Bi-periodic incomplete Horadam numbers

ELİF TAN
MEHMET DAĞLI
AMINE BELKHIR

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
TAN, ELİF; DAĞLI, MEHMET; and BELKHIR, AMINE (2023) "Bi-periodic incomplete Horadam numbers," Turkish Journal of Mathematics: Vol. 47: No. 2, Article 10. https://doi.org/10.55730/1300-0098.3378
Available at: https://journals.tubitak.gov.tr/math/vol47/iss2/10

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Bi-periodic incomplete Horadam numbers

Elif TAN1, Mehmet DAGLI2,∗, Amine BELKHIR3

1Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey
2Department of Mathematics, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
3Department of Mathematics, RECITS Laboratory, USTHB, Algiers, Algeria

Received: 05.10.2022 • Accepted/Published Online: 04.01.2023 • Final Version: 09.03.2023

Abstract: In this paper, we introduce bi-periodic incomplete Horadam numbers as a natural generalization of incomplete Horadam numbers. We study their basic properties and provide recurrence relations. In particular, we derive the generating function of these numbers.

Key words: Fibonacci sequence, Horadam sequence, bi-periodic Horadam sequence, bi-periodic incomplete Horadam sequence

1. Introduction

The Fibonacci sequence is one of the most famous and most studied sequences in mathematics. Its nth term F_n, also called as the nth Fibonacci number, is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$ where $F_0 = 0$ and $F_1 = 1$ are the initial values. This recurrence relation also defines the Lucas sequence for the initial values $L_0 = 2$ and $L_1 = 1$. It is well known that F_{n+1} counts the number of tilings of an n-board using either square tiles or two-square-wide dominoes [3]. It can be expressed as

$$F_{n+1} = \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n-i}{i}. $$

This expression gives rise to a fascinating class of integers called the incomplete Fibonacci numbers. They were introduced by Flipponi [7] for integers n and k with $0 \leq k \leq \left\lfloor \frac{n-1}{2} \right\rfloor$ as

$$F_n(k) = \sum_{i=0}^{k} \binom{n-1-i}{i}. $$

Combinatorially, $F_{n+1}(k)$ counts the number of ways to tile an n-board with at most k dominoes [2]. Flipponi [7] also defined the incomplete Lucas numbers for $0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor$ as

$$L_n(k) = \sum_{i=0}^{k} \frac{n}{n-i} \binom{n-i}{i}. $$

∗Correspondence: mehmet.dagli@amasya.edu.tr

2010 AMS Mathematics Subject Classification: 11B39, 11B83, 05A15

This work is licensed under a Creative Commons Attribution 4.0 International License.
Incomplete Fibonacci and Lucas numbers have many interesting properties. They generalize the Fibonacci and Lucas numbers. In other words, incomplete Fibonacci numbers reduce to Fibonacci numbers when \(k = \lfloor \frac{n-1}{2} \rfloor \), and incomplete Lucas numbers reduce to Lucas numbers when \(k = \lfloor \frac{n}{2} \rfloor \).

Horadam sequence \(\{W_n\} \) with arbitrary integer initial values \(W_0 \) and \(W_1 \) is defined by the recurrence relation \(W_n = pW_{n-1} + qw_{n-2} \) for \(n \geq 2 \). Its terms are called the Horadam numbers and they provide a generalization for Fibonacci numbers and Lucas numbers. Indeed, \(\{W_n\} \) reduces to \(\{F_n\} \) for \(p = q = 1 \) and \(W_0 \) = 0, \(W_1 \) = 1, and to \(\{L_n\} \) for \(p = q = 1 \) and \(W_0 = 2, W_1 = 1 \). With this in mind, a question arises whether or not incomplete Fibonacci and Lucas numbers extend to Horadam-like numbers. Belbachir and Belkhir [1] responded this question by introducing incomplete Horadam numbers for \(n \geq 2 \) and \(0 \leq k \leq \lfloor \frac{n}{2} \rfloor \) as

\[
W_n(k) = \sum_{i=0}^{k} \frac{(n-2i)W_1 + pw_0}{n-i} \left(\binom{n-i}{i} \right) p^{n-2i-1} q^i,
\]

where \(p \) and \(q \) are integers. They also introduced hyper-Horadam numbers and provided a connection between incomplete Fibonacci and Lucas numbers, and hyper-Horadam numbers.

