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Abstract

In this paper, a learning controller for robot manipulators is developed. The controller is proven to yield

in a semi-global asymptotic result in the presence of additive input and output disturbances. Lyapunov-

based techniques are used to guarantee that the tracking error is asymptotically driven to zero. Numerical

simulation results are presented to demonstrate the viability of the proposed learning controller.

Key Words: Learning control, disturbance rejection, Lyapunov–based methods.

1. Introduction
In model-based control, the control law is developed based on a model that is free of noise, disturbances, and
unmodeled dynamics. However, in practice, the physical system model is usually imprecise due to the effects
of the above mentioned discrepancies. A control law designed for a disturbance free system model may not
compensate for the disturbances or may even go unstable in the case of small disturbances. Iterative learning
control (ILC) can compensate for repeating disturbances, simply by learning from previous iterations. However,
a combination of a feedback controller along with ILC is usually considered to reject nonrepeating disturbances
[2].

Some of the past research efforts were focused on designing adaptive learning control laws for the robot
manipulators in the presence of structured and unstructured uncertainties [3], [4], [5], [6], [7]. In [3], [4], [5],
Tayebi et al. designed adaptive iterative learning controllers for tracking control of robot manipulators under
the assumption that the desired trajectory was periodic. In [6], Sun et al. presented an adaptive repetitive
learning controller for tracking control of robot manipulators in the presence of unstructured uncertainties. In
[7], Yang et al. decomposed the dynamic model of the robot manipulator into repetitive and nonrepetitive
parts, and designed an adaptive robust iterative learning controller.

The focus of some of the previous research was designing learning controllers to overcome the effects
of the disturbances. In [8], an iterative learning controller combined with a feedback controller for a class

—————————————————–
∗ Preliminary results have appeared in [1].
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of constrained mechanical systems in the presence of bounded unknown disturbances was presented. In [9],
Liu et al. suggested a learning controller based on a disturbance observer for a class of nonlinear systems
in the presence of unknown disturbances. In [10], Jiang et al. proposed an iterative learning controller for
a class of minimum-phase multi-input multi-output nonlinear systems with an unknown control gain matrix
in the presence of repeating uncertainties. In [11], Dixon et al. proposed a learning-based estimate to achieve

asymptotic tracking in the presence of a nonlinear periodic disturbance. In [12] and [13], Horowitz et al. proposed
a repetitive update rule with use of kernel and influence functions, however the usage of these functions tends
to be rather complicated. In [14], a command-based iterative learning algorithm was developed to compensate

for friction, disturbance and noise effects. In [15] and [16], the researchers suggested a repetitive control scheme.

In [14], [15] and [16], the researchers used the so-called Q-filter to enhance the robustness of the controllers,
however this prevents the tracking errors to be driven to zero. For work related to learning control techniques
the reader is referred to [2], [17], [18] and the references therein.

In this paper, a learning controller for robot manipulators is designed under the assumption that the
desired trajectory is periodic. The dynamic model of the robot manipulator is assumed to be uncertain and
subject to additive input and output disturbances. In the design of the learning controller, the robust control
component in [19] is combined with a nonlinear learning control component to compensate for the uncertain
system dynamics and a semi-global asymptotic tracking result is obtained in the presence of additive input and
output disturbances [1]. The only assumption imposed on the disturbances is that they were assumed to be
twice continuously differentiable and have bounded time derivatives up to second order. In the controller design,
Lyapunov-based techniques are used to guarantee that the tracking error is asymptotically driven to zero, and
numerical simulation results are presented to demonstrate the performance of the proposed learning controller.

