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Abstract

This paper aims at investigating the problem of Load Frequency Control (LFC) in interconnected power

systems in order to obtain robustness against uncertainties. A design method for a robust controller, based

on Quantitative Feedback Theory (QFT), has been presented in this paper. For a two-area power system, the

simulation results show that the system response with the proposed QFT controller exhibits transient response

beyond PI controllers. It is also shown that the transient response of the tie line power can also be improved.

Key Words: Load frequency control, power system control, quantitative feedback theory, robust control

1. Introduction

Load Frequency Control (LFC) is one of the most important issues in power system control and design. LFC is

used to maintain the system frequency and the inter-area tie-line power close to the scheduled values [1]. Design
of LFC is conventionally based on linear model with fixed system parameters. An optimal control theory has
been proposed in [2] and utilized since the early 1970s. Fuzzy logic-based extended Proportional Integral (PI)

controller for LFC has been suggested in [3, 4]. These methods improve the dynamic performance of the
power system in comparison with the conventional PI controller. The methods are based on the decentralized
design with nominal plant parameters. Therefore, they cannot be directly applied to the interconnected power
systems with uncertainties. Thus, the important criteria in the design of LFC should inevitably include
parameter perturbation. Most physical plants are often modeled approximately based on the linearization
around operating point and may be subjected to the plant parameter variation. LFC design based on the
nominal system parameters is unable to guarantee both stability and the desired performance of the power

∗Corresponding author: Department of Electrical Engineering, Science and Research Branch, Islamic Azad University (IAU),
Tehran-IRAN
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system with parametric uncertainties. Therefore, modern control methods such as adaptive control method
have already been used [5–8]. These methods, however, require either information on the system states or an
efficient on-line identifier. Model reference adaptive methods also require satisfying the prefect model to follow
conditions and the complete system state information. Since the order of the power system is high, the model
reference approach may be difficult to be applied. Other various methods such as variable structure control [9]

and robust control [10–15] have been used to design LFC. In power system control, it is desirable to design the
controllers, which achieve robust stability due to parametric uncertainties.

One can consider a control based on Quantitative Feedback Theory (QFT) as a system offering robustness

against signal uncertainty and as a natural extension of classical frequency domain design approaches [16]. The

design of a proportional–integral–derivative (PID) controller for LFC of a unified (centralized) power system,

based on maximum peak-resonance specification and QFT methods, has been proposed by [17] and [18]. It must

be noted that QFT was initially proposed by Horowitz and further developed by others [19]. It is considered as
an efficient method for designing the robust controllers for plants with parameter uncertainties, unstructured
uncertainties and mixed uncertainties, and has been applied the flight control, missile control, compact disk
mechanism, etc. [16, 20]. This method was first proposed for minimum-phase and stable systems. Chen and

others then developed this method even for uncertain non-minimum phase and unstable plants [21].

In QFT one of the main objectives is to design a simple, low order controller with minimum bandwidth.
The minimum bandwidth controllers are natural requirements in practice, in order to avoid problems with
noise amplification, resonances and un-modeled high frequency dynamics. In most practical design situations,
iterations are inevitable and QFT offers direct insight into the available trade-off between controller complexity
and specifications during such iterations.

This paper proposes a decentralized robust LFC controller based on QFT. The simulation results, carried
out by MATLAB Simulink toolbox, show that the proposed controllers guarantee the robust performance of the
plant for a wide range of operating conditions. To indicate the effectiveness of proposed technique, this method
has been compared with a PI controller optimized by Genetic Algorithm or Particle Swarm Optimization. Both,
the proposed and classical methods are applied to a two-area power system. The results of simulations show
that the QFT controllers guarantee the robust performance and better dynamic response, such as minimum
overshoot and settling time in comparison with the classical controllers such as PI-PSO or PI-GA, considering
uncertainties in system parameters. Also, it is shown that the tie-line power flow oscillations can be damped
by the proposed controller.

