Inverse nodal problem for the quadratic pencil of the Sturm-Liouville equations with parameter-dependent nonlocal boundary condition

YAŞAR ÇAKMAK

BAKİ KESKİN

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://journals.tubitak.gov.tr/math/vol47/iss1/26

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Inverse nodal problem for the quadratic pencil of the Sturm–Liouville equations with parameter-dependent nonlocal boundary condition

Yaşar ÇAKMAK*, Baki KESKİN
Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, Sivas, Turkey

Received: 04.10.2022 • Accepted/Published Online: 26.12.2022 • Final Version: 13.01.2023

Abstract: In this paper, we consider the inverse nodal problem for a quadratic pencil of the Sturm–Liouville equations with parameter-dependent Bitsadze–Samariskii type nonlocal boundary condition and we give an algorithm for the reconstruction of the potential functions by obtaining the asymptotics of the nodal points.

Key words: Quadratic pencil of the Sturm–Liouville equations, inverse nodal problem, nonlocal boundary condition

1. Introduction
We consider the boundary value problem generated by the differential equation

$$\ell y := -y'' + [2\lambda p(x) + q(x)] y = \lambda^2 y, \quad 0 < x < 1$$

(1.1)

with the boundary conditions

$$U(y) := y(0) = 0, \quad V(y) := \lambda y(1) - y(\alpha) = 0,$$

(1.2)

where λ is the spectral parameter, α is rational number in $(0,1)$, the potential functions $q(x) \in W^1_1 [0,1]$, $p(x) \in W^2_1 [0,1]$ are real valued functions such that $p(x) \neq \text{const.}$ for $\beta = \alpha, 1$

$$\int_0^\beta p(x)dx = 0$$

(1.3)

holds.

In what follows we denote the boundary problem (1.1) – (1.2) by $L = L(p(x), q(x), \alpha)$.

In the present paper, we construct the functions $p(x)$ and $q(x)$ which are the potentials of operator L from nodal points of its eigenfunctions and give an algorithm for solving the inverse nodal problem.

Inverse nodal problem consists in reconstructing the operator from a given dense set of zeros of its eigenfunctions. McLaughlin gave firstly a solution for the inverse nodal problem for the specific Sturm–Liouville operator. She sought to recover the potential $q(x)$ by using the nodes (i.e. zeros) of the eigenfunctions (see [20]).

Hald and McLaughlin showed that coefficients in a second-order differential equation can be uniquely determined from the positions of the nodes for the eigenfunctions. They proved unique results, derived approximate

*Correspondence: ycakmak@cumhuriyet.edu.tr

2010 AMS Mathematics Subject Classification: 34A55, 34B10, 34L05, 34B24
solutions, gave error bounds, and presented numerical experiments (see [12]). Yang gave an algorithm to reconstruct the potential and the boundary condition of the Sturm–Liouville problem from nodal points of its eigenfunctions (see [36]). Inverse nodal problems have been extensively studied by many researchers for various operators (see [3], [4], [5], [7], [8], [13], [15], [17], [18], [19], [28], [29], [30], [34], [35] and references therein).

There are two kinds of nonlocal boundary conditions such as integral type conditions and Bitsadze and Samarskii type conditions. These types of nonlocal boundary conditions appear in various fields such as mathematical physics, biology, biotechnology, and when data cannot be measured directly at the boundary (see [9], [11], [21], [27], [37] and references therein). Nonlocal boundary conditions were first applied to elliptic equations by Bitsadze and Samarskii (see [2]). In recent years, some inverse problems for various types of operators with nonlocal boundary conditions have been investigated (see [1], [22], [23], [24], [33] and references therein). In addition, studies on inverse nodal problems with nonlocal boundary conditions can also be seen in [14], [16], [25], [26], [31], [32]. As far as we know, inverse nodal problem for quadratic pencil of the Sturm–Liouville equations with parameter-dependent Bitsadze–Samarskii-type nonlocal boundary condition has not been considered before.