2. Dynamic model

The dynamic model for an n-joint, revolute, direct-drive robot manipulator is considered to be of the following
form

M (q) (q̈ + d1) + B (q, q̇) = τ + d2 (1)

where q (t) , q̇ (t), q̈ (t) ∈ R
n denote the joint positions, velocities, and accelerations, respectively, M (q) ∈ R

n×n

represents the inertia effects, B (q, q̇) ∈ R
n represents the dynamic effects due to Centripetal and Coriolis forces,

gravity and dynamic friction, d1 (t), d2 (t) ∈ R
n are unknown nonlinear disturbances, τ (t) ∈ R

n represents the
control input vector. It is assumed that the inertia matrix and the other dynamic effects are uncertain. The
system model in (1) is assumed to satisfy the following assumptions.

Assumption 1 The nonlinear functions, M (·) and B (·) , are continuously differentiable up to their second

order time derivatives (i.e., M (·) , B (·) ∈ C2 ).

Assumption 2 The additive disturbances, d1 (t) and d2 (t) , are assumed to be continuously differentiable and

bounded up to their second order time derivatives (i.e., di (t) ∈ C2 and di (t) , ḋi (t) , d̈i (t) ∈ L∞ , ∀i = 1, 2).

Assumption 3 The subsequent development utilizes the property that the inertia matrix is positive definite,
symmetric and satisfies the following inequalities [20]

m ‖ξ‖2 ≤ ξT M (·) ξ ≤ m̄ (·) ‖ξ‖2 ∀ξ ∈ R
n (2)
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where m ∈ R is a positive bounding constant, m̄ (q) ∈ R is a positive, globally invertible, nondecreasing function

of its argument, and ‖·‖ denotes the Euclidean norm.

To facilitate the subsequent design, the output tracking error e1 (t) ∈ R
n is defined as

e1 � qd − q (3)

where qd (t) ∈ R
n is the desired trajectory satisfying the following properties

q
(i)
d (t + T ) = x

(i)
d (t) , ∀i = 0, 1, ..., 4 (4)

q
(i)
d (t) ∈ L∞ , ∀i = 0, 1, ..., 4 (5)

where T ∈ R
+ is its period.

The control design objective is to develop a learning control law that ensures ‖e1 (t)‖ → 0, while
keeping all signals remain bounded under the closed-loop system. To achieve the tracking control objective, the
subsequent development is derived based on the assumption that the joint position and velocity measurements
are available for control development.

3. Development of the learning control law

To facilitate the control development, the filtered tracking error signals, e2 (t) , r (t) ∈ R
n are defined as follows

e2 � ė1 + λ1e1 (6)

r � ė2 + λ2e2 (7)

where λ1 , λ2 ∈ R
n×n are constant, diagonal, positive definite, gain matrices. After taking the time derivative

of (7) and premultiplying by M (·), the following expression can be derived

Mṙ = M (
...
q d + λ1ë1 + λ2ė2) + Ṁq̈ + Ḃ − τ̇ − ḋ2 + Mḋ1 + Ṁd1 (8)

where the first time derivative of (1) and (3) were utilized. The expression in (8) can be arranged as

Mṙ = −1
2
Ṁr − e2 − τ̇ + N − ḋ2 + Mḋ1 + Ṁd1 (9)

where the auxiliary function N (q, q̇, q̈, t) ∈ R
n is defined as

N � M (
...
q d + λ1ë1 + λ2ė2) + Ṁ

(
q̈ +

1
2
r

)
+ e2 + Ḃ. (10)

To facilitate the subsequent analysis, (9) can be rearranged as follows

Mṙ = −1
2
Ṁr − e2 − τ̇ + Ñ + Nd + ψ (11)
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where auxiliary functions Ñ (q, q̇, q̈, t), Nd (t), ψ (t) ∈ R
n are defined as follows

Ñ �
(
N + Mḋ1 + Ṁd1

)
−

(
Nd + Mdḋ1 + Ṁdd1

)
(12)

Nd � N |q=qd,q̇=q̇d,q̈=q̈d
(13)

ψ � −ḋ2 + Mdḋ1 + Ṁdd1 (14)

and Md (t) ∈ R
n×n is defined as follows

Md � M |q=qd
. (15)

Remark 1 By utilizing the Mean Value Theorem [21] along with Assumptions 1 and 2, the following upper
bound can be developed ∥∥∥Ñ (·)

∥∥∥ ≤ ρ (‖z‖) ‖z‖ (16)

where z (t) ∈ R
3n is defined as follows

z �
[

eT
1 eT

2 rT
]T (17)

and ρ (·) ∈ R is a globally invertible, nondecreasing, nonnegative function.