In this paper, a dynamical model of each control area for the load frequency control problem is presented
in section 2. Next, the robust control design, which is based on QFT method, is described in section 3. In
section 4, the proposed controller is tested on a given two-area power system and its performance is compared
with that of a conventional controller.

2. Power system model

2.1. State equations

An interconnected electric power system can be considered as control areas connected with tie lines. There
are various complicated nonlinear models for large power systems. However, usually linearized model has been
used [1]. In this paper, a two-area power system, shown in Figure 1, has been studied and the errors of the
linearization have been considered as parametric uncertainties and un-modeled dynamics.
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Figure 1. Block diagram of two-area power system.

Each area consists of three first-order transfer functions, modeling the system turbine, governor and
power system. In addition, all generators in each area have been assumed to form a coherent group. The state
space model of the two-area power system can be presented by the relations

{
ẋ = Ax + Bu + Fd

y = Cx,
(1)

where x is the state variables vector, y is the output vector, u is control signals and d is the input vector, as
follows:

x =
[

ΔPT1 ΔPG1 ΔF1 ΔT12 ΔPT2 ΔPG2 ΔF2

]T

,

d =
[

ΔPD1 Δ PD2

]T

,

y =
[

ΔF1 ΔF2

]T

,

u =
[

Δu1 Δu2

]T

.

We also have

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/TT1 1/TT1 0 0 0 0 0

0 −1/TG1 −1/(R1TG1) 0 0 0 0

KP1/TP1 0 −1/TP1 KP1/TP1 0 0 0

0 0 2πT12 0 0 0 −2πT12

0 0 0 0 −1/TT2 1/TT2 0

0 0 0 0 0 −1/TG2 −1/(R2TG2)

0 0 0 KP2/TP2 KP2/TP2 0 −1/TP2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

[
0 1/TG1 0 0 0 0 0

0 0 0 0 0 1/TG2 0

]T

,
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F =

[
0 0 −KP1/TP1 0 0 0 0

0 0 0 0 0 0 −KP2/TP2

]T

,

C =

[
0 0 1 0 0 0 0

0 0 0 0 0 0 1

]
.

The elements of the above mentioned matrices and vectors have been presented in appendix A.

3. Parametric uncertainty

In Figure 1, there is one robust controller for each area of the power system. The operating points of the
power system may randomly change during a daily cycle due to the inherent characteristics of load variation
and system configuration. As a result, the parametric uncertainties of the power system should be considered.
Table 1 shows the six parametric uncertainties of the power system with their nominal and the lower and upper
bound values. In Table 1, PUi and PLi denote the upper and lower bound values, respectively, and Pi nom

is the nominal value of the parameter. In [22], the system parametric uncertainties are obtained by changing

parameters by 30% to 50% from their typical values; so, in this paper, the range of parameter variations can be
calculated by changing the nominal values of TPi , Kpi , T12 , Ri , TTi and TGi in the range of ±50% of their

typical values given in Appendix B.

Table 1. Parametric uncertainties of power system.

Pi PLi Pi nom PUi

KPi 60 120 180
TPi 10 20 30
T12 0.0433 0.0866 0.1299
Ri 1.2 2.4 3.6
TTi 0.15 0.3 0.45
TGi 0.04 0.08 0.12

4. Design of LFC using QFT

4.1. Performance specifications and assumptions

The designed LFC controller should guarantee some of the important performance specifications, including:
a. Power system stability within variations of operating point.

b. Acceptable dynamic response for step changes in load, such as minimum peak response.

c. Frequency and tie-line power variations should be equal to zero in steady state.
In QFT, the closed-loop transfer function should satisfy certain performance requirements for a set of

discrete frequencies. These requirements are specified in terms of tolerance bands within which the magnitude
response of the closed-loop transfer function should be limited. The uncertainties in the plant are transformed
onto the Nichols chart resulting in bounds on the open loop transfer function of the system. A compensator is
then chosen by manually shaping the loop transmission so that it satisfies the bounds at each of the frequency
points. A pre-filter is then used to ensure that the closed-loop transfer function lies within the specified bands.
The feedback system of two-area power system is shown schematically in Figure 2. In the figure, blocks and
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paths marked F, G, P, r, d and y denote the pre-filter, controller, plant, reference input, disturbance and
output of the system, respectively. To design a robust LFC based on QFT, the following assumptions have been
considered:
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Figure 2. MIMO system with disturbances (a) in a real situation and (b) at plant’s output.

