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Abstract: This paper deals with the geometrical singularities of the weak solution of the mixed boundary value
problem governed by the stationary Stokes system in two-dimensional nonsmooth domains with corner points and points
at which the type of boundary conditions changes. The presence of these points on the boundary generally generates
local singularities in the solution. We will see the impact of the geometrical singularities of the boundary or the mixed
boundary conditions on the qualitative properties of the solution including its regularity. Moreover, the asymptotic
singular representations for the solution which inherently depend on the zeros of certain transcendental functions are
presented.
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1. Introduction
Let Ω ⊂ R2 be a 2-dimensional bounded domain, whose boundary ∂Ω comprises the corner points and points
at which the type of boundary conditions changes. Note that a point P ∈ ∂Ω is said to be a corner point if
there exists a neighborhood η(P ) of P such that Ω ∩ η(P ) is diffeomorphic to a cone κ intersected with unit
disc. For simplicity, we are considering a bounded plane polygonal domain (see Figure 1) with corner points
(ω ̸= π) and points (ω = π) at which the type of boundary conditions changes. The boundary points where
the boundary conditions change are also referred to as corner points or vertices. The obtained results for a
polygonal domain can be extended to a 2-dimensional bounded domain, i.e. (Lipschitz continuous) C0, 1 with
corner points. We considered one point as a special case of interest of corner points with an angle ω = π on one
side of the domain Ω , where the Neumann boundary condition, the Dirichlet boundary condition, respectively,
is prescribed.

For the polygonal domain Ω with the vertices P1, ..., PN , we introduce the following notations. Let
PN+1 = P1 , J =

{
1, ..., N

}
, Γi (i ∈ J ) be the open edge connecting the vertices Pi+1 and Pi , Γ0 = ΓN , and

ωi (i ∈ J ) be the interior angle made by Γi−1,Γi . Let JD =
{
i ∈ J : on Γi the Dirichlet boundary conditions

are prescribed
}

and JN =
{
i ∈ J : on Γi the Neumann boundary conditions are prescribed

}
.

We assume that JD , JN are nonempty disjoint sets and J = JD ∪JN . Moreover, let ΓD , ΓN be given
by ΓD =

⋃
i∈JD

Γi , ΓN =
⋃

i∈JN
Γi . We have ΓD ∩ ΓN = ∅ and ∂Ω = ΓD ∪ ΓN .
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Figure 1. Schematic illustration of a polygonal domain with vertices P1, ..., PN .

The velocity and pressure formulation of the stationary Stokes system on a domain Ω is

{
−ν∆v +∇ q = f in Ω,

divv = 0 in Ω,
(1.1)

where v = (v1, v2) is the velocity vector field with the cartesian components v1, v2 , ν is the viscosity parameter
of the fluid flow, i.e. (ν > 0), q is the hydrostatic pressure and f is a given volume force density.

The following mixed boundary conditions are considered on the boundary ∂Ω :

v = h1 on ΓD, (1.2)

S
[
v, q

]
n = h2 on ΓN , (1.3)

where n = (n1, n2) is the unit outward normal vector to the boundary and S
[
v, q

]
is the hydrostatic stress

tensor with the cartesian components

S
[
v, q

]
= −qδi j + ν

( ∂vi
∂xj

+
∂vj
∂xi

)
. (1.4)

Here, δi j is the Kronecker symbol. Furthermore, it is noted that if the second equation of (1.1) becoming
−divu = g for a given function g satisfying the property

∫
Ω
g dx = 0 , then a particular regularity of g

is required for proving the regularity of the pressure function or for handling the nonzero boundary data.
Generally, for incompressible flows the function g is set equal to zero to satisfy the incompressibility condition.
For simplicity, we are considering g equal to zero. Therefore, for a smooth boundary, smooth given data
and boundary conditions, the system (1.1) has a smooth solution [41]. The system (1.1) with the boundary
conditions (1.2)-(1.3) is known as the stationary Stokes system with mixed boundary conditions [27, 34].