Remark 2 After utilizing (5) and Assumption 2 along with (14) and its first time derivative, it is clear that

ψ (t) , ψ̇ (t) ∈ L∞ .

Remark 3 After utilizing (5) and (10) along with (13) and its first time derivative, it is clear that Nd (t) ,

Ṅd (t) ∈ L∞ .

Remark 4 After utilizing (4), it is clear that Nd (t) satisfies the following equation

Nd (t + T ) = Nd (t) . (18)

Based on (11), the control input is designed as

τ � (K + In)
[
e2 (t) − e2 (t0) + λ2

∫ t

t0

e2 (σ) dσ

]
+ (C1 + C2)

∫ t

t0

Sgn (e2 (σ)) dσ + Ŵd (t) (19)

where K , C1 , C2 ∈ R
n×n are constant, diagonal, positive definite, gain matrices, In ∈ R

n×n is the standard
identity matrix, and Sgn(·) is the vector signum function defined as follows

Sgn (ξ) �
[

sgn (ξ1) · · · sgn (ξn)
]T , ∀ξ =

[
ξ1 · · · ξn

]T
. (20)

In (19), Ŵd (t) ∈ R
n is an auxiliary function designed as

Ŵd (t) � kL

[
e2 (t) − e2 (t0) + λ2

∫ t

t0

e2 (σ) dσ

]
+ Ŵd (t − T ) (21)
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where kL ∈ R is a positive control gain. It should be noted that since Ŵd (t0) = 0n×1 it follows that

u (t0) = 0n×1 where 0n×1 ∈ R
n×1 is a zero vector. The auxiliary function N̂d (t) ∈ R

n is defined as

N̂d � ˙̂
Wd. (22)

By utilizing (22) along with (21), the following can be obtained

N̂d (t) = N̂d (t − T ) + kLr (t) . (23)

The time derivative of the control input is obtained as

τ̇ = (K + In) r + (C1 + C2)Sgn (e2) + N̂d (t) (24)

where (22) was utilized. Finally, after substituting (24) into (11), the closed-loop error system for r (t) is
obtained as follows

Mṙ = −1
2
Ṁr − e2 − (K + In) r − (C1 + C2)Sgn (e2) + Ñ + Ñd + ψ (25)

where Ñd (t) ∈ R
n is an auxiliary function defined as

Ñd � Nd − N̂d. (26)

It should be noted that, after utilizing (18) and (23), the following expression can be obtained for Ñd (t)

Ñd (t) = Ñd (t − T ) − kLr. (27)

3.1. Stability analysis

Theorem 1 The control law in (19) and (21) ensures the boundedness of all system signals within closed-loop

operation and the output tracking error and its time derivatives are driven to zero in the sense that ‖e1 (t)‖ → 0
as t → ∞ provided that the elements of K are selected sufficiently large relative to the system initial conditions
and

λmin (λ2) >
1
2
, (28)

C1i > ‖ψi (t)‖L∞
+

1
λ2i

∥∥∥ψ̇i (t)
∥∥∥
L∞

(29)

where the subscript i = 1, ..., n denotes the ith element of the vector or diagonal matrix.

Proof See Appendix A.