(a) The load, machine, turbine and governor transfer function is supposed to be as P (plant dynamics), as

shown in Figure 2(a). Here, P1 is the turbine and governor and P2 is the load and machine transfer functions.

Therefore, ΔPDi will be disturbances at the middle of plant P (neither before nor after), as shown in Figure

2(a). The design procedure needs the change of ΔPDi to the plant output, as shown in Figure 2(b). According

to Figure 3, ΔP ′
Di can be used instead of ΔPD . As a result, ΔP ′

Diis used as output disturbances.
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Figure 3. (a) ΔPDi as disturbances in a real situation; and (b)ΔP ′
Di

as disturbances in plant’s output.

(b) ΔPref is the reference signal. The effect of ΔPref in LFC is not considered. Therefore the design of

the pre-filter is ignored.

(c) The poles and zeros of the controller G shown in Figure 2, are designed using QFT toolbox in

MATLAB [16] with some modifications, so that the open-loop transfer function is reshaped.
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4.2. QFT design

The problem is how to compute bounds on the controller G. The given margin specifications will be satisfied
for the plant P(s):

P(s) =

[
p11(s) p12(s)

p21(s) p22(s)

]
. (2)

It must be noted that for the different operating points, we have a set of plants. During the design procedure
these bounds will intersect the generated bounds to satisfy other specifications. The result will also satisfy
the margin specifications. The MIMO (Multi-Input Multi-Output) QFT sequential design procedure considers

diagonal controllers, i.e. G(s), as

G(s) =

[
g1(s) 0

0 g2(s)

]
. (3)

The sequential procedure involves a sequential single-loop design of each loop of the system. The robust stability
of MIMO system is related to the stability of MIMO characteristics equation:

det(I + PG) = (1 + p11g1)(1 + peq
22g2) = 0, (4)

where

peq
22 = p22 −

p12p21g1

1 + p11g1
. (5)

Then, the MIMO system is robust stable, if each of the two functions on the right-hand side of the equation (4)

is robust stable. The diagonal controller, G(s) is designed to satisfy the performance specifications: a. Robust
stability, b. Robust margins, and c. Robust sensitivity rejection.

For robust margins (via closed-loop magnitude peaks) specification, we have:

1
|1 + Li(jω)| 〈1.2 ω〉0, i = 1, 2. (6)

According to Figure 4, the transfer function of y1
r1

, L1 , for when K1 is open and K2 is closed, is

L1 = g1p11 −
g1g2p12p21

1 + g2p22
. (7)

In the same way, L2 can be

L2 = g2p22 −
g1g2p12p21

1 + p11g1
. (8)

For the robust sensitivity rejection specification [23], we have

[Sij] = (I + PG)−1 =

([
1 0

0 1

]
+

[
p11 p12

p21 p22

][
g1 0

0 g2

])−1

and

|Sij(jω)| ≤ ηij ω < 100

(9)

where

ηij =

{
0.01ω i = j

0.005ω i �= j.
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Considering equations (7) and (8), we have

L1 = g1
p11 + g2 det P

1 + g2p22
(10)

L2 = g2
p22 + g1 det P

1 + g1p11
(11)

where
detP = (p11p22 − p12p21). (12)

In this paper, the design procedure proceeds in two stages. Considering equations (6) and (10), the margin

condition on L1 (jω ) for the first stage of the g1 design can be described by the equation

∣∣∣∣1 + g1p11 + g2(p22 + g1 det P)
1 + g2p22

∣∣∣∣
−1

≡
∣∣∣∣ A + g2B

C + g2D

∣∣∣∣
−1

≤ 1.2. (13)