2. Preliminaries

Let the functions $C = C(x, \lambda)$ and $S = S(x, \lambda)$ be the solutions of the equation (1.1) satisfying the initial conditions

$$C(0, \lambda) = 1, \quad C'(0, \lambda) = 0 \quad \text{and} \quad S(0, \lambda) = 0, \quad S'(0, \lambda) = 1$$

(2.1)

respectively.

From [4] and [6], the functions $C(x, \lambda)$ and $S(x, \lambda)$ satisfy the following asymptotic representations for $|\lambda| \to \infty$

$$C(x, \lambda) = \cos(\lambda x - Q(x)) + O\left(\frac{1}{\lambda} \exp |\text{Im} \lambda| x\right),$$

(2.2)

$$S(x, \lambda) = \frac{1}{\lambda} \sin(\lambda x - Q(x)) + \frac{1}{2\lambda^2} \left\{ (p(x) + p(0)) \sin(\lambda x - Q(x)) - c_1(x) \cos(\lambda x - Q(x)) + \int_0^x (q(t) + p^2(t)) \cos[\lambda(x - 2t) - Q(x) + 2Q(t)] dt + \int_0^x p'(t) \sin[\lambda(x - 2t) - Q(x) + 2Q(t)] dt \right\} + \frac{1}{4\lambda^4} \left\{ c_3(x) \sin(\lambda x - Q(x)) - c_4(x) \cos(\lambda x - Q(x)) \right\} + O\left(\frac{1}{\lambda^3} \exp |\text{Im} \lambda| x\right)$$

(2.3)

where $Q(x) = \int_0^x p(t) dt$, $c_1(x) = \int_0^x (q(t) + p^2(t)) dt$, $c_2(x) = \int_0^x (q(t) + p^2(t)) p(t) dt$,

$$c_3(x) = p^2(x) + p^2(0) + \frac{(p(x) + p(0))^2}{2} - \frac{1}{2} \left(\int_0^x (q(t) + p^2(t)) dt \right)^2,$$

$$c_4(x) = \int_0^x (q(t) + p^2(t)) (p(x) + p(0) + 2p(t)) dt = (p(x) + p(0)) c_1(x) + 2c_2(x).$$
The eigenvalues of the problem L coincide with the zeros of its characteristic function given by
\[
\Delta(\lambda) = \begin{vmatrix} U(C) & U(S) \\ V(C) & V(S) \end{vmatrix} = \lambda S(1, \lambda) - S(\alpha, \lambda). \tag{2.4}
\]

Thus, using the formulae (1.3), (2.2), (2.3), and (2.4), we obtain the following asymptotic formula for $\Delta(\lambda)$
\[
\begin{align*}
\Delta(\lambda) &= \sin \lambda + \frac{1}{2\lambda} \left\{ (p(1) + p(0)) \sin \lambda - c_1(1) \cos \lambda - 2 \sin \lambda \alpha \\
&\quad + \int_0^1 \left(q(t) + p^2(t) \right) \cos (\lambda(1 - 2t) + 2Q(t)) \, dt + \int_0^1 p'(t) \sin (\lambda(1 - 2t) + 2Q(t)) \, dt \right\} \\
&\quad + \frac{1}{4\lambda^2} \{ c_3(1) \sin \lambda - c_4(1) \cos \lambda - 2(p(\alpha) + p(0)) \sin \lambda \alpha + 2c_1(\alpha) \cos \lambda \alpha \} \\
&\quad + O \left(\frac{1}{n^2} \exp |\text{Im}\lambda| \right), \quad |\lambda| \to \infty.
\end{align*} \tag{2.5}
\]

By the method in \[10\], using (2.5) and Rouchè theorem and taking $\Delta(\lambda_n) = 0$ we can prove that the eigenvalues λ_n have the form
\[
\lambda_n = n\pi + \frac{c_1(1) - A_n^\pi + 2(-1)^n \sin n\alpha \pi}{2\pi} \\
+ \frac{(p(1) + p(0)) c_1(1) + 2c_2(1) + 2(-1)^n (p(\alpha) + p(0)) \sin n\alpha \pi - 2(-1)^n c_1(\alpha) \cos n\alpha \pi}{4n^2\pi^2} \\
+ o \left(\frac{1}{n^2} \right), \quad |n| \to \infty, \tag{2.6}
\]

where, for $n \in \mathbb{Z}\setminus\{0\}$, $x_n^0 = 0$, $x_n^1 = 1$, $j \in \mathbb{Z},$
\[
A_n^j = \int_0^{x_n^j} (q(t) + p^2(t)) \cos (2n\pi t - 2Q(t)) \, dt - \int_0^{x_n^j} p'(t) \sin (2n\pi t - 2Q(t)) \, dt.
\]