4. Numerical simulation results

A numerical simulation was performed to demonstrate the viability of the proposed robust learning control
algorithm. The following 2-link, revolute robot dynamic model was utilized where M (·) and B (·) are defined

as follows [22]

M =
[

3.12 + 2 sin (qa2) 0.75 + sin (qa2)
0.75 + sin (qa2) 0.75

]
, B =

[
0.75q̇a2 (2q̇a1 + q̇a2) sin (qa2)
−0.75 (q̇a1)

2 sin (qa2)

]
.
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The additive disturbances were chosen as

d1 =
[

cos (3t) + exp (−0.5t)
sin (2t) + exp (−0.5t)

]
, d2 =

[
sin (3t) + exp (−0.5t)
cos (2t) + exp (−0.5t)

]
.

The control gains were chosen as λ1 = λ2 = I2 , C1 = C2 = 10I2 , K = 100I2 , and kL = 10 where I2 ∈ R
2×2

denotes the standard identity matrix.
The joint positions and the tracking error are presented in Figure 1 and it is clear that the tracking

objective was achieved.
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Figure 1. Joint positions q (t) (left) and Tracking error e1 (t) (right)

5. Conclusion

A learning controller was developed for robot manipulators. The controller was proven to yield in a semi-
global asymptotic result in the presence of additive disturbances provided that the assumption that the desired
trajectory is periodic. Since no assumptions were made on the periodicity of the disturbances, it is clear
that the suggested controller compensated for both repeating and nonrepeating disturbances. Lyapunov-based
techniques were used to guarantee that the tracking error is asymptotically driven to zero. Numerical simulation
results were presented to show the proof of concept.
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A. Proof of Theorem 1

In the subsequent stability analysis the following lemma is utilized.

Lemma 1 Let the auxiliary functions L1 (t) , L2 (t) ∈ R be defined as follows

L1 � rT (ψ − C1Sgn (e2)) , L2 � −ėT
2 C2Sgn (e2) . (30)

If C1 is selected to satisfy the sufficient condition (29), then

∫ t

t0
L1 (τ ) dτ ≤ ζb1 ,

∫ t

t0
L2 (τ ) dτ ≤ ζb2 (31)

where ζb1 , ζb2 ∈ R are positive constants defined as

ζb1 �
∑m

i=1 C1i |e2i (t0)| − eT
2 (t0)ψ (t0) , ζb2 �

∑m
i=1 C2i |e2i (t0)| . (32)

Proof See [23] for L1 (t) and [19] for L2 (t).

Proof of Theorem 1 is given as follows.

Proof Let the auxiliary functions P1 (t) , P2 (t) ∈ R be defined as follows

P1 � ζb1 −
∫ t

t0
L1 (τ ) dτ , P2 � ζb2 −

∫ t

t0
L2 (τ )dτ (33)

where L1 (t) , L2 (t) , ζb1 and ζb2 were defined in (30)-(32). The proof of Lemma 1 ensures that P1 (t) and

P2 (t) are non-negative. Let V (s (t) , t) ∈ R denotes the following non-negative function

V � 1
2
eT
1 e1 +

1
2
eT
2 e2 +

1
2
rT Mr + P1 + P2 + Vg (34)

where Vg (t) ∈ R is a non-negative function defined as

Vg � 1
2kL

∫ t

t−T

ÑT
d (σ) Ñd (σ) dσ (35)

where s (t) ∈ R
(3n+3)×1 is defined as follows

s �
[

zT
√

P1

√
P2

√
Vg

]T
. (36)

After utilizing (2), the expression in (34) can be bounded as

W1 (s) ≤ V (s, t) ≤ W2 (s) (37)

where W1 (s) , W2 (s) ∈ R are defined as follows

W1 (s) � α1 ‖s‖2
, W2 (s) � α2 (‖s‖) ‖s‖2 (38)

and α1 , α2 (·) ∈ R are defined as follows

α1 � 1
2

min{1, m} , α2 � max
{

1,
1
2
m̄ (‖s‖)

}
. (39)
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After taking the time derivative of (34), the following expression can be obtained