It is assumed g1 is known. A solution of gL ≤ |g2(jω)| ≤ gU is usually unacceptable, as it may result in an

empty region for g2 when intersected with other bounds [23]. If an acceptable solution exists, it is typically

in the form of |g2(jω)| ≥ gU or |g2(jω)| ≤ gL . Therefore, a necessary condition for the existence of a finite

bandwidth solution is gL > 0 at high frequencies and a necessary condition on the bounds of g2 (jω ), so that

g2 (jω ) has a finite bandwidth solution, is the existence of an ω mb , as follows:

lim
|g2|→∞

|1 + L1 |−1 =
∣∣∣∣1 + g1

det P
p22

∣∣∣∣
−1

≤ 1.2. (14)

lim
|g2|→0

|1 + L1|−1 = |1 + g1p11|−1 ≤ 1.2. (15)

On the other hand, the robust sensitivity rejection for the first stage of g1 design, considering the equation (9),
can be described by the equations

|S11(jω)| =
∣∣∣∣ 1 + p22g2

(1 + p11g1)(1 + p22g2) − p12p21g1g2

∣∣∣∣ ≤ η11, (16)

|S12(jω)| =
∣∣∣∣ −p12g2

(1 + p11g1)(1 + p22g2) − p12p21g1g2

∣∣∣∣ ≤ η12, (17)

where g2 , at this stage, is unknown. As a result, equations (16) and (17) should be rewritten by using the
equation presented in Appendix C as follows:

|S11(jω)| =
∣∣∣∣ p22 − p12S21

p22 + g1 det P

∣∣∣∣ ≤ η11, (18)

|S12(jω)| =
∣∣∣∣−p12 + p12S22

p22 + g1 det P

∣∣∣∣ ≤ η12. (19)

With |S21| ≤ η21and |S22| ≤ η22 , the equations (18) and (19) can be rewritten as

∣∣∣∣ |p22|+ |p12| η21

p22 + g1 det P

∣∣∣∣ ≤ η11, (20)
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∣∣∣∣ |p12|+ |p12| η22

p22 + g1 det P

∣∣∣∣ ≤ η12. (21)

In this two-stage sequential procedure, in the first stage, g1 is designed to satisfy calculated bounds and to
meet other specifications (equations (14), (15), (20) and (21)).
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Figure 4. Expanded 2-input 2-output power system.

In the second stage, g2 is designed to satisfy calculated bounds once again and to meet the specifications,
considering the following equations:

|1 + L1|−1 =
∣∣∣∣1 + g1

p11 + g2 det P
1 + g2p22

∣∣∣∣
−1

≤ 1.2, (22)

|1 + L2|−1 =
∣∣∣∣1 + g2

p22 + g1 det P
1 + g1p11

∣∣∣∣
−1

≤ 1.2. (23)

Also, the robust sensitivity rejection for second stage design g2 is in the form

|S21(jω)| =
∣∣∣∣ 1 + p11g1

(1 + p11g1)(1 + p22g2) − p12p21g1g2

∣∣∣∣ ≤ η21, (24)

|S22(jω)| =
∣∣∣∣ −p21g1

(1 + p11g1)(1 + p22g2) − p12p21g1g2

∣∣∣∣ ≤ η22. (25)

One of the most important objectives in control design is to use an accurate description of plant dynamics.
The QFT and its design procedure requires one to define the plant dynamics only in frequency domain. The
term template is then used to denote the collection of an uncertain plant’s frequency responses at a given
frequency. The frequency range must be chosen based on the performance bandwidth and the shape of the
templates. Margin bounds should be calculated up to the frequency where the shape of the plant template
becomes invariant to frequency. For the power system, studied in this paper, the template shape becomes a
vertical fixed line at ω = 500 rad/sec. The plant templates at several frequencies are shown in Figures 5(a)

and 5(b), for plants p11 (or p22) and p12 (or p21), respectively. It must be noted that the plant parameters of
each area is assumed to be equal, as a result, p11 = p22 and p12 = p21 .
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Figure 5. Plant templates for (a) p11 or p22 (b) p12 or p21.
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Figure 6. g1 robust margin bounds: (a) g2 → ∞ , (b)g2 = 0 and robust sensitivity rejection bounds (c) |S11(jω)| ≤ η11

and (d) |S12(jω)| ≤ η12 .