The bi-periodic Horadam sequence \(\{w_n\} \) is a natural generalization of the Horadam sequence. For arbitrary initial values \(w_0 \) and \(w_1 \), its terms are defined recursively for \(n \geq 2 \) by

\[
w_n = a^{\xi(n+1)}b^{\xi(n)}w_{n-1} + cw_{n-2},
\]

where \(a, b, \) and \(c \) are nonzero real numbers. Here, \(\xi(n) = \frac{1-(-1)^n}{2} \). It can easily be seen that the bi-periodic Fibonacci sequence, the generalized bi-periodic Fibonacci sequence, the bi-periodic Lucas sequence, the generalized bi-periodic Lucas sequence, and the classical Horadam sequence are special cases of the bi-periodic Horadam sequence. For example, \(\{w_n\} \) reduces to \(\{W_n\} \) when \(a = p, b = p, \) and \(c = q \). For details, we refer to [4–6, 12–14].

Ramírez [10] defined the bi-periodic incomplete Fibonacci numbers for \(n \geq 1 \) and \(0 \leq k \leq \lfloor \frac{n-1}{2} \rfloor \) as

\[
q_n(k) = a^{\xi(n-1)} \sum_{i=0}^{k} \binom{n-1-i}{i} (ab)^{\lfloor \frac{n+1}{2} \rfloor - i}.
\]

In this spirit, Tan and Ekin [12] introduced the bi-periodic incomplete Lucas numbers for \(0 \leq k \leq \lfloor \frac{n}{2} \rfloor \) by

\[
p_n(k) = a^{\xi(n)} \sum_{i=0}^{k} \frac{n-i}{i} \binom{n-1-i}{i} (ab)^{\lfloor \frac{n}{2} \rfloor - i}.
\]

Motivated by the above studies, we introduce in this paper the bi-periodic incomplete Horadam numbers. In particular, we give some recurrence relations and provide a connection between bi-periodic incomplete Fibonacci numbers and bi-periodic incomplete Horadam numbers. We then derive the generating function of these numbers. This new generalization shall give us a unified approach for many celebrated incomplete Fibonacci-like sequences such as bi-periodic incomplete Fibonacci and Lucas sequences, incomplete Fibonacci and Lucas sequences, incomplete balancing and Lucas-balancing sequences.
2. Main results
In this section, we shall introduce bi-periodic incomplete Horadam numbers. To this purpose, we begin with the following lemma. It provides a combinatorial expression for the bi-periodic Horadam numbers.

Lemma 2.1 For \(n \geq 1 \), the bi-periodic Horadam numbers satisfy

\[
w_n = a^{\xi(n-1)} \sum_{i=0}^{\frac{n}{2}} \frac{(n-2i)w_{1} + biw_0}{n-i} \binom{n-i}{i} (ab)^{\lfloor \frac{n-i}{2} \rfloor - i} c^i.
\]

Proof We will use induction on \(n \). Clearly, the equality holds for \(n = 1 \). Now suppose that the lemma is true for any integer \(m \) with \(1 \leq m \leq n \). Then by the inductive hypothesis, we can write

\[
w_{n+1} = a^{\xi(n)}b^{\xi(n+1)}w_n + cw_{n-1}
\]

\[
= a^{\xi(n)}b^{\xi(n+1)}a^{\xi(n-1)} \sum_{i=0}^{\frac{n}{2}} \frac{(n-2i)w_{1} + biw_0}{n-i} \binom{n-i}{i} (ab)^{\lfloor \frac{n-i}{2} \rfloor - i} c^i +
\]

\[
a^{\xi(n)} \sum_{i=0}^{\frac{n}{2}+1} \frac{(n-1-2i)w_{1} + biw_0}{n-1-i} \binom{n-1-i}{i} (ab)^{\lfloor \frac{n-1-i}{2} \rfloor - i-1} c^{i+1}.
\]