V̇ = −eT
1 λ1e1 − eT

2 λ2e2 + eT
1 e2 − rT r + rT Ñ − rT Kr − kL

2
rT r − eT

2 λT
2 C2Sgn(e2) (40)

where (6), (7), (25), (27), and (30) were utilized. By utilizing (16), (28), and the triangle inequality, an

upper-bound on (40) can be obtained as follows

V̇ ≤ −λ3 ‖z‖2 −
(

λmin (K) +
kL

2

)
‖r‖2 + ‖r‖ ρ (‖z‖) ‖z‖ − eT

2 ΛT C2Sgn(e2)

≤ −
(

λ4 −
ρ2 (‖z‖)

4λmin (K)

)
‖z‖2 − eT

2 λT
2 C2Sgn(e2) (41)

where λ3 � min
{

1
2 , λmin (λ2) − 1

2

}
and λ4 � min

{
λ3,

kL

2

}
. The following inequality can be developed

V̇ ≤ W (s) − eT
n ΛT C2Sgn(e2) (42)

where W (s) ∈ R denotes the following non-positive function

W (s) � −β0 ‖z‖2 (43)

with β0 ∈ R being a positive constant, and provided that λmin (K) is selected according to the following
sufficient condition

λmin (K) ≥ ρ2 (‖z‖)
4λ4

. (44)

Based on (34)-(39) and (41)-(43), the regions D and S can be defined as follows

D =
{
s : ‖s‖ < ρ−1

(
2
√

λ4λmin (K)
)}

(45)

S = {s ∈ D : W2(s) < α1

(
ρ−1

(
2
√

λ4λmin (K)
))2

}
. (46)

Note that the region of attraction in (46) can be made arbitrarily large to include any initial condition by

increasing λmin (K) (i.e., a semi-global stability result). Specifically, (38) and (46) can be used to calculate the
region of attraction as follows

W2 (s (t0)) < α1

(
ρ−1

(
2
√

λ4λmin (K)
))2

=⇒ ‖s (t0)‖ <

√
α1

α2 (‖s (t0)‖)
ρ−1

(
2
√

λ4λmin (K)
)

, (47)

which can be rearranged as

λmin (K) ≥ 1
4λ4

ρ2

⎛
⎝

√
α2 (‖s (t0)‖)

α1
‖s (t0)‖

⎞
⎠ . (48)

By utilizing (17), (32), and (36) the following explicit expression for ‖s (t0)‖ can be derived as follows

‖s (t0)‖2 = ‖e1 (t0)‖2 + ‖e2 (t0)‖2 + ‖r (t0)‖2 + ζb1 + ζb2. (49)
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From (34), (42), (46)-(48), it is clear that V (s, t) ∈ L∞ ∀s (t0) ∈ S; hence s (t) , z (t) ∈ L∞ ∀s (t0) ∈ S.

From (42), it is clear that e2 (t) ∈ L1 ∀s (t0) ∈ S . From (7), it is clear that ė2 (t) ∈ L∞ ∀s (t0) ∈ S .

The above boundedness statements can be utilized along with (6) and its time derivative to show that e1 (t) ,

ė1 (t) , ë1 (t) ∈ L∞ ∀s (t0) ∈ S . Using (3), and (5), and their time derivatives, it can be proven that q (t) ,

q̇ (t) , q̈ (t) ∈ L∞ ∀s (t0) ∈ S . Then, it is clear that M (·), Ṁ (·), f (·) ∈ L∞ ∀s (t0) ∈ S . By using these

boundedness statements along with (1) it is clear that τ (t) ∈ L∞ ∀s (t0) ∈ S . These boundedness statements

can be used along with the time derivative of (43) to prove that Ẇ (s (t)) ∈ L∞ ∀s (t0) ∈ S ; hence W (s (t))

is uniformly continuous. A direct application of Theorem 8.4 in [21] can be used to prove that ‖z (t)‖ → 0 as

t → ∞ ∀s (t0) ∈ S . Then, from (17), it is clear that ‖e1 (t)‖ , ‖e2 (t)‖, ‖r (t)‖ → 0 as t → ∞ ∀s (t0) ∈ S .