3. Main results
In this section, under condition (2.1) we obtain the asymptotics for the zeros of the function $\varphi(x, \lambda_n)$ called the nodal points of the problem L and develop a constructive procedure for solving the inverse nodal problem.

It is clear from (2.6) that for sufficiently large $|n|$, there is exactly one eigenvalue λ_n in the domain $\Gamma_n = \{ \lambda \mid |\lambda - n\pi| \leq 1 \}$ and since the functions $p(x)$ and $q(x)$ are real-valued, λ_n are real. Thus, the functions $\varphi(x, \lambda_n)$ are real-valued and
\[
\varphi(x, \lambda_n) = U(C(x, \lambda_n)) S(x, \lambda_n) - U(S(x, \lambda_n)) C(x, \lambda_n) = S(x, \lambda_n) \tag{3.1}
\]
are the eigenfunctions corresponding to the eigenvalues λ_n for sufficiently large $|n|$.
From (3.1), (2.3), and (2.6), we get
\[
\lambda_n \varphi(x, \lambda_n) = \sin(n \pi x - Q(x)) + \frac{1}{2n \pi} \left\{ \left(c_1 (1) - A_n^\alpha + 2 (-1)^n \sin n \alpha \pi \right) x - c_1 (x) \right\} \cos(n \pi x - Q(x)) \\
+ (p(x) + p(0)) \sin(n \pi x - Q(x)) + \int_0^x (q(t) + p^2(t)) \cos[n \pi (x - 2t) - Q(x) + 2Q(t)] \, dt \\
+ \int_0^x p(t) \sin[n \pi (x - 2t) - Q(x) + 2Q(t)] \, dt \right\} + \frac{1}{4n^2 \pi^2} \left\{ ((p(1) + p(0)) c_1 (1) + 2c_2 (1) \\
+ 2 (-1)^n (p(\alpha) + p(0)) \sin n \alpha \pi - 2 (-1)^n c_1 (\alpha) \cos n \alpha \pi) x \\
+ (p(x) + p(0)) (c_1 (1) + 2 (-1)^n \sin n \alpha \pi) x - c_4 (x) \right\} \cos(n \pi x - Q(x)) \\
+ \left[c_1 (x) (c_1 (1) + 2 (-1)^n \sin n \alpha \pi) x - c_4 (1) + 2 (-1)^n \sin n \alpha \pi \right] x^2 + c_3 (x) \right\} \sin(n \pi x - Q(x)) \right\} + o \left(\frac{1}{n^3} \right), \\
|n| \rightarrow \infty,
\]
uniformly in \(x \in [0, 1] \).

We can see from (3.2) that for sufficiently large \(|n| \) and \(j \in \mathbb{Z} \), the eigenfunctions \(\varphi(x, \lambda_n) \) have exactly \(|n| - 1 \) nodal points \(x^j_n \) in \((0, 1) \) as
\[
0 < x^1_n < x^2_n < \ldots < x^{n-1}_n < 1 \quad \text{for} \quad n > 0
\]
and
\[
0 < x^{-1}_n < x^{-2}_n < \ldots < x^{n+1}_n < 1 \quad \text{for} \quad n < 0.
\]

