla^N F, e_k(g) F, Y),
\]

which implies (4.4). Also using Theorem 3.3 and (3.14) in (4.2), we get

\[
Ric(V, W) = Ric^{\text{range} F_{\ast}^\perp}(V, W) + \sum_{j=r+1}^{m} g_2(\nabla^N_{\nu} W, \nabla^N g) g_2(F, X_j, F, X_j) \sum_{j=r+1}^{m} g_2(V(g) F, X_j, W(g) F, X_j) - \sum_{j=r+1}^{m} \nabla^N g(2 g_2(W(g) F, X_j, \nabla^N F, X_j) + 2 \sum_{j=r+1}^{m} g_2(W(g) F, X_j, \nabla^N F, X_j),
\]

which implies (4.5). Also the proof of (4.3) and (4.6) is same. \(\square\)

Theorem 4.3 Let \((N, g_2, H_2, \lambda)\) be a Ricci soliton with the potential vector field \(H_2 \in \Gamma(\text{range} F_{\ast})^\perp\) and \(F : (M, g_1) \to (N, g_2)\) be a Clairaut Riemannian map with \(\tilde{s} = e^g\) between Riemannian manifolds. Then

\[
s^{\text{range} F_{\ast}} = -\lambda (m - r) + (m - r) \Delta g - (m - r)(m - r - 2)\|\nabla^N g\|^2,
\]

where \(s^{\text{range} F_{\ast}}\) is the scalar curvature of \(\text{range} F_{\ast}\) and \((m - r) = \dim(\text{range} F_{\ast})\).
Proof Since \((N, g_2, H_2, \lambda)\) admit Ricci soliton with the potential vector field \(H_2 \in \Gamma(\text{range} F_2)^{\perp}\) then, we have
\[
\frac{1}{2}(L_{H_2} g_2)(F_2 X, F_2 Y) + \text{Ric}(F_2 X, F_2 Y) + \lambda g_2(F_2 X, F_2 Y) = 0,
\]
for \(F_2 X, F_2 Y \in \Gamma(\text{range} F_2)\), which implies
\[
\frac{1}{2}\{g_2(\nabla^N_{F_2 X} H_2, F_2 Y) + g_2(\nabla^N_{F_2 Y} H_2, F_2 X)\} + \text{Ric}(F_2 X, F_2 Y) + \lambda g_2(F_2 X, F_2 Y) = 0.
\]
Using (2.4) in above equation, we get
\[
\frac{1}{2}\{g_2(\mathcal{S}_{H_2} F_2 X, F_2 Y) + g_2(\mathcal{S}_{H_2} F_2 Y, F_2 X)\} + \text{Ric}(F_2 X, F_2 Y) + \lambda g_2(F_2 X, F_2 Y) = 0.
\]
Since \(\mathcal{S}_{H_2}\) is self-adjoint, above equation can be written as
\[
-g_2(\mathcal{S}_{H_2} F_2 X, F_2 Y) + \text{Ric}(F_2 X, F_2 Y) + \lambda g_2(F_2 X, F_2 Y) = 0.
\]
Using (3.14), (3.19) and (4.4) in (4.7), we get
\[
-g_2(\nabla^N g, \nabla^N g)g_2(F_2 X, F_2 Y) + \text{Ric}^{\text{range} F_2}(F_2 X, F_2 Y) - \sum_{k=1}^{n_1} (e_k(g))^2 g_2(X, F_2 Y)
\]
\[
+ \sum_{k=1}^{n_1} g_2(\nabla^N_{\perp e_k} e_k, \nabla^N g)g_2(F_2 X, F_2 Y) - \sum_{k=1}^{n_1} \nabla^N_{\perp e_k} e_k(g)g_2(F_2 X, F_2 Y) + \lambda g_2(F_2 X, F_2 Y) = 0,
\]
where \(\{e_k\}_{1 \leq k \leq n_1}\) is an orthonormal basis of \((\text{range} F_2)\). This implies
\[
-2\|\nabla^N g\|^2 g_2(F_2 X, F_2 Y) + \text{Ric}^{\text{range} F_2}(F_2 X, F_2 Y)
\]
\[
- \sum_{k=1}^{n_1} g_2(\nabla^N_{\perp e_k} e_k, \nabla^N g)g_2(F_2 X, F_2 Y) + \lambda g_2(F_2 X, F_2 Y) = 0.
\]
Taking trace of (4.8) for \(\text{range} F_2\), we get
\[
s^{\text{range} F_2} - 2(m - r)\|\nabla^N g\|^2 - (m - r) \sum_{k=1}^{n_1} g_2(\nabla^N_{\perp e_k} e_k, e_k) + \lambda(m - r) = 0.
\]
Using definition of Hessian form of \(g\) (i.e. \(H^g(X_1, Y_1) = g_2(\nabla^N_{X_1} \nabla^N g, Y_1)\) for all \(X_1, Y_1 \in \Gamma(T N)\)) from [8] in above equation, we get
\[
s^{\text{range} F_2} + (m - r)\{-2\|\nabla^N g\|^2 - \sum_{k=1}^{n_1} H^g(e_k, e_k) + \lambda\} = 0.
\]
Since we know that
\[
\Delta g = \sum_{j=r+1}^{m} H^g(F_2 X_j, F_2 X_j) + \sum_{k=1}^{n_1} H^g(e_k, e_k),
\]
where \(\{F_2 X_j\}_{r+1 \leq j \leq m}\) and \(\{e_k\}_{1 \leq k \leq n_1}\) are orthonormal bases of \(\text{range} F_2\) and \((\text{range} F_2)^{\perp}\), respectively. Then by using definition of Hessian form of \(g\) in (4.10), we get
\[
\Delta g = \sum_{j=r+1}^{m} g_2(\nabla^N_{F_2 X_j} \nabla^N g, F_2 X_j) + \sum_{k=1}^{n_1} H^g(e_k, e_k).
\]
Using (2.4) in (4.11), we get
\[
\Delta g = - \sum_{j=r+1}^{m} g_2(\mathcal{S}_v \nabla g X_j, F_* X_j) + \sum_{k=1}^{n_1} H^g(e_k, e_k).
\]
Using Theorem 3.3 in above equation, we get
\[
\Delta g - (m - r)\|\nabla^N g\|^2 = \sum_{k=1}^{n_1} H^g(e_k, e_k).
\] (4.12)