Since \(\xi(n-1) = \xi(n+1) \), we have

\[
a^{-\xi(n)}w_{n+1} = \sum_{i=0}^{\frac{n}{2}} \frac{(n-2i)w_{1} + biw_0}{n-i} \binom{n-i}{i} (ab)^{\lfloor \frac{n-i}{2} \rfloor - i + \xi(n+1)} c^i +
\]

\[
\sum_{i=0}^{\frac{n}{2}+1} \frac{(n-1-2i)w_{1} + biw_0}{n-1-i} \binom{n-1-i}{i} (ab)^{\lfloor \frac{n-1-i}{2} \rfloor - i-1} c^{i+1}.
\]

\[
= \sum_{i=0}^{\frac{n}{2}} \frac{(n-2i)w_{1} + biw_0}{n-i} \binom{n-i}{i} (ab)^{\lfloor \frac{n-i}{2} \rfloor - i} c^i +
\]

\[
\sum_{i=0}^{\frac{n}{2}+1} \frac{(n-1-2i)w_{1} + biw_0}{n-1-i} \binom{n-1-i}{i} (ab)^{\lfloor \frac{n-1-i}{2} \rfloor - i-1} c^{i+1}.
\]

\[
= \sum_{i=0}^{\frac{n}{2}} \frac{(n-2i)w_{1} + biw_0}{n-i} \binom{n-i}{i} (ab)^{\lfloor \frac{n-i}{2} \rfloor - i} c^i +
\]

\[
\sum_{i=1}^{\frac{n}{2}+1} \frac{(n-2i+1)w_{1} + b(i-1)w_0}{n-i} \binom{n-i}{i-1} (ab)^{\lfloor \frac{n-i}{2} \rfloor - i} c^i.
\]
Thus, the given formula is true for any positive integer \(n \). \(\square \)

In the light of Lemma 2.1, we can define bi-periodic incomplete Horadam numbers as follows.

Definition 2.2 Let \(n \) and \(k \) be positive integers such that \(0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \). We define the bi-periodic incomplete Horadam numbers as

\[
w_n(k) = a^{\xi(n-1)} \sum_{i=0}^{k} \frac{(n-2i)w_1 + biw_0}{n-i} \left(\frac{n-i}{i} \right)^k (ab)^{\left\lfloor \frac{n-i}{2} \right\rfloor} c^i.
\]

Note that the incomplete Horadam numbers in (1.1) are a special case of this definition. They are obtained for \(a = p, b = p, \) and \(c = q \).

It can easily be seen that \(w_n(0) = a^{\xi(n-1)}w_1(ab)^{\left\lfloor \frac{n}{2} \right\rfloor} \) and \(w_n\left(\left\lfloor \frac{n}{2} \right\rfloor\right) = w_n \) for \(n \geq 1 \). Similarly,

\[
w_n(1) = a^{\xi(n-1)} \left(w_1(ab)^{\left\lfloor \frac{n}{2} \right\rfloor} + (n-2)w_1 + bw_0 \right)(ab)^{\left\lfloor \frac{n-1}{2} \right\rfloor} c,
\]

\[
w_n\left(\left\lfloor \frac{n-2}{2} \right\rfloor\right) = \begin{cases} w_n - w_0c^{\frac{n}{2}}, & \text{if } n \text{ is even}, \\ w_n - \left[w_1 + \left(\frac{n-1}{2}\right)bw_0 \right] c^{\frac{n-1}{2}}, & \text{if } n \text{ is odd}, \end{cases}
\]

for \(n \geq 2 \).

Example 2.3 For \(a = 3, b = 2, c = 1, w_0 = 4, w_1 = 2 \) and \(1 \leq n \leq 10 \), all the values of \(w_n(k) \) are displayed in the table on the next page.

Proposition 2.4 Consider the bi-periodic incomplete Horadam numbers \(w_n(k) \). For \(0 \leq k \leq \frac{n-3}{2} \), they satisfy the nonlinear recurrence relation

\[
w_n(k) = a^{\xi(n+1)}b^{\xi(n)}w_{n-1}(k) + cw_{n-2}(k - 1).
\]

Proof Suppose \(n \) is even. Since \(\left\lfloor \frac{n-1}{2} \right\rfloor = \left\lceil \frac{n}{2} \right\rceil - 1 \), we have

\[
a^{\xi(n+1)}b^{\xi(n)}w_{n-1}(k) + cw_{n-2}(k - 1)
\]
The proof is similar when \(n \) is odd. This completes the proof. \(\square \)
Proposition 2.4 can be transformed into a nonhomogeneous recurrence relation as follows:

\[w_n(k) = a^{\xi(n+1)} b^{\xi(n)} w_{n-1}(k) + cw_{n-2}(k-1) \]
\[= a^{\xi(n+1)} b^{\xi(n)} w_{n-1}(k) + cw_{n-2}(k) + c(w_{n-2}(k-1) - w_{n-2}(k)) \]
\[= a^{\xi(n+1)} b^{\xi(n)} w_{n-1}(k) + cw_{n-2}(k) - w_n(k) \]
\[= a^{\xi(n+1)} \left(n - 2k - 2 \right) w_1 + bk w_0 \left(\frac{n - 2}{k} \right) \left(ab \right)^{\frac{n+1}{2} - k} c^{k+1} . \]