521



Turk J Elec Eng & Comp Sci, Vol.19, No.4, 2011

In the first design stage, the calculated bounds (according to Equations (14), (15), (20) and (21)) are

shown in Figures 6(a)–6(d), respectively. The intersection of these bounds is shown in the Figure 7(a). Also,

the Figure 7(a) includes the loop L1 = g1p11 for the nominal plant case. So, the controller g1 is

g1 =
L1

p11
. (26)

In the second design stage, the calculated bounds (according to Equations (22)–(25)) are shown in Figure 7(b).

It must be noted that, in this stage, g1 has been determined by the equation (26). The Figure 7(b) presents

the nominal second loop L2 = g2p
eq
22 , thus the second controller g2 can be calculated by the equation

g2 =
L2

peq
22

. (27)
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Figure 7. Intersection of all bounds with loop shaping for (a) first loop and (b) second loop.

The parameters of two areas are the same. As a result, controllers g1 and g2 should be the same:

g1 = g2 =
14.3(s/42.6 + 1)(s/3.3 + 1)(s/2.2 + 1)(s/0.04 + 1)(s/0.01 + 1)

(s/2500 + 1)(s2/0.008 + s/0.47 + 1)(s2/2.3× 10−7 + s/3427 + 1)

The loop-shaping programming and QFT toolbox of Matlab [16] was used to design the loop-shape shown in

Figure 7. Now, the frequency response of robust margin conditions can be determined by equation (6) and it

is shown in Figure 8(a). It can be seen that the robust margin conditions are guaranteed at all frequencies.

Also, the frequency response of robust sensitivity rejection (equation 9) is shown in Figure 8(b). The robust
sensitivity rejection of the system is guaranteed, too.
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Figure 8. Frequency response of (a) robust margin conditions for 1st loop and 2nd loop (b) robust sensitivity rejection.
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5. Simulation results

The two-area power system shown in Figure 1, with the parameters given in appendix A, and nominal values
given in appendix B, has been simulated. The simulated system is controlled by:

A: Genetic Algorithm (GA) [24, 25] and Particle Swarm Optimization (PSO) [26] based designed con-
ventional PI; and

B: QFT based designed robust controllers.

The nine operating points of the system have been given in Table 2. For these 9 operating points, Figures
9 and 10 depict the frequency change and the tie line power deviations for a 2% load step change in the first area
with a PI-GA (or PI-PSO) and QFT controllers, respectively. In Figure 11, the frequency and the tie line power
deviations are compared in the nominal case. It can be seen that the response of QFT controller are better
than the conventional GA-PI (or PSO-PI) controllers. Also, Figures 9 and 10 show that the system response to
the proposed QFT controller has a better transient response than the response of the PI controllers. Besides,

Table 2. Nine operating points of power system.

Operating points KP1 KP2 TP1 TP2 R1 R2 TT1 TT2 TG1 TG2 T12

a 120 120 20 20 2.4 2.4 0.3 0.3 0.08 0.08 0.0866
b 180 120 30 20 3.6 2.4 0.45 0.3 0.12 0.08 0.0866
c 60 120 10 20 1.2 2.4 0.15 0.3 0.04 0.08 0.0866
d 180 60 30 10 3.6 1.2 0.45 0.15 0.12 0.04 0.0433
e 180 60 30 10 3.6 1.2 0.45 0.15 0.12 0.04 0.1299
f 180 180 10 10 1.2 1.2 0.15 0.15 0.04 0.04 0.0433
g 60 60 10 10 1.2 1.2 0.15 0.15 0.04 0.04 0.0433
h 60 60 30 30 3.6 3.6 0.45 0.45 0.12 0.12 0.0433
i 60 60 30 30 3.6 3.6 0.45 0.45 0.12 0.12 0.0866
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it also verifies that the transient response of the tie line power flow has been improved, too. Also, Figure 10
shows that the proposed QFT controller presents the robust performance considering parametric uncertainties.
As it can be seen in Figure 9 (a), the operating points (h) and (i) are unstable in the case of using PI controller.