Thus (4.9) and (4.12) implies the proof. \(\square\)

Theorem 4.4 Let \((N, g_2, H_2, \lambda)\) be a Ricci soliton with the potential vector field \(H_2 \in \Gamma(\text{range } F_* \uparrow)\) and \(F : (M^m, g_1) \to (N^n, g_2)\) be a Clairaut Riemannian map with \(\bar{s} = \frac{e^3}{1}\) between Riemannian manifolds. Then
\[
s(\text{range } F_* \uparrow) = -\lambda n_1 + (m - r + 1)\Delta g - (m - r)^2\|\nabla^N g\|^2,
\]
where \(s(\text{range } F_* \uparrow)\) denotes the scalar curvature of \((\text{range } F_* \uparrow)\) and \((m - r) = \text{dim}(\text{range } F_*), n_1 = \text{dim}(\text{range } F_* \uparrow)\).

Proof Since \((N, g_2, H_2, \lambda)\) admit Ricci soliton with the potential vector field \(H_2 \in \Gamma(\text{range } F_* \uparrow)\) then, we have
\[
\frac{1}{2}(L_{H_2} g_2)(V, W) + \text{Ric}(V, W) + \lambda g_2(V, W) = 0,
\]
for \(V, W \in \Gamma(\text{range } F_* \uparrow),\) which implies
\[
\frac{1}{2}\{g_2(\nabla^N g H, W) + g_2(\nabla^N g H, V)\} + \text{Ric}(V, W) + \lambda g_2(V, W) = 0.
\]
Putting \(H_2 = -\nabla^N g\) in above equation, we get
\[
\frac{1}{2}\{g_2(\nabla^N g, W) + g_2(\nabla^N g, V)\} + \text{Ric}(V, W) + \lambda g_2(V, W) = 0. \tag{4.13}
\]
Using definition of Hessian form of \(g\) and (4.5) in (4.13), we get
\[
-H^g(V, W) + \text{Ric}(\text{range } F_* \uparrow)(V, W) + (m - r)g_2(\nabla^N g, \nabla^N g \nabla^N g (V)) - (m - r)\|\nabla^N g\|^2 g_2(V, W) + \lambda g_2(V, W) = 0. \tag{4.14}
\]
Taking trace of (4.14) for \((\text{range } F_* \uparrow)\), we get
\[
-\sum_{k=1}^{n_1} H^g(e_k, e_k) + s(\text{range } F_* \uparrow) + \sum_{k=1}^{n_1} (m - r)g_2(\nabla^N g, \nabla^N g e_k) - (m - r)\sum_{k=1}^{n_1} (e_k(g))^2 - (m - r)\sum_{k=1}^{n_1} \nabla^N g e_k(g) + \lambda n_1 = 0,
\]
where \(\{e_k\}_{1 \leq k \leq n_1}\) is an orthonormal basis of \((\text{range } F_* \uparrow)\), which implies
\[
s(\text{range } F_* \uparrow) + \lambda n_1 - (m - r)\sum_{k=1}^{n_1} (e_k(g))^2 - (m - r + 1)\sum_{k=1}^{n_1} H^g(e_k, e_k) = 0.
\]
Using (4.12) and \((e_k(g))^2 = g_2(\nabla^N g, e_k)^2 = g_2(\nabla^N g, \nabla^N g)\) in above equation, we get the proof. \(\square\)
Remark 4.5 Since $\text{range}F_*$ and $(\text{range}F_*)^\perp$ are subbundles of TN, they define distributions on N. Then for $F, X, Y \in \Gamma(\text{range}F_*)$, we have

$$[F_*X, F_*Y] = \nabla^N_{F_*X}F_*Y - \nabla^N_{F_*Y}F_*X$$

$$= \nabla^N_XF_*Y \circ F - \nabla^N_YF_*X \circ F.$$

Using (2.2) in above equation, we get

$$[F_*X, F_*Y] = F_*(\nabla_XY) - F_*(\nabla_YX) = F_*(\nabla_XY - \nabla_YX) \in \Gamma(\text{range}F_*).$$

Thus $\text{range}F_*$ is an integrable distribution. Then for any point $F(p) \in N$ there exists maximal integral manifold or a leaf of $\text{range}F_*$ containing $F(p)$.

Theorem 4.6 Let (N, g_2, F_*Z, λ) be a Ricci soliton with the potential vector field $F_*Z \in \Gamma(\text{range}F_*)$ and $F : (M, g_1) \to (N, g_2)$ be a Clairaut Riemannian map with $\tilde{s} = e^g$ between Riemannian manifolds. Then a leaf of $\text{range}F_*$ is an almost Ricci soliton.