(2.1)

Proposition 2.5 For \(0 \leq k \leq \frac{n-s-1}{2} \), we have

\[\sum_{i=0}^{s+1} \binom{s+1}{i} w_{n+i}(k+i) a^{i+\xi} b^{\frac{i}{2}} c^{s+1-i} = w_{n+2s}(k+s). \]

(2.2)

Proof We proceed by induction on \(s \). The proof is clear for \(s = 0 \) and \(s = 1 \) from Proposition 2.4. So assume the relation in (2.2) holds for all positive \(j < s + 1 \). We will only verify it for \(j = s + 1 \) when \(n \) is even since the proof is similar when \(n \) is odd. Now,

\[\sum_{i=0}^{s+1} \binom{s+1}{i} w_{n+i}(k+i) a^{i+\xi} b^{\frac{i}{2}} c^{s+1-i} \]
\[= \sum_{i=0}^{s+1} \left[\binom{s+1}{i} + \binom{s}{i-1} \right] w_{n+i}(k+i) a^{i+\xi} b^{\frac{i}{2}} c^{s+1-i} \]
\[= \sum_{i=0}^{s+1} \binom{s}{i} w_{n+i}(k+i) a^{i+\xi} b^{\frac{i}{2}} c^{s+1-i} + \]
\[\sum_{i=0}^{s+1} \binom{s}{i-1} w_{n+i}(k+i) a^{i+\xi} b^{\frac{i}{2}} c^{s+1-i} \]
\[= \binom{s}{s+1} w_{n+s+1}(k+s+1) a^{s+\xi} b^{\frac{s+1}{2}} + \]
\[c \sum_{i=0}^{s} \binom{s}{i} w_{n+i}(k+i) a^{i+\xi} b^{\frac{i}{2}} c^{s-i} + \]
\[\sum_{i=0}^{s} \binom{s}{i} w_{n+i+1}(k+i+1) a^{i+\xi} b^{\frac{i+1}{2}} c^{s-i} \]
\[= \binom{s}{s+1} w_{n+s+1}(k+s+1) a^{s+\xi} b^{\frac{s+1}{2}} + cw_{n+2s}(k+s) + \]
\[\binom{s}{s+1} w_{n+k} c^{s+1} + a \sum_{i=0}^{s} \binom{s}{i} w_{n+i+1}(k+i+1) a^{i+\xi} b^{\frac{i+1}{2}} c^{s-i} \]
\[= cw_{n+2s}(k+s) + aw_{n+2s+1}(k+s+1) = w_{n+2s+2}(k+s+1). \]

Hence the theorem holds for all \(j \). This completes the proof. \(\square \)
Proposition 2.6 For $s \geq 2k + 2$, we have

$$
\sum_{i=0}^{s-1} a^{\left\lfloor \frac{s-i-\frac{1-\xi(n+1)}{2}}{2} \right\rfloor n\xi(n) - \left\lfloor \frac{i-\xi(n)}{2} \right\rfloor b^{\left\lfloor \frac{s-i-\frac{1-\xi(n+1)}{2}}{2} \right\rfloor w_{n+1}(k)}
$$

$$
= w_{n+s+1}(k + 1) - a^{\left\lfloor \frac{s+i-\xi(n+1)}{2} \right\rfloor b^{\left\lfloor \frac{s+i-\xi(n+1)}{2} \right\rfloor w_{n+1}(k + 1)}.
$$

Proof We will use induction on s. We will only consider the case when n is odd since the proof is similar when n is even.

Suppose n is odd. Then $\xi(n) = 1$ and $\xi(n + 1) = 0$. For $s = 2$, the right hand side of Equation 2.3 is $w_{n+3}(k + 1) - abw_{n+1}(k + 1)$, and it simplifies to $acw_n(k) + cw_{n+1}(k)$ by Proposition 2.4. This clearly equals the left hand side. Hence, the proposition is true for $s = 2$.

