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3.8 Radical quenching test and ESR test
In order to determine the contribution of the ROS responsible for the degradation of HA. The effects of SO4

●−, ●OH and 
1O2 for HA removal were studied using different quenchers [38–40]. As shown in Figures 16a and 16b, SO4

●−, ●OH and 1O2 

Figure 15. XPS analysis of ferrihydrite with (a) survey of original ferrihydrite, (b) survey of used ferrihydrite without US, (c) survey of 
used ferrihydrite with US, (d) Fe2p of original ferrihydrite, (e) Fe2p of used ferrihydrite without US, (f) Fe2p of used ferrihydrite with US, 
(g) O 1s of original ferrihydrite, (h) O 1s of used ferrihydrite without US, and (i) O 1s of used ferrihydrite with US.
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directly contributed to HA removal and 1O2 was the main contributor. Equations 4–9 indicated the possible production 
pathway for ROS.

Figures 16c and 16d show the EPR test with and without US. The ERP signal intensity in ferrihydrite/PMS/US system 
was higher than that in ferrihydrite/PMS system. The signals of DMPOX, DMPO-SO4

●− and TEMPO-1O2 were observed, in 
which DMPOX was formed by DMPO trapping two hydroxyl groups[15]. The result of EPR test indicated the generation of 
SO4

●−, ●OH, and 1O2 in the ferrihydrite/PMS system and ferrihydrite/PMS/US system. In addition, the generated quantity 
of SO4

●−, ●OH, and 1O2 was higher in ferrihydrite/PMS/US system than that in the ferrihydrite/PMS system.

ln	(C!/C") = −kt 
 

Synergy	index =
k#$/&'(()*+,()!'/-./

k#$/012 + k3'(()*+,()!'/-./
 

 

Removal	rate =
C" − C!
C"

 

 
HSO45 → H6 + SO475 
 
SO45 + H7O → O7●5 + SO875 + H6 
 
O7●5 + 2H7O → 1O7 + H7O7 + 2OH5 
 
OH	
● +H7O → HO7 + H7O 
 
HO7 → H6 + O7●5 
 
O7●5 + OH	

● → 1O7 + OH5 

 	 (4)

ln	(C!/C") = −kt 
 

Synergy	index =
k#$/&'(()*+,()!'/-./

k#$/012 + k3'(()*+,()!'/-./
 

 

Removal	rate =
C" − C!
C"

 

 
HSO45 → H6 + SO475 
 
SO45 + H7O → O7●5 + SO875 + H6 
 
O7●5 + 2H7O → 1O7 + H7O7 + 2OH5 
 
OH	
● +H7O → HO7 + H7O 
 
HO7 → H6 + O7●5 
 
O7●5 + OH	

● → 1O7 + OH5 

	  (5)

ln	(C!/C") = −kt 
 

Synergy	index =
k#$/&'(()*+,()!'/-./

k#$/012 + k3'(()*+,()!'/-./
 

 

Removal	rate =
C" − C!
C"

 

 
HSO45 → H6 + SO475 
 
SO45 + H7O → O7●5 + SO875 + H6 
 
O7●5 + 2H7O → 1O7 + H7O7 + 2OH5 
 
OH	
● +H7O → HO7 + H7O 
 
HO7 → H6 + O7●5 
 
O7●5 + OH	

● → 1O7 + OH5 

	  (6)

ln	(C!/C") = −kt 
 

Synergy	index =
k#$/&'(()*+,()!'/-./

k#$/012 + k3'(()*+,()!'/-./
 

 

Removal	rate =
C" − C!
C"

 

 
HSO45 → H6 + SO475 
 
SO45 + H7O → O7●5 + SO875 + H6 
 
O7●5 + 2H7O → 1O7 + H7O7 + 2OH5 
 
OH	
● +H7O → HO7 + H7O 
 
HO7 → H6 + O7●5 
 
O7●5 + OH	

● → 1O7 + OH5 

	  (7)

ln	(C!/C") = −kt 
 

Synergy	index =
k#$/&'(()*+,()!'/-./

k#$/012 + k3'(()*+,()!'/-./
 

 

Removal	rate =
C" − C!
C"

 

 
HSO45 → H6 + SO475 
 
SO45 + H7O → O7●5 + SO875 + H6 
 
O7●5 + 2H7O → 1O7 + H7O7 + 2OH5 
 
OH	
● +H7O → HO7 + H7O 
 
HO7 → H6 + O7●5 
 
O7●5 + OH	

● → 1O7 + OH5 

	  (8)

ln	(C!/C") = −kt 
 

Synergy	index =
k#$/&'(()*+,()!'/-./

k#$/012 + k3'(()*+,()!'/-./
 

 

Removal	rate =
C" − C!
C"

 

 
HSO45 → H6 + SO475 
 
SO45 + H7O → O7●5 + SO875 + H6 
 
O7●5 + 2H7O → 1O7 + H7O7 + 2OH5 
 
OH	
● +H7O → HO7 + H7O 
 
HO7 → H6 + O7●5 
 
O7●5 + OH	

● → 1O7 + OH5 	 (9)

Figure 15. (Continued).
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4. Conclusion
Ferrihydrite were employed to activate PMS for HA removal. The use of US had strong synergetic effect for HA removal 
with a synergy index of 2.9. The result of control experiment indicated higher HA removal efficiency was achieved with 
higher dosage of ferrihydrite and appropriate PMS concentration under neutral condition. The thermal and nonthermal 
effects from US both resulted in HA removal and nonthermal effect had played the most important role. EEM and UV-
Vis data illustrated the obvious HA removal in ferrihydrite/PMS/US system. SO4

●−, ●OH and 1O2 were responsible to the 
removal of HA and and 1O2 was the dominant ROS for HA removal. This study indicates ferrihydrite/US/PMS was an 
effective method for HA removal.
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