Proof Since (N, g_2, F_*Z, λ) admit Ricci soliton with the potential vector field $F_*Z \in \Gamma(\text{range}F_*)$ then, we have

$$\frac{1}{2}(L_{F_*Z}g_2)(F_*X, F_*Y) + \text{Ric}(F_*X, F_*Y) + \lambda g_2(F_*X, F_*Y) = 0,$$

for $F_*X, F_*Y, F_*Z \in \Gamma(\text{range}F_*)$. Using (4.4) in (4.15), we get

$$\frac{1}{2}(L_{F_*Z}g_2)(F_*X, F_*Y) + \text{Ric}^{\text{range}F_*}(F_*X, F_*Y) - \sum_{k=1}^{n_1}(e_k(g))^2g_2(F_*X, F_*Y)$$

$$+ \sum_{k=1}^{n_1}g_2(\nabla_{e_k}e_k, \nabla^N g)g_2(F_*X, F_*Y) - \sum_{k=1}^{n_1}\nabla^N_{e_k}e_k(g)g_2(F_*X, F_*Y) + \lambda g_2(F_*X, F_*Y) = 0,$$

where $\{e_k\}_{1 \leq k \leq n_1}$ is an orthonormal basis of $(\text{range}F_*)^\perp$, which implies

$$\frac{1}{2}(L_{F_*Z}g_2)(F_*X, F_*Y) + \text{Ric}^{\text{range}F_*}(F_*X, F_*Y) + \tilde{\lambda} g_2(F_*X, F_*Y) = 0,$$

where $\tilde{\lambda} = -\sum_{k=1}^{n_1}(e_k(g))^2 + \sum_{k=1}^{n_1}g_2(\nabla_{e_k}e_k, \nabla^N g) - \sum_{k=1}^{n_1}e_k(e_k(g)) + \lambda$ is a smooth function on N. Thus a leaf of $\text{range}F_*$ is an almost Ricci soliton, which completes the proof.

Theorem 4.7 Let (N, g_2, V, λ) be a Ricci soliton with the potential vector field $V \in \Gamma(\text{range}F_*)^\perp$ and $F : (M, g_1) \to (N, g_2)$ be a Clairaut Riemannian map with $\tilde{s} = e^g$ between Riemannian manifolds. Then a leaf of $\text{range}F_*$ is an Einstein.

Proof Since (N, g_2, F_*Z, λ) admit Ricci soliton with the potential vector field $F_*Z \in \Gamma(\text{range}F_*)$ then, we have

$$\frac{1}{2}(L_Vg_2)(F_*X, F_*Y) + \text{Ric}(F_*X, F_*Y) + \lambda g_2(F_*X, F_*Y) = 0,$$

805
for $F, X, Y \in \Gamma(\text{range} F_*)$, which implies

$$\frac{1}{2} \left\{ g_2(\nabla^N_{F_*} V, F_* Y) + g_2(\nabla^N_{F_*} V, F_* X) \right\} + \text{Ric}(F_* X, F_* Y) + \lambda g_2(F_* X, F_* Y) = 0.$$

Using (2.4) in above equation, we get

$$\frac{1}{2} \left\{ g_2(-S_\beta F_* X, F_* Y) + g_2(-S_\beta F_* Y, F_* X) \right\} + \text{Ric}(F_* X, F_* Y) + \lambda g_2(F_* X, F_* Y) = 0.$$

Since S_β is self-adjoint, above equation can be written as

$$-g_2(S_\beta F_* X, F_* Y) + \text{Ric}(F_* X, F_* Y) + \lambda g_2(F_* X, F_* Y) = 0.$$

(4.16)

Since F is Clairaut Riemannian map, using $S_\beta F_* X = -V(g)F_* X$ and (4.4) in (4.16), we get

$$V(g)g_2(F_* X, F_* Y) + \text{Ric}^{\text{range} F_*}(F_* X, F_* Y) - \sum_{k=1}^{n_1} (e_k(g))^2 g_2(F_* X, F_* Y)$$

$$+ \sum_{k=1}^{n_1} g_2(\nabla^N_{e_k} e_k, \nabla^N g) g_2(F_* X, F_* Y) - \sum_{k=1}^{n_1} \nabla^N_{e_k} e_k(g) g_2(F_* X, F_* Y) + \lambda g_2(F_* X, F_* Y) = 0,$$

where $\{e_k\}_{1 \leq k \leq n_1}$ is an orthonormal basis of $(\text{range} F_*)^\perp$, which implies

$$\text{Ric}^{\text{range} F_*}(F_* X, F_* Y) = \lambda g_2(F_* X, F_* Y),$$

where $\lambda = \sum_{k=1}^{n_1} (e_k(g))^2 - \sum_{k=1}^{n_1} g_2(\nabla^N_{e_k} e_k, \nabla^N g) + \sum_{k=1}^{n_1} e_k(e_k(g)) - \lambda - V(g)$ is a smooth function on N. Thus a leaf of $\text{range} F_*$ is an Einstein, which completes the proof. \qed

Theorem 4.8 Let β be a geodesic curve on N and (N, g_2, β, λ) be a Ricci soliton with the potential vector field $\beta \in \Gamma(TN)$. Let $F : (M, g_1) \to (N, g_2)$ be a Clairaut Riemannian map with $\beta = e^g$ from a Riemannian manifold M to an Einstein manifold N. Then the following statements are true:

(i) β is a conformal vector field on $\text{range} F_*$.

(ii) β is Killing vector field on $(\text{range} F_*)^\perp$ if and only if $V(g)W(g) = -H^g(V, W)$ for all $V, W \in \Gamma(\text{range} F_*)^\perp$.