The Navier-Stokes equations or even the Stokes equations are solved for Dirichlet boundary conditions
[8, 10, 11, 15, 17] but this is not common in some situations like finite channel flow models [17, 26]. Usually,
these boundary conditions are used in the upstream of the channel and on the fixed walls but not downstream
of the channel, because the downstream velocity depends on the flow in a channel which is unknown. The
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situation becomes more intricate when the boundary of the domain has corners or edges and the Neumann
boundary conditions are applied on parts of the boundary [25, 32]. Therefore, the second equation of (1.1) helps
to characterize the different types of Neumann boundary conditions with the Green theorem. In numerical
methods, the condition (1.3) is used on the downstream boundary [13].

The corner singularity theory has been established for compressible viscous Stokes and Navier-Stokes
systems on polygonal and polyhedral domains, and the singular behavior of the solution structure near the
corners and edges has been studied in [17, 25, 35]. The key point of the corner singularity theory is to split the
solution into regular and singular parts. In [25], the method of special ansatzes and spherical coordinates are used
to calculate the singular terms for the Dirichlet problem of the Stokes system. Analogously, in [38] the Fourier
transform is used for Lame’s system with various boundary conditions to obtain the singular functions. There
are some results about the regularity issues for stationary incompressible Stokes and Navier-Stokes systems
on bounded domains with corners. In the singularity expansion method for the Stokes problem, the spectral
problems related to the corner singularities of solutions to elliptic equations were discussed in [8, 9, 19]. Serre [37]
has investigated the existence of the solution of the stationary Navier-Stokes equation for an irregular boundary
data for a connected and open bounded subset but has not analyzed the regularity of the considered problem
in a cornered domain where the types of boundary conditions change. Kellog and Osborn showed the H2 ×H1

regularity result for the solution of the Stokes problem in a convex polygonal domain in [21]. The Hs -regularity
(s being real and nonnegative) of solutions to the Stokes system on convex domains with corners was studied
by [10]. Kweon [28] has considered zero Dirichlet boundary conditions to examine the regularity results of the
incompressible Navier-Stokes equations in a nonconvex polygonal domain. These results have been extended for
compressible Navier-Stokes equations in a nonconvex polyhedral cylinder in R3 with inflow boundary conditions
[30, 31]. Also, Mazya [33] has considered the stokes problem with mixed boundary conditions in a polyhedral
domain to analyze the existence and regularity of the problem in weighted Sobolev spaces. Moreover, the results
are established on the point estimates of Green’s matrix. The Helmholtz decomposition was used to obtain
regularity results of the compressible Stokes system in a nonconvex polygonal domain with no-slip boundary
conditions in [29]. The treatment of corner singularities and regularity results of the stationary Stokes and
Navier-Stokes equations on polygonal domains with convex and nonconvex corners are comprehensively explored
in [4].

However, the above-cited literature reveals that the main singularity and regularity properties are inves-
tigated by using the classical Sobolev spaces, and by employing the Fourier transform, the method of special
ansatzes, and spherical coordinates.

The main focus of the present study is to analyze the existence and regularity of the weak solution of the
mixed boundary value problem for the stationary Stokes system in a two-dimensional bounded domain with
corner points or points at which the type of boundary conditions change. The aims are to analyze the qualitative
properties of the solutions including their regularity near corner points where the types of boundary conditions
change. A parametric boundary value problem for the Stokes system is obtained by employing the localization
technique and the Mellin transform, which depends polynomially on the spectral parameter. Furthermore, we
derive the transcendental equations for the parameter problem for various combinations of Dirichlet, Neumann,
and mixed boundary conditions, which, in turn, depends on the abovementioned parameter. Analytically, it
is much more difficult to determine the values of a parameter; therefore, a MATLAB program is developed
with the aid of the Newton method to compute the distributions of the parameter. The existence of the
generalized eigenvalues is discussed in a strip Re λµ ∈ [0, 1) with the aforementioned combinations of the
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boundary conditions that depend on the apex angle ω0 of the considered domain. Moreover, it is shown that
the obtained eigenvalues and the corresponding eigenfunctions generate the singular terms, which allows us to
determine the optimal regularity of the weak solution of the Stokes system.