But, according to Figure 10 (a), these operating points are stable in the case of using proposed controller.
Therefore, it can be said that the proposed robust controller can improve the system dynamic performance and
the stability, too.
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Figure 9. Frequency and tie line power deviations: (a) ΔF1(t) , (b) ΔF2(t) , and (c) ΔPtie (t) for nine operating points

for a 2% load step change in first area with a PI controller (results of PI-GA and PI-PSO are the same).
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Figure 10. Frequency and tie line power deviations: (a) ΔF1(t) , (b) ΔF2(t) , and (c) ΔPtie(t) for 9 operating points

for a 2% load step change in first area with a QFT controller.
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6. Conclusion

This paper presents the decentralized robust controller design methodology of LFC which is based on Quantita-
tive Feedback Theory. A two-area power system with PI and proposed QFT based controllers has been modeled
and simulated. The simulation results show that the responses of QFT controller are significantly better than
the conventional GA-PI or PSO-PI controllers. Also, the proposed QFT controllers can present the robust
performance. It is shown that the tie line power flow oscillations can be damped by the proposed controller,
too.

Appendix A

State space presentation parameters:

Tij Synchronizing coefficient of the tie-line between ith and j th areas

TTii
th turbine time constant in, seconds
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TGii
th governor time constant in, seconds

TPii
th subsystem model time constant in, seconds

KPii
th subsystem gain

Ri Speed regulation forith subsystem in Hz/p.u. MW

Dii
th load frequency constant

Mii
th Interia constant

ΔPtieIncremental change in the tie-line power

ΔFii
th area frequency deviation in Hz

ΔPDii
th area load disturbance in p.u. MW

ΔPTi Incremental generation change

ΔPGi Incremental governor valve position change

Appendix B

Nominal parameters of two-area system:

TG1 = TG2 = 0.08 s

TT1 = TT2 = 0.3 s
TP1 = TP2 = 20 s

KP1 = KP2 = 120 Hz/p.u. MW

R1 = R2 = 2.4 Hz/p.u. MW

Pr = 2000 MW (area rated capacity)

Ptie max = 200 MW (tie line capacity)

T1 = (Ptie max /Pr) cos 30o = 0.0866 p.u. MW/rad a12 = −1

Appendix C

S11(jω) =
1 + p22g2

(1 + p11g1)(1 + p22g2) − p12p21g1g2

=
(p22 + g1 det P )(1 + p22g2)

(p22 + g1 detP )[(1 + p11g1)(1 + p22g2) − p12p21g1g2]

=
p22(1+g1p11+p22g2+g1g2 det P)−g1p12p21

[(1+p11g1)(1+p22g2)−p12p21g1g2 ]

p22 + g1 detP

=
p22 − p12

p21g1
(1+p11g1)(1+p22g2)−p12p21g1g2

p22 + g1 det P

=
p22 − p12S21

p22 + g1 detP

528



SAKHAVATI, GHAREHPETIAN, HOSSEINI: Decentralized robust load-frequency control of power...,

S12(jω) =
−p12g2

(1 + p11g1)(1 + p22g2) − p12p21g1g2

=
(p22 + g1 detP )(−p12g2)

(p22 + g1 detP )[(1 + p11g1)(1 + p22g2) − p12p21g1g2]

=
(p22+g1 detP )(−p12g2)+(1+p11g1)(p12−p12)

[(1+p11g1)(1+p22g2)−p12p21g1g2]

p22+g1 det P

=
−p12(1+g1p11+p22g2+g1g2 det P)+p12(1+p11g1)

[(1+p11g1)(1+p22g2)−p12p21g1g2]

p22 + g1 det P

=
−p12 + p12

1+p11g1
(1+p11g1)(1+p22g2)−p12p21g1g2

p22 + g1 det P

=
−p12 + p12S22

p22 + g1 det P
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