Proof Since (N, g_2, β, λ) is a Ricci soliton then, we have

$$\frac{1}{2} \left(L_\beta g_2 \right)(F_* X, F_* Y) + \text{Ric}(F_* X, F_* Y) + \lambda g_2(F_* X, F_* Y) = 0,$$

(4.17)

for $F_* X, F_* Y \in \Gamma(\text{range} F_*)$. Using (4.4) in (4.17), we get

$$\frac{1}{2} \left(L_\beta g_2 \right)(F_* X, F_* Y) + \text{Ric}^{\text{range} F_*}(F_* X, F_* Y) - \sum_{k=1}^{n_1} (e_k(g))^2 g_2(F_* X, F_* Y)$$

$$+ \sum_{k=1}^{n_1} g_2(\nabla^N_{e_k} e_k, \nabla^N g) g_2(F_* X, F_* Y) - \sum_{k=1}^{n_1} \nabla^N_{e_k} e_k(g) g_2(F_* X, F_* Y) + \lambda g_2(F_* X, F_* Y) = 0,$$

(4.18)
where \(\{e_k\}_{1 \leq k \leq n_1} \) is an orthonormal basis of \((\text{range}_F)^\perp\). Since \(N \) is Einstein, putting \(\text{Ric}^{\text{range}_F}(F_* X, F_* Y) = -\lambda g_2(F_* X, F_* Y) \) in (4.18), we get
\[
\frac{1}{2}(L_{\beta}g_2)(F_* X, F_* Y) + \mu g_2(F_* X, F_* Y) = 0,
\]
where \(\mu = -\sum_{k=1}^{n_1} (e_k(g))^2 + \sum_{k=1}^{n_1} g_2(\nabla_{e_k} F, \nabla_N g) - \sum_{k=1}^{n_1} e_k(e_k(g)) \) is a smooth function on \(N \). Thus \(\beta \) is a conformal vector field on \(\text{range}_F \). On the other hand, since \((N, g_2, \hat{\beta}, \lambda)\) is a Ricci soliton then, we have
\[
\frac{1}{2}(L_{\beta}g_2)(V, W) + \text{Ric}(V, W) + \lambda g_2(V, W) = 0, \tag{4.19}
\]
for any \(V, W \in \Gamma(\text{range}_F)^\perp \). Using (4.5) in (4.19), we get
\[
\frac{1}{2}(L_{\beta}g_2)(V, W) + \text{Ric}^{(\text{range}_F)^\perp}(V, W) + (m - r)g_2(\nabla^N g, \nabla^F_{\beta} W) - (m - r)V(g)W(g) - (m - r)\nabla^N_{V}W(g) + \lambda g_2(V, W) = 0. \tag{4.20}
\]
Since \(N \) is Einstein, putting \(\text{Ric}^{(\text{range}_F)^\perp}(V, W) = -\lambda g_2(V, W) \) in (4.20), we get
\[
\frac{1}{2}(L_{\beta}g_2)(V, W) + \{g_2(\nabla^N_{V}g, \nabla^F_{\beta} W) - V(g)W(g) - \nabla^N_{V}W(g)\}(m - r) = 0.
\]
Then by using \(\nabla^N_{V}W(g) = \nabla^F_{\beta}(g_2(W, \nabla^N g)) = g_2(\nabla^F_{\beta} W, \nabla^N g) + H^g(V, W) = g_2(\nabla^F_{\beta} W, \nabla^N g) + H^g(V, W) \) in above equation, we get \(\frac{1}{2}(L_{\beta}g_2)(V, W) = 0 \) if and only if \(V(g)W(g) = -H^g(V, W) \). This completes the proof.

Lemma 4.9 Let \((N, g_2, X_1, \lambda)\) be a Ricci soliton with the potential vector field \(X_1 \in \Gamma(TN) \) and \(F : (M^m, g_1) \to (N^n, g_2) \) be a Clairaut Riemannian map with \(s = e^g \) between Riemannian manifolds. Then
\[
s = -\lambda n, \tag{4.21}
\]
where \(s \) denotes the scalar curvature of \(N \).

Proof The proof is similar to remark 9 of [30]; therefore, we are omitting it.

Theorem 4.10 Let \((N, g_2, -H_2, \lambda)\) be a Ricci soliton with the potential vector field \(-H_2 \in \Gamma(\text{range}_F)^\perp \) and \(F : (M, g_1) \to (N, g_2) \) be a Clairaut Riemannian map with \(s = e^g \) between Riemannian manifolds. Then following statements are true:

(i) \(N \) admits a gradient Ricci soliton.

(ii) The mean curvature vector field of \(\text{range}_F \) is constant.

Proof By similar proof as theorem 10 of [30], we get
\[
\Delta g = 0.
\]
Hence \(\nabla^N(\nabla^N g) = 0 \), i.e. \(\nabla^N H_2 = 0 \), which means \(H_2 \) is constant. This completes the proof.

807
Example 4.11 The map $F : M \to N$ given in Example 3.7 is Clairaut Riemannian map. Now, we will show that N admits a Ricci soliton, i.e.

$$\frac{1}{2}(L_{Z_1}g_2)(X_1, Y_1) + \text{Ric}(X_1, Y_1) + \lambda g_2(X_1, Y_1) = 0,$$ \hfill (4.22)

for any $X_1, Y_1, Z_1 \in \Gamma(TN)$. By similar computations as example 6.1 of [32], we get

$$\frac{1}{2}(L_{Z_1}g_2)(X_1, Y_1) = 0,$$ \hfill (4.23)

and

$$g_2(X_1, Y_1) = (a_1a_3 + a_2a_4),$$ \hfill (4.24)

and

$$\text{Ric}(X_1, Y_1) = a_1a_3\text{Ric}(e_1', e_1') + (a_1a_4 + a_2a_3)\text{Ric}(e_1', e_2') + a_2a_4\text{Ric}(e_2', e_2').$$ \hfill (4.25)