Since ‖e2 (t)‖ , ‖r (t)‖ → 0 as t → ∞ ∀s (t0) ∈ S , from (7), it is easy to see that ‖ė2 (t)‖ → 0 as t → ∞
∀s (t0) ∈ S . Finally, (6) and its time derivative can be used to prove that ‖ė1 (t)‖, ‖ë1 (t)‖ → 0 as t → ∞
∀s (t0) ∈ S . This proves that the tracking control objective was met.

Other control objective is to prove that all signals remain bounded under the closed-loop operation. In

that sense, the main objective is to show that Ŵd (t) is bounded. For ∀t ∈ (t0, t0 +T ), from (21), the following

expression can be written for Ŵd (t)

Ŵd (t) = kL

[
e2 (t) − e2 (t0) + λ2

∫ t

t0

e2 (σ) dσ

]
(50)

where the fact that Ŵd (t) = 0n×1 ∀t < t0 was utilized. Since e2 (t) ∈ L1 ∩ L∞ ∀s (t0) ∈ S then it can be

proven that
∫ t

t0
e2 (σ) dσ ∈ L∞ ∀s (t0) ∈ S ; thus, Ŵd (t) ∈ L∞ ∀t ∈ (t0, t0 + T ), ∀s (t0) ∈ S . From (21), it

can be proven that Ŵd (t) ∈ L∞ ∀t ∈ (t0 + T, t0 + 2T ), ∀s (t0) ∈ S (since Ŵr (t − T ) ∈ L∞ ∀t ∈ (t0, t0 + T ),

∀s (t0) ∈ S ). Similarly, for any finite m , it can be proven that Ŵd (t) ∈ L∞ ∀t ∈ (t0 + (m − 1)T, t0 + mT ),

∀s (t0) ∈ S (since Ŵd (t − T ) ∈ L∞ ∀t ∈ (t0 + (m− 2)T, t0 + (m− 1)T ), ∀s (t0) ∈ S ). For any finite m , it can

be concluded that Ŵd (t) ∈ L∞ ∀t ∈ (t0, t0 + mT ), ∀s (t0) ∈ S . At this point, the extended space L∞e will
be defined to facilitate the subsequent analysis. The extended space contains the functions whose L∞ norm
may grow to infinity, but only at infinity and it is clear that L∞ ⊂ L∞e [24]. When m goes to infinity, from

the definition of the extended space L∞e , it can be proven that Ŵd (t) ∈ L∞e ∀t , ∀s (t0) ∈ S . From (23), the

following expression can be written for N̂d (t)

N̂d (t) = kLr (t)∀t ∈ (t0, t0 + T ) (51)

where the fact that N̂d (t) = 0n×1 ∀t < t0 was utilized. Since r (t) ∈ L∞ ∀s (t0) ∈ S , then, from (51), it is

clear that N̂d (t) ∈ L∞ ∀t ∈ (t0, t0 + T ), ∀s (t0) ∈ S . For any finite m , it can be concluded that N̂d (t) ∈ L∞

∀t ∈ (t0, t0 + mT ), ∀s (t0) ∈ S . Similarly, when m goes to infinity, it can be proven that N̂d (t) ∈ L∞e ∀t ,

∀s (t0) ∈ S . Then, from Remark 3 and (26), it is clear that Ñd (t) ∈ L∞e ∀t , ∀s (t0) ∈ S . From (24), it can be

proven that τ̇ (t) ∈ L∞e ∀t , ∀s (t0) ∈ S . Previous boundedness statements can be utilized along with (11) to

show that ṙ (t) ∈ L∞e ∀t , ∀s (t0) ∈ S . This proves that the boundedness objective was met.
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