Lemma 3.1 The numbers \(x^j_n \) satisfy the following asymptotic formula for sufficiently large \(|n| \):
\[
x^j_n = \frac{j}{n} + \frac{Q(x^j_n)}{n \pi} + \frac{1}{2n^2 \pi^2} \left[c_1 (x^j_n) - c_1 (1) x^j_n - (A^j_n - A^\alpha_n x^j_n) - 2 (-1)^n x^j_n \sin n \alpha \pi \right] \\
+ \frac{1}{2n^2 \pi^2} \left[c_2 (x^j_n) - \left(c_2 (1) + \frac{(p(1) + p(0)) c_1 (1)}{2} \right) x^j_n + (-1)^n (p(\alpha) + p(0)) x^j_n \sin n \alpha \pi \right] \\
- (-1)^n c_1 (\alpha) x^j_n \cos n \alpha \pi \right\} + o \left(\frac{1}{n^3} \right),
\]
uniformly with respect to \(j \).

Proof From (3.2), taking \(\varphi(x^j_n, \lambda_n) = 0 \), we get
\[
\sin(n \pi x^j_n - Q(x^j_n)) + \frac{1}{2n \pi} \left\{ \left(c_1 (1) - A_n^\alpha + 2 (-1)^n \sin n \alpha \pi \right) x^j_n - c_1 (x^j_n) \right\} \cos(n \pi x^j_n - Q(x^j_n)) \\
+ (p(x^j_n) + p(0)) \sin(n \pi x^j_n - Q(x^j_n)) + \int_0^{x_n^j} (q(t) + p^2(t)) \cos[n \pi (x^j_n - 2t) - Q(x^j_n) + 2Q(t)] \, dt \\
+ \int_0^{x_n^j} p(t) \sin[n \pi (x^j_n - 2t) - Q(x^j_n) + 2Q(t)] \, dt \right\} + \frac{1}{4n^2 \pi^2} \left\{ ((p(1) + p(0)) c_1 (1) + 2c_2 (1) \\
+ 2 (-1)^n (p(\alpha) + p(0)) \sin n \alpha \pi - 2 (-1)^n c_1 (\alpha) \cos n \alpha \pi) x^j_n \right\}
\]
\[+ \left(p(x_n^j) + p(0) \right) (c_1(1) + 2 (-1)^n \sin n \alpha \pi) x_n^j - c_4(x_n^j) \right) \cos \left(n \pi x_n^j - Q(x_n^j) \right) \]
\[+ \left[c_1(x_n^j) (c_1(1) + 2 (-1)^n \sin n \alpha \pi) x_n^j - (c_1(1) + 2 (-1)^n \sin n \alpha \pi)^2 (x_n^j)^2 + c_3(x_n^j) \right] \sin \left(n \pi x_n^j - Q(x_n^j) \right) \} \]
\[+ o \left(\frac{1}{n^2} \right) = 0, \; |n| \to \infty. \]

This implies
\[\tan \left(n \pi x_n^j - Q(x_n^j) \right) = \frac{1}{2n \pi} \left[c_1(x_n^j) - c_1(1) x_n^j - \left(A_n^j - A_n^x x_n^j \right) - 2 (-1)^n x_n^j \sin n \alpha \pi \right] \]
\[+ \frac{1}{2n^2 \pi^2} \left[c_2(x_n^j) - c_2(1) + \frac{(p(1) + p(0))(c_1(1))}{2} \right] x_n^j + (-1)^n (p(\alpha) + p(0)) x_n^j \sin n \alpha \pi \]
\[- (-1)^n c_1(\alpha) x_n^j \cos n \alpha \pi + o \left(\frac{1}{n^2} \right), \; |n| \to \infty. \]

Using Taylor’s expansion formula for the arctangent, we get
\[n \pi x_n^j - Q(x_n^j) = j \pi + \frac{1}{2n \pi} \left[c_1(x_n^j) - c_1(1) x_n^j - \left(A_n^j - A_n^x x_n^j \right) - 2 (-1)^n x_n^j \sin n \alpha \pi \right] \]
\[+ \frac{1}{2n^2 \pi^2} \left[c_2(x_n^j) - c_2(1) + \frac{(p(1) + p(0))(c_1(1))}{2} \right] x_n^j + (-1)^n (p(\alpha) + p(0)) x_n^j \sin n \alpha \pi \]
\[- (-1)^n c_1(\alpha) x_n^j \cos n \alpha \pi + o \left(\frac{1}{n^2} \right), \; |n| \to \infty. \]