By (4.4), we get

$$\text{Ric}(e_1', e_1') = \text{Ric}^{\text{range } F_*}(e_1', e_1') - (g_2(\nabla^N g, e_2'))^2 + g_2(\nabla^{T\perp}_e e_2', \nabla^N g) - \nabla^{N}_{e_2'}(g_2(e_2', \nabla^N g)).$$

Since dimension of $\text{range } F_*$ is one, $\text{Ric}^{\text{range } F_*}(e_1', e_1') = 0$ and we have $\nabla^N g = -be_2'$ for some $b \in \mathbb{R}$. So

$$\text{Ric}(e_1', e_1') = -b^2,$$ \hfill (4.26)

By (4.5), we get

$$\text{Ric}(e_2', e_2') = \text{Ric}^{\text{range } F_*}(e_2', e_2') - (g_2(\nabla^N g, e_2'))^2 + g_2(\nabla^{T\perp}_e e_2', \nabla^N g) - \nabla^{N}_{e_2'}(g_2(e_2', \nabla^N g)).$$

Since dimension of $\text{range } F_* \perp$ is one, $\text{Ric}^{\text{range } F_*}(e_2', e_2') = 0$ and putting $\nabla^N g = -be_2'$ for some $b \in \mathbb{R}$, we get

$$\text{Ric}(e_2', e_2') = -b^2.$$ \hfill (4.27)

And by similar computation as example 6.1 of [32], we get

$$\text{Ric}(e_1', e_2') = 0.$$ \hfill (4.28)

Using (4.26), (4.27) and (4.28) in (4.25), we get

$$\text{Ric}(X_1, Y_1) = -(a_1a_3 + a_2a_4)b^2.$$ \hfill (4.29)

Now, using (4.23), (4.24) and (4.29) in (4.22), we obtain that metric g_2 admits Ricci soliton for

$$\lambda = b^2.$$

Since $b \in \mathbb{R}$, for some choices of b Ricci soliton (N, g_2) will be expanding or steady according to $\lambda > 0$ or $\lambda = 0$.

808
5. Clairaut antiinvariant Riemannian map from Riemannian manifold to Kähler manifold

In this section, we introduce Clairaut antiinvariant Riemannian map from a Riemannian manifold to a Kähler manifold and investigate the geometry with a nontrivial example.

Let \((N, g_2)\) be an almost Hermitian manifold \([33]\), then \(N\) admits a tensor \(J\) of type \((1, 1)\) on \(N\) such that \(J^2 = -I\) and

\[
g_2(JX_1, JY_1) = g_2(X_1, Y_1),
\]

for all \(X_1, Y_1 \in \Gamma(TN)\). An almost Hermitian manifold \(N\) is called Kähler manifold if

\[
(\nabla^N_X J) Y_1 = 0,
\]

for all \(X, Y_1 \in \Gamma(TN)\), where \(\nabla^N\) is the Levi-Civita connection on \(N\).

Definition 5.1 \([20]\) Let \(F : (M, g_1) \to (N, g_2)\) be a proper Riemannian map from a Riemannian manifold \(M\) to an almost Hermitian manifold \(N\) with almost complex structure \(J\). We say that \(F\) is an antiinvariant Riemannian map at \(p \in M\) if \(J(\text{range} F_p) \subset (\text{range} F_p)^\perp\). If \(F\) is an antiinvariant Riemannian map for every \(p \in M\) then \(F\) is called an antiinvariant Riemannian map.

In this case we denote the orthogonal subbundle to \(J(\text{range} F)\) in \((\text{range} F)^\perp\) by \(\mu\), i.e. \((\text{range} F)^\perp = J(\text{range} F) \oplus \mu\). For any \(V \in \Gamma(\text{range} F)^\perp\), we have

\[
JV = BV + CV,
\]

where \(BV \in \Gamma(\text{range} F)\) and \(CV \in \mu\). Note that if \(\mu = 0\) then \(F\) is called Lagrangian Riemannian map \([27]\).

Lemma 5.2 Let \(F : (M, g_1) \to (N, g_2, J)\) be an antiinvariant Riemannian map from a Riemannian manifold \(M\) to a Kähler manifold \(N\) and \(\alpha : I \to M\) be a geodesic curve on \(M\). Then the curve \(\beta = F \circ \alpha\) is geodesic on \(N\) if and only if

\[
-S_{JF_*X} F_* X - S_{CV} F_* X + \nabla^N_V BV + F_*(\nabla^M_X F_* BV) = 0,
\]

(5.3)

\[
(\nabla F_*)(X, *F_* BV) + \nabla^N_{F_* X} F_* X + \nabla^F_{F_* X} CV + \nabla^F_{F_* X} CV = 0,
\]

(5.4)

where \(F_* X, V \in \Gamma(\text{range} F)\), \(V \in \Gamma(\text{range} F)^\perp\) are components of \(\dot{\beta}(t)\) and \(*F_*\) is the adjoint map of \(F_*\), and \(\nabla^N\) is the Levi-Civita connection on \(N\), and \(\nabla^F\) is a linear connection on \((\text{range} F)^\perp\).