Now suppose that the proposition is true for all $2 < s$. We prove it for s. Since $\left\lfloor \frac{s+1}{2} \right\rfloor = \left\lfloor \frac{s}{2} \right\rfloor + \xi(s)$, we have

$$
\sum_{i=0}^{s} a^{\left\lfloor \frac{s-i-\frac{1-\xi(n+1)}{2}}{2} \right\rfloor n\xi(n) - \left\lfloor \frac{i-\xi(n)}{2} \right\rfloor b^{\left\lfloor \frac{s-i-\frac{1-\xi(n+1)}{2}}{2} \right\rfloor w_{n+1}(k)}
$$

$$
= \sum_{i=0}^{s} a^{\left\lfloor \frac{i+1}{2} \right\rfloor} b^{\left\lfloor \frac{i+1}{2} \right\rfloor} w_{n+1}(k)
$$

$$
= \sum_{i=0}^{s-1} a^{\left\lfloor \frac{i+1}{2} \right\rfloor} b^{\left\lfloor \frac{i+1}{2} \right\rfloor} w_{n+1}(k) + cw_{n+s}(k)
$$

$$
= \sum_{i=0}^{s-1} a^{\left\lfloor \frac{i+1}{2} \right\rfloor} b^{\left\lfloor \frac{i+1}{2} \right\rfloor} w_{n+1}(k) + cw_{n+s}(k)
$$

$$
= a^{\xi(s)} b^{\xi(s+1)} \sum_{i=0}^{s-1} a^{\left\lfloor \frac{i+1}{2} \right\rfloor} b^{\left\lfloor \frac{i+1}{2} \right\rfloor} w_{n+1}(k + 1) + cw_{n+s}(k)
$$

$$
= a^{\xi(s)} b^{\xi(s+1)} w_{n+s+1}(k + 1) + cw_{n+s}(k)
$$

$$
= a^{\xi(s)} b^{\xi(s+1)} w_{n+s+1}(k + 1) + cw_{n+s}(k) - a^{\xi(s)} b^{\xi(s+1)} w_{n+1}(k + 1)
$$

$$
= a^{\xi(s)} b^{\xi(s+1)} w_{n+s+1}(k + 1) + cw_{n+s}(k) - a^{\xi(s)} b^{\xi(s+1)} w_{n+1}(k + 1)
$$

$$
= w_{n+s+2}(k + 1) + a^{\left\lfloor \frac{i+1}{2} \right\rfloor} b^{\left\lfloor \frac{i+1}{2} \right\rfloor} w_{n+1}(k + 1)
$$

$$
= w_{n+s+2}(k + 1) - a^{\left\lfloor \frac{i+1}{2} \right\rfloor} b^{\left\lfloor \frac{i+1}{2} \right\rfloor} w_{n+1}(k + 1).
$$

This completes the proof.

We end this section by giving a connection between the generalized bi-periodic incomplete Fibonacci numbers $u_n(k)$ and the generalized bi-periodic incomplete Lucas numbers $v_n(k)$.

Proposition 2.7 For $0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor$, we have

$$
v_n(k) = u_{n+1}(k) + cw_{n-1}(k - 1).
$$
Proof Recall that

\[u_n(k) = a^{\xi(n-1)} \sum_{i=0}^{k} \binom{n-1-i}{i} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i), \quad 0 \leq k \leq \left\lfloor \frac{n-1}{2} \right\rfloor, \]

and

\[v_n(k) = a^{\xi(n)} \sum_{i=0}^{k} \frac{n}{n-i} \binom{n-i}{i} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i), \quad 0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor. \]

So we have,

\[u_{n+1}(k) + cu_{n-1}(k-1) = a^{\xi(n)} \sum_{i=0}^{k} \binom{n-i}{i} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i) + ca^{\xi(n)} \sum_{i=0}^{k-1} \binom{n-2-i}{i} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i) \]

\[= a^{\xi(n)} \sum_{i=0}^{k} \binom{n-i}{i} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i) + a^{\xi(n)} \sum_{i=1}^{k} \binom{n-1-i}{i-1} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i) \]

\[= a^{\xi(n)} \sum_{i=0}^{k} \left[\binom{n-i}{i} + \binom{n-1-i}{i-1} \right] (ab)^{\frac{ab}{2}} \xi_i (1-ic^i) \]

\[= a^{\xi(n)} \sum_{i=0}^{k} \frac{n}{n-i} \binom{n-i}{i} (ab)^{\frac{ab}{2}} \xi_i (1-ic^i) = v_n(k). \]

\[\Box \]

3. The generating function

In this section, we shall derive the generating function for the bi-periodic incomplete Horadam numbers. To this purpose, we need the following lemma which can be obtained from [9] and [10]. We refer to Srivastava and Monacha [11] for a general treatment of generating functions of special functions.