The organization of this paper is as follows: In Section 2, we introduce some function spaces and present
the weak formulation of the stationary Stokes problem. In Section 3, we determine a parametric boundary
eigenvalue problem with a complex parameter λ , the stationary Stokes system is being considered for various
combinations of Dirichlet, Neumann, and mixed boundary conditions. Furthermore, transcendental equations
for different conditions whose zeros are the eigenvalues of the operator pencil Û(λ) are derived. In Section 4, the
distribution of the eigenvalues and the eigenfunctions are discussed. The obtained eigenvalues and eigensolutions
yield singular terms. Additionally, some regularity results are presented. Section 5 is devoted to conclusions.

2. Analytical preliminaries
2.1. Some function spaces

Let us consider the following function spaces from [1, 14]. For v = v(x) with x = (x1, x2) ∈ Ω . We denote by
Dαv the multiindex notation for higher-order derivatives and in cartesian coordinates is described as

Dαv =
∂|α|v

∂xα1
1 ∂xα2

2

, α = (α1, α2), |α| = α1 + α2. (2.1)

For 1 ≤ p ≤ ∞ , the space of all Lebesgue-measurable functions v describe on Ω and p -integrable on Ω is
denoted by Lp(Ω) and is equipped with the norm

∥∥v∥∥
Lp(Ω)

=

{ ( ∫
Ω
|v(x)|pdx

) 1
p <∞, for 1 ≤ p <∞,

ess sup
{
|v(x)| : x ∈ Ω

}
, for p = ∞.

We can write
∥∥v∥∥

Lp(Ω)
=
∥∥v∥∥

p,Ω
. For p = 2 , then ∥v∥2,Ω is the norm in L2(Ω) . It is recognized that Lp(Ω)

is a Banach space. Let [Lp(Ω)]∗ = Lq(Ω) is the corresponding dual space, where q is the dual exponent given
by 1

p + 1
q = 1 . Moreover, the space L2(Ω) is a Hilbert space endowed with the inner product

(v, u)0 = (v, u)L2(Ω) =

∫
Ω

v(x)u(x)dx.

Now, the proper function spaces to define the weak derivatives of functions on domain Ω are introduced.
The usual definition of differentiability is too strong for our intentions, and we introduce the concept of weak
differentiability. The function v ∈ Lp

loc(Ω) (this means that v ∈ Lp
loc(Ω0) for all Ω0 ⊂⊂ Ω) possesses an αth

weak derivative (α ∈ N0) if there exists some u ∈ Lp
loc(Ω) satisfying∫

Ω

v(x) ∂
α

∂xα
ψ(x)dx = (−1)|α|

∫
Ω

u(x)ψ(x)dx ∀ψ ∈ C∞
0 .

If this is the case, we write Dαv = u as the weak derivative is unique. Now, it remains to describe the suitable
function spaces. For certain given nonnegative integer m ∈ N0 and 1 ≤ p ≤ ∞ , we denote by Wm,p(Ω) the
Sobolev spaces are defined as

Wm,p(Ω) =
{
v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀|α| ≤ m

}
.
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This is a Banach space which equipped with the norm

∥v∥Wm,p(Ω) =
( ∑

|α|≤m

∫
Ω

|Dαv(x)|pdx
) 1

p

, p ∈ [1,∞),

∥v∥Wm,∞(Ω) =
∑

|α|≤m

∥Dαv(x)∥L∞(Ω), p = ∞.

We also need the seminorm

|v|Wm,p(Ω) =
( ∑

|α|=m

∫
Ω

|Dαv(x)|pdx
) 1

p

, p ∈ [1,∞),

|v|Wm,∞(Ω) =
∑

|α|=m

∥Dαv(x)∥L∞(Ω), p = ∞.