Proof Let \(\alpha : I \to M\) be a geodesic on \(M\) and let \(\beta = F \circ \alpha\) be a geodesic on \(N\) with \(F_* X \in \Gamma(\text{range} F)\) and \(V \in \Gamma(\text{range} F)^\perp\) are components of \(\dot{\beta}(t)\). Since \(N\) is Kähler manifold, \(\nabla^N_{\dot{\beta}} = -J \nabla^N_{\dot{\beta}} J \dot{\beta}\). Thus

\[
\nabla^N_{\dot{\beta}} = -J \nabla^N_{\dot{\beta}} J \dot{\beta} = -J \nabla^N_{F_* X + V} J(F_* X + V),
\]

which implies

\[
\nabla^N_{\dot{\beta}} = -J(\nabla^N_{F_* X} JF_* X + \nabla^N_{F_* X} JV + \nabla^N_{JF_* X} + \nabla^N_{JV}).
\]

(5.5)

Using (2.4) and (5.2) in (5.5), we get

\[
\nabla^N_{\dot{\beta}} = -J(-S_{JF_* X} F_* X - S_{CV} F_* X + \nabla^N_V BV + \nabla^N_{F_* X} BV + \nabla^F_{F_* X} JF_* X + \nabla^F_{F_* X} CV + \nabla^F_{F_* X} CV).
\]

(5.6)
Since ∇^N is Levi-Civita connection on N and $g_2(\nabla^N_BV,U) = 0$ for any $U \in \Gamma(\text{range}F_*)$, $\nabla^N_BV \in \Gamma(\text{range}F_*)$ and using (2.2), we get $\nabla^N_BV = \nabla^N_BV \circ F = (\nabla F_*)(X, F_*BV) + F_*(\nabla^M_F*F_*BV)$. Then by (5.6), we get
\[
\nabla^N_B\dot{\beta} = -J(-S_{\dot{F}_*F_*X} - \nabla^N_BV + \nabla^N_BV + (\nabla F_*)(X, F_*BV) + F_*(\nabla^M_F*F_*BV) + \nabla^F_LF_*X + \nabla^F_LF_*X + \nabla^F_LCV + \nabla^F_LCV).
\]

Now β is geodesic on N \iff $\nabla^N_B\dot{\beta} = 0$ \iff $-S_{\dot{F}_*F_*X} - \nabla^N_BV + \nabla^N_BV + (\nabla F_*)(X, F_*BV) + F_*(\nabla^M_F*F_*BV) + \nabla^F_LF_*X + \nabla^F_LF_*X + \nabla^F_LCV + \nabla^F_LCV = 0$, which completes the proof. \square

Definition 5.3 An antiinvariant Riemannian map from a Riemannian manifold to a Kähler manifold is called Clairaut antiinvariant Riemannian map if it satisfies the condition of Clairaut Riemannian map.

Theorem 5.4 Let $F : (M, g_1) \to (N, g_2, J)$ be an antiinvariant Riemannian map from a Riemannian manifold M to a Kähler manifold N and $\alpha, \beta = F \circ \alpha$ are geodesic curves on M and N, respectively. Then F is Clairaut antiinvariant Riemannian map with $\dot{s} = e^g$ if and only if $g_2(S_{\dot{F}_*F_*X} + \nabla^F_LF_*X, BV) - g_2((\nabla F_*)(X, F_*BV) + \nabla^F_LF_*X + \nabla^F_LF_*X, CV) - g_2(F_2F_*X, F_*X)\frac{d(g_2\beta)}{dt} = 0$, where g is a smooth function on N and $F_*X \in \Gamma(\text{range}F_*)$, $V \in \Gamma(\text{range}F_*)^\perp$ are components of $\dot{\alpha}(t)$.

Proof Let $\alpha : I \to M$ be a geodesic on M and let $F = F \circ \alpha$ be a geodesic on N with $F_*X \in \Gamma(\text{range}F_*)$ and $V \in \Gamma(\text{range}F_*)^\perp$ are components of $\dot{\beta}(t)$ and $\omega(t)$ denote the angle in $[0,\pi]$ between $\dot{\beta}$ and V. Assuming $b = ||\dot{\beta}(t)||^2$, then we get
\[
g_2\beta(t)(V, V) = bcos^2(\omega(t)), \quad (5.7)
\]
\[
g_2\beta(t)(F_*X, F_*X) = bsin^2(\omega(t)). \quad (5.8)
\]
Now differentiating (5.7) along β, we get
\[
\frac{d}{dt}g_2(V, V) = -2bsin(\omega(t))cos(\omega(t))\frac{d\omega}{dt}. \quad (5.9)
\]
On the other hand by (5.1), we get
\[
\frac{d}{dt}g_2(V, V) = \frac{d}{dt}g_2(JV, JV).
\]
Using (5.2) in above equation, we get
\[
\frac{d}{dt}g_2(V, V) = \frac{d}{dt}
\left(g_2(BV, BV) + g_2(CV, CV)\right),
\]
which implies
\[
\frac{d}{dt}g_2(V, V) = 2g_2(\nabla_B^{N*}BV, BV) + 2g_2(\nabla_B^{N*}CV, CV). \quad (5.10)
\]
Putting $\dot{\beta} = F_*X + V$ in (5.10), we get

$$\frac{d}{dt} g_2(V, V) = 2g_2(\nabla^N_X BV, BV) + 2g_2(\nabla^N_N X CV, CV) + 2g_2(\nabla^N_N BV, BV) + 2g_2(\nabla^N_N CV, CV).$$

Since $(\text{range} F_*)^\perp$ is totally geodesic, above equation can be written as

$$\frac{d}{dt} g_2(V, V) = 2g_2(\nabla^N_X BV \circ F, BV) + 2g_2(\nabla^N_N X CV, CV) + 2g_2(\nabla^N_N BV, BV) + 2g_2(\nabla^N_N CV, CV).$$

Using (2.2), (2.3) and (2.4) in (5.11), we get

$$\frac{d}{dt} g_2(V, V) = 2g_2(F_*(\nabla^M_X^* F_*)^\perp + \nabla^N_X BV, BV) + 2g_2(\nabla^N_N X CV + \nabla^N_N CV, CV).$$