Lemma 3.1 Let \(\{r_n\}_{n=0}^{\infty} \) be a given complex sequence, and let \(a, b, \) and \(c \) be complex numbers. Suppose that a complex sequence \(\{s_n\}_{n=0}^{\infty} \) satisfies the nonhomogeneous and nonlinear recurrence relation

\[s_n = \begin{cases}
bs_{n-1} + cs_{n-2} + r_n, & \text{if } n \text{ is even,} \\
bs_{n-1} + cs_{n-2} + ar_n, & \text{if } n \text{ is odd,}
\end{cases} \]

for \(n > 1 \). Then the generating function \(U(t) \) of \(\{s_n\}_{n=0}^{\infty} \) is given by

\[U(t) = \frac{aG(t) + (s_0 - r_0) + [s_1 - a(s_0 + r_1)]t + (b - a)tf(t) + (1 - a)G_1(t)}{1 - at - ct^2} \]

where \(f(t), G(t), \) and \(G_1(t) \) are the generating functions of \(\{s_{2n+1}\}_{n=0}^{\infty}, \{r_n\}_{n=0}^{\infty}, \) and \(\{r_{2n}\}_{n=0}^{\infty}, \) respectively, and

\[f(t) = \frac{[s_1 - a(r_0 + r_1)]t + c[a(s_0 + r_1) - s_1]t^3 + atG_1(t) + a(1 - ct^2)G_2(t)}{1 - (ab + 2c)t^2 + c^2t^4} \]
where $G_2(t)$ denotes the generating function of $\{r_{2n-1}\}_{n=1}^{\infty}$.

Proof Let $U(t) = \sum_{n=0}^{\infty} s_n t^n$ and $G(t) = \sum_{n=0}^{\infty} r_n t^n$. Then,

$$(1 - at - ct^2)U(t) - aG(t) = (s_0 - ar_0) + [s_1 - a(s_0 + r_1)]t + \sum_{n=2}^{\infty} (s_n - as_{n-1} - cs_{n-2} - ar_n)t^n.$$

Let us simplify the summation above. Since $s_{2n+1} = as_{2n} + cs_{2n-1} + ar_{2n+1}$ and $s_{2m} = bs_{2m-1} + cs_{2m-2} + r_{2m}$, it follows that

$$\sum_{n=2}^{\infty} (s_n - as_{n-1} - cs_{n-2} - ar_n)t^n = \sum_{m=1}^{\infty} (s_{2m} - as_{2m-1} - cs_{2m-2} - ar_{2m})t^{2m}$$

$$= \sum_{m=1}^{\infty} [(b - a)s_{2m-1} + (1 - a)r_{2m}]t^{2m}$$

$$= (b - a)t \sum_{m=1}^{\infty} s_{2m-1}t^{2m-1} + (1 - a) \sum_{m=1}^{\infty} r_{2m}t^{2m}$$

$$= (b - a)t f(t) + (1 - a)G_1(t) - (1 - a)r_0.$$

Hence,

$$(1 - at - ct^2)U(t) - aG(t) = (s_0 - r_0) + [s_1 - a(s_0 + r_1)]t + (b - a)t f(t) + (1 - a)G_1(t).$$

Then the formula for the generating function follows by solving the above equation for $U(t)$.

Next, we calculate $f(t)$. For $m > 2$, it is easy to see that

$$s_{2m-1} = (ab + 2c)s_{2m-3} - c^2s_{2m-5} - a(cr_{2m-3} - r_{2m-2} - r_{2m-1}).$$

Moreover,

$$s_3 - (ab + 2c)s_1 + a(cr_1 - r_2 - r_3) = as_2 - cs_1 - abs_1 + acr_1 - ar_2$$

$$= acs_0 - cs_1 + acr_1.$$

Then we have,

$$[1 - (ab+2c)t^2 + c^2t^4]f(t) - atG_1(t) + a(ct^2 - 1)G_2(t)$$

$$= [s_1 - a(r_0 + r_1)]t + c[a(s_0 + r_1) - s_1])t^3.$$ The formula follows by solving the above equation for $f(t)$.