Therefore, the proof is concluded by the last equality. □

Let \(X \) be the set of nodal points and \(\alpha = \frac{k}{2}, \ k, \ell \in \mathbb{Z} \). It is obvious from (3.3) that the set \(X \) of all nodal points is dense in the interval \([0, 1]\). We can choose a sequence \(\{j_n\} \subset X \) so that \(\lim_{|n| \to \infty} x_n^{j_n} = x \). Clearly the subsequence \(\{x_m^{j_m}\} \) converges also to \(x \) for \(m = 2n\ell \). Then, there exist finite limits and corresponding equalities hold:
\[\pi \lim_{|m| \to \infty} \left(m x_m^{j_m} - j_m \right) := Q(x), \quad (3.4) \]
\[2\pi \lim_{|m| \to \infty} m \left[\pi \left(m x_m^{j_m} - j_m \right) - Q(x_m^{j_m}) \right] := f(x), \quad (3.5) \]
\[\pi \lim_{|m| \to \infty} m \left\{ 2m \pi \left[\pi \left(m x_m^{j_m} - j_m \right) - Q(x_m^{j_m}) \right] - f(x_m^{j_m}) \right\} + A_m^{j_m} - A_m x_m^{j_m} + 2 (-1)^m x_m^{j_m} \sin m \alpha \pi \right] := g(x) \quad (3.6) \]

and
\[f(x) = c_1(1)x - c_1(1)x, \quad (3.7) \]
\[g(x) = c_2(1) - \left(c_2(1) - \frac{(p(1) + p(0))(c_1(1))}{2} \right) x - c_1(\alpha)x. \quad (3.8) \]

Thus, the following theorem for the solution of the inverse nodal problem can be proved.
Theorem 3.2 Given the specification of any dense subset of nodal points $X_0 \subset X$ uniquely determines the functions $p(x)$ and $q(x)$ which can be found by the following algorithm.

Step 1. Denote $m = 2n\ell$ and for each fixed $x \in [0,1]$, choose a sequence $(x^m_m) \subset X_0$ such that $\lim_{|m| \to \infty} x^m_m = x$.

Step 2. Find the function $Q(x)$ via (3.4) and calculate

$$p(x) = Q'(x),$$

(3.9)

Step 3. Find the function $f(x)$ via (3.5) and determine

$$r(x) := q(x) - \int_0^1 q(t)dt = f'(x) - p^2(x) + \int_0^1 p^2(t)dt,$$

(3.10)

Step 4. For each fixed $x \in [0,1]$ and $2Q(x) - (p(1) + p(0))x - 2\alpha x \neq 0$, find $g(x)$ via (3.6) and calculate

$$\int_0^1 q(t)dt = \frac{2}{2Q(x) - (p(1) + p(0))x - 2\alpha x} \left[g(x) - \int_0^x (r(t) + p^2(t))p(t)dt \right. \left. + x \int_0^1 (r(t) + p^2(t))p(t)dt \right. \left. + \frac{(p(1) + p(0))x}{2} \int_0^1 (r(t) + p^2(t))dt \right],$$

(3.11)

Step 5. Calculate the function $q(x)$ from the formula

$$q(x) = r(x) + \int_0^1 q(t)dt.$$

(3.12)

Proof It is clear from the formula $Q(x) = \int_0^x p(t)dt$ that the formula (3.9) is provided. If we differentiate (3.7), we get $f'(x) = q(x) + p^2(x) - \int_0^x (q(t) + p^2(t))dt$. If we denote $r(x) := q(x) - \int_0^x q(t)dt$, we obtain immediately the formula (3.10). Substituting the function $q(x) = r(x) - \frac{1}{\pi} \int_0^x q(t)dt$ in (3.8) and taking (1.3) into account, we get the formula (3.11). Finally, from (3.10) and (3.11), we arrive at the formula (3.12).

Acknowledgment

The authors would like to express their gratitude to the editor and anonymous referees for their helpful comments which significantly improved the quality of the paper.

References