Using (5.3) and (5.4) in (5.12), we get

$$\frac{d}{dt} g_2(V, V) = 2g_2(S_{F_*, X} F_*X + S_{CV} F_*X, BV) - 2g_2((\nabla F_*)(X, *F_*BV) + \nabla^N_X^* X V_1 + \nabla^N_N X CV).$$

Now from (5.9) and (5.13), we get

$$g_2(S_{F_*, X} F_*X + S_{CV} F_*X, BV) - 2g_2((\nabla F_*)(X, *F_*BV) + \nabla^N_X^* X V_1 + \nabla^N_N X CV) = -bsin\omega cos\omega \frac{d\omega}{dt}.\quad (5.14)$$

Moreover, F is a Clairaut Riemannian map with $\tilde{s} = e^{\beta}$ if and only if $\frac{d}{dt}(e^{\beta}s\sin \omega) = 0$, that is, $e^{\beta}s\sin \omega \frac{d(e^{\beta}s\sin \omega)}{dt} + e^{\beta}\cos \omega \frac{d\omega}{dt} = 0$. By multiplying this with nonzero factor $bsin\omega$ and using (5.8), we get

$$g_2(F_*X, F_*X) \frac{d(g \circ \beta)}{dt} = -bsin\omega cos\omega \frac{d\omega}{dt}.\quad (5.15)$$

Thus (5.14) and (5.15) complete the proof. \hfill \Box

Theorem 5.5 Let $F : (M^n, g_1) \to (N^n, g_2, J)$ be a Clairaut antiinvariant Riemannian map with $\tilde{s} = e^{\beta}$ from a Riemannian manifold M to a Kähler manifold N. Then at least one of the following statement is true:

(i) dim(range $F_*) = 1$,

(ii) g is constant on J(range F_*), where g is a smooth function on N.

Proof Since F is Clairaut Riemannian map with $\tilde{s} = e^{\beta}$ then using (2.2) in (3.21), we get

$$\nabla^N_X F_*Y - F_*(\nabla^M_X Y) = -g_1(X, Y) \nabla^N g,$$ \quad (5.16)

for $F_*Y \in \Gamma$(range F_*) and $X, Y \in \Gamma$(ker$F_*)^\perp$. Taking inner product of (5.16) with $JF_*Z \in \Gamma$(range $F_*)^\perp$, we get

$$g_2(\nabla^N_X F_*Y - F_*(\nabla^M_X Y), JF_*Z) = -g_1(X, Y) g_2(\nabla^N g, JF_*Z).$$ \quad (5.17)

Since ∇^F is pullback connection of the Levi-Civita connection ∇^N. Therefore ∇^F is also Levi-Civita connection. Then using metric compatibility condition in (5.17), we get

$$-g_2(\nabla^F_X JF_*Z, F_*Y) = -g_1(X, Y)g_2(\nabla^F g, JF_*Z),$$

811
which implies
\[g_2(J\nabla^N_X F_* Z, F_* Y) = g_1(X, Y)g_2(\nabla^N g, JF_* Z). \] (5.18)

Using (5.1) in (5.18), we get
\[-g_2(\nabla^N_X F_* Z, JF_* Y) = g_1(X, Y)g_2(\nabla^N g, JF_* Z). \] (5.19)

Using (5.16) in above equation, we get
\[g_1(X, Z)g_2(\nabla^N g, JF_* X) = g_1(X, Y)g_2(\nabla^N g, JF_* Z). \] (5.20)

Now putting \(X = Y \) in (5.19), we get
\[g_1(X, Z)g_2(\nabla^N g, JF_* X) = g_1(X, X)g_2(\nabla^N g, JF_* Z). \] (5.21)

Now interchanging \(X \) and \(Z \) in (5.20), we get
\[g_1(X, Z)g_2(\nabla^N g, JF_* Z) = g_1(Z, Z)g_2(\nabla^N g, JF_* X). \] (5.22)

From (5.20) and (5.21), we get
\[g_2(\nabla^N g, JF_* X) \left(1 - \frac{g_1(X, X)g_1(Z, Z)}{g_1(X, Z)g_1(X, Z)} \right) = 0, \]
which implies either \(\dim((\ker F_*)^\perp) = 1 \) or \(g_2(\nabla^N g, JF_* X) = 0 \), which means \((JF_* X)(g) = 0 \), which completes the proof. \(\square \)

Theorem 5.6 Let \(F : (M^m, g_1) \to (N^n, g_2, J) \) be a Clairaut Lagrangian Riemannian map with \(\tilde{s} = e^g \) from a Riemannian manifold \(M \) to a Kähler manifold \(N \) such that \(\dim(\text{range} F_*) > 1 \). Then following statements are true:

(i) \(\text{range} F_* \) is minimal.

(ii) \(\text{range} F_* \) is totally geodesic.