Now, we are ready to state the generating function for the bi-periodic incomplete Horadam numbers.
Theorem 3.2 Consider the bi-periodic incomplete Horadam numbers $w_n(k)$. Let

$$G_1(t) = -\frac{c^{k+1}(w_0b - (w_0b - w_1)t)}{2} \left[\frac{t^2}{(1 - (ab)^{\frac{1}{2}}t)^{k+1}} + \frac{t^2}{(1 + (ab)^{\frac{1}{2}}t)^{k+1}} \right]$$

$$G_2(t) = -\frac{c^{k+1}(w_0b - (w_0b - w_1)abt)}{2(ab)^{\frac{1}{2}}} \left[\frac{t^2}{(1 - (ab)^{\frac{1}{2}}t)^{k+1}} - \frac{t^2}{(1 + (ab)^{\frac{1}{2}}t)^{k+1}} \right].$$

Then, the generating function $W_k(t)$ of $w_n(k)$ is given by

$$W_k(t) = \sum_{n=0}^{\infty} w_n(k)t^n = \frac{aG(t) + w_{2k} + w_{2k-1}t + (b - a)tG_1(t) + (1 - a)G_1(t)}{1 - at - ct^2}$$

where $G(t) = G_1(t) + G_2(t)$, and

$$f(t) = \frac{w_{2k+1}t - cw_{2k-1}t^3 + atG_1(t) + a(1 - ct^2)G_2(t)}{1 - (ab + 2c)t^2 + c^2t^4}.$$

Proof Let k be a fixed positive integer. It is easy to see that $w_n(k) = 0$ for $0 \leq n < 2k$, and $w_{2k}(k) = w_{2k}$ and $w_{2k+1}(k) = w_{2k+1}$. When n is even, it follows from the nonhomogeneous recurrence relation in Equation 2.1 that

$$w_n(k) = aw_{n-1}(k) + cw_{n-2}(k) - b^{-1}(n - 2k - 2)w_1 + bkw_0 \left(\frac{n - k - 2}{k} \right) (ab)^{\left\lfloor \frac{n - 2}{2} \right\rfloor} - k_c^{k+1}.$$

Similarly, when n is odd

$$w_n(k) = bw_{n-1}(k) + cw_{n-2}(k) - (n - 2k - 2)w_1 + bkw_0 \left(\frac{n - k - 2}{k} \right) (ab)^{\left\lfloor \frac{n - 2}{2} \right\rfloor} - k_c^{k+1}.$$

Now let us define

$$s_0 = w_{2k}(k) = w_{2k}, \quad s_1 = w_{2k+1}(k) = w_{2k+1}, \quad s_n = w_{2k+n}(k),$$

and

$$r_0 = r_1 = 0, \quad r_n = -\frac{(n - 2)w_1 + bkw_0}{n + k - 2} \left(\frac{n - k - 2}{k} \right) (ab)^{\left\lfloor \frac{n - 2}{2} \right\rfloor} - 1 - c^{k+1}.$$

Then,

$$G(t) = G_1(t) + G_2(t)$$

$$= -\frac{c^{k+1}t^2}{2} \left[\frac{w_0b - (w_0b - w_1)t}{(1 - (ab)^{\frac{1}{2}}t)^{k+1}} + \frac{w_0b - (w_0b - w_1)abt}{(1 + (ab)^{\frac{1}{2}}t)^{k+1}} \right] + \frac{[w_0b - (w_0b - w_1)t] - [w_0b - (w_0b - w_1)abt]}{(1 + (ab)^{\frac{1}{2}}t)^{k+1}}.$$
is the generating function of the sequence \(\{-r_n\} \). Thus the generating function of the sequence \(\{w_n(k)\}_{n=0}^{\infty} \) follows from [9, Lemma 3.1]. This completes the proof.

\[\square \]

Acknowledgment

The research of E. Tan and M. Dağlı was supported by The Scientific Research Coordination Unit of Amasya University under the project number FMB-BAP 20-0474.

References