Proof Since \(F \) is Clairaut Riemannian map then from (3.21) and Theorem 3.3, we have
\[(\nabla F_*)(X, X) = g_1(X, X)H_2, \]
for \(X \in \Gamma(\ker F_*)^\perp \) and \(H_2 \) is the mean curvature vector field of \(\text{range} F_* \). Now multiply above equation by \(U \in \Gamma(\text{range} F_*)^\perp \), we get
\[g_2((\nabla F_*)(X, X), U) = g_1(X, X)g_2(H_2, U). \] (5.22)

Using (2.2) in (5.22), we get
\[g_2(\nabla^N_X F_* X, U) = g_1(X, X)g_2(H_2, U). \] (5.23)

Since \(N \) is Kähler manifold, using (5.1) in (5.23), we get
\[g_2(\nabla^N_X JF_* X, JU) = g_1(X, X)g_2(H_2, U). \] (5.24)
Since ∇^N is Levi-Civita connection on N, using metric compatibility condition in (5.24), we get

$$-g_2(JF_\star X, \nabla^N_X JU) = g_1(X, X)g_2(H_2, U). \tag{5.25}$$

Using (5.23) in (5.25), we get

$$-g_2(JF_\star X, g_1(X, *F_\star JU)H_2) = g_1(X, X)g_2(H_2, U), \tag{5.26}$$

where $*F_\star$ is the adjoint map of F_\star. Now using $H_2 = -\nabla^N g$ in (5.26), we get

$$g_1(X, *F_\star JU)g_2(JF_\star X, \nabla^N g) = g_1(X, X)g_2(H_2, U),$$

which implies

$$g_1(X, *F_\star JU)JF_\star X(g) = g_1(X, X)g_2(H_2, U). \tag{5.27}$$

Since $\dim(\text{range}F_\star) > 1$ then by Theorem 5.5, g is constant on $J(\text{range}F_\star)$, which means $JF_\star X(g) = 0$. Then (5.27) implies $g_2(H_2, U) = 0$. Thus

$$H_2 = 0, \tag{5.28}$$

which implies (i).

Since $H_2 = \text{trace}(\nabla^N_X F_\star Y)$. Then by (5.28), we get $\nabla^N_X F_\star Y = 0$, which implies (ii).

\[\square\]

Theorem 5.7 Let $F : (M^n, g_1) \to (N^n, g_2, J)$ be a Clairaut Lagrangian Riemannian map with $\tilde{s} = e^g$ from a Riemannian manifold M to a Kähler manifold N such that $\dim(\text{range}F_\star) > 1$. Then F is harmonic if and only if mean curvature vector field of $\ker F_\star$ is constant.

Proof Let $F : (M^n, g_1) \to (N^n, g_2)$ be a smooth map between Riemannian manifolds. Then F is harmonic if and only if the tension field $\tau(F)$ of map F vanishes. Then proof follows by Lemma 2.1 and Theorem 5.6. \[\square\]

Theorem 5.8 Let $F : (M^n, g_1) \to (N^n, g_2, J)$ be a Clairaut Lagrangian Riemannian map with $\tilde{s} = e^g$ from a Riemannian manifold M to a Kähler manifold N such that $\dim(\text{range}F_\star) > 1$. Then $N = N_{\text{range}F_\star} \times N_{\text{range}F_\star}^\perp$ is a usual product manifold.

Proof The proof follows by [19] and Theorem 5.6. \[\square\]

Example 5.9 Let $M = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \neq 0, x_2 \neq 0\}$ be a Riemannian manifold with Riemannian metric $g_1 = e^{2x_2}dx_1^2 + e^{2x_2}dx_2^2$ on M. Let $N = \{(y_1, y_2) \in \mathbb{R}^2\}$ be a Riemannian manifold with Riemannian metric $g_2 = e^{2y_1}dy_1^2 + dy_2^2$ on N and the complex structure J on N defined as $J(y_1, y_2) = (-y_2, y_1)$. Consider a map $F : (M, g_1) \to (N, g_2, J)$ defined by

$$F(x_1, x_2) = \left(\frac{x_1 - x_2}{\sqrt{2}}, 0\right).$$

Then

$$\ker F_\star = \text{span}\left\{U = \frac{e_1 + e_2}{\sqrt{2}}\right\} \text{ and } (\ker F_\star)^\perp = \text{span}\left\{X = \frac{e_1 - e_2}{\sqrt{2}}\right\},$$

813
Hence $\nabla_{\partial x^2}g_{1} \neq 0$ and $\nabla_{\partial y}g_{2} \neq 0$. Thus F is a Riemannian map with range $F = \text{span}\{F_1(X,F_2,X)\}$ for $X \in \Gamma(\ker F)$.

Moreover it is easy to see that $JF_1X = Je_1 = -e_2$. Thus F is an anti-invariant Riemannian map.

Now to show F is Clairaut Riemannian map we will find a smooth function g on N satisfying $(\nabla F_1)(X,F) = -g_1(X,F)\nabla^N g$ for $X \in \Gamma(\ker F)_{N}$. Since $(\nabla F_1)(X,F) \in \Gamma(\text{range} F_1)$ for any $X \in \Gamma(\ker F)_{N}$. So here we can write $(\nabla F_1)(X,F) = ae_2'$, for some $a \in \mathbb{R}$. Since $\nabla^N g = e^{-2x^2} \frac{\partial}{\partial y^1} \frac{\partial}{\partial y_1} + \frac{\partial}{\partial y_2} \frac{\partial}{\partial y_2}$.

Hence $\nabla^N g = -a \frac{\partial}{\partial y_2} = -ae_2'$ for the function $g = -ay_2$. Then it is easy to verify that $(\nabla F_1)(X,F) = -g_1(X,F)\nabla^N g$, where $g_1(X,F) = 1$, for vector field $X \in \Gamma(\ker F)_{N}$ and we can easily see that $\nabla e_2' e_2' = 0$.

Thus by Theorem 3.3, F is Clairaut anti-invariant Riemannian map.

Acknowledgment

We would like to thank all the anonymous referees for his/her valuable comments and suggestions towards the improvement of quality of the paper. The first author, Kiran Meena gratefully acknowledges the financial support provided by the Human Resource Development Group - Council of Scientific and Industrial Research (HRDG-CSIR), New Delhi, India [File No.: 09/013(0887)/2019-EMR-I].

References