The Sobolev spaces of nonintegral order are introduced below in Definition 2.1. Particularly, the space
Wm,p(Ω) for the case p = 2 is a Hilbert space with the inner product (., .) . For simplicity, denoted by
Wm,2(Ω) = Hm(Ω) = Hm with the norm ∥v∥Wm,2(Ω) = ∥v∥Hm(Ω) . Furthermore, we use the notation
L2
0 =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
and let H1

0 denote the functions in H1 with zero boundary values. For
m ∈ (0, 1) , Hm

0 denotes the closure of C∞
0 in the topology of Hm , where C∞

0 is the space of all C∞ functions
with compact support in Ω . When m ≥ 1 , Hm

0 = Hm ∩H1
0 . The dual space of Hm

0 is denoted by H−m and

is endowed with the norm ∥f∥−m = sup
0 ̸=v∈Hm

0

〈
f, v
〉

∥v∥m
, where the notation

〈
,
〉

stands for the duality pairing.

For vector spaces, we can write Hm = Hm×Hm , Lm = Lm×Lm , etc. Let C represent a generic constant
which can have different values in different places and may depend on certain quantities as parameters.

Definition 2.1 For a real m ≥ 0 , represented as m = n+ σ with n ∈ N0 and 0 < σ < 1 , the space

Hm =Wm,2(Ω) =
{
v : Ω → R : ∥v∥m,2 <∞

}
, (2.2)

where

∥v∥2m,2 = ∥v∥2n,2 +
∑
|α|=n

|Dαv|2σ,2,

and

∥v∥n,2 =
( ∑

|α|≤n

∥Dαv∥20,2
) 1

2

,

|Dαv|σ,2 =
(∫

Ω

∫
Ω

|Dαv(x1)− Dαv(x2)|2

|x1 − x2|2+2σ
dx1dx2

) 1
2

,

is known as the Sobolev-Slobodeskij space. It is endowed with the norm ∥v∥m,2 .
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2.2. The weak solution of the Stokes problem

In this section, the weak formulation for the stationary Stokes problem (1.1)-(1.3), the solvability, and the
uniqueness of the solution are presented in a detail. Let

E(Ω) =
{
u ∈ C∞(Ω)2; divu = 0, suppu ∩ ΓD = ∅

}
,

where suppu =
{

x
∣∣u(x) ̸= 0

}
, and suppu ⊂ Ω . Moreover, let u ∈ C∞(Ω) be a test function such that u = 0

on ΓD . Let V m, p be a closure of E(Ω) in the norm of Wm, p(Ω)2, 1 ≤ p <∞ and m ≥ 0 (m need not be an
integer). Then V m, p is a Banach space with the norm of Wm, p(Ω)2 . For simplicity, we denote V 0, 2 and V 1, 2

as H and U , respectively. They are closed subspaces of the spaces L2(Ω)2 and W 1, 2(Ω)2 . Note that U and
H , respectively are Hilbert spaces with the scalar products

(
u,v

)
H

=

∫
Ω

u · v dx and
(
u,v

)
U
=

∫
Ω

∇u · ∇v dx =

∫
Ω

∂ui
∂xj

∂vi
∂xj

dx. (2.3)

To seek that v ∈W 1, 2(Ω)2 and q ∈ L2(Ω) , define the following function space

W (Ω) =
{
u ∈W 1, 2(Ω)2 : u = 0 on ΓD

}
.

Moreover, the second equation of (1.1) yields that v − h1 belongs to the subsequent space

V (Ω) =
{
u ∈W 1, 2(Ω)2 : u = 0 on ΓD, div u = 0, in Ω

}
,

supposing h1 has a divergence-free lift. Clearly, V (Ω) ⊂W (Ω) are closed subspaces of W 1, 2(Ω)2 .
The weak solution of the problem (1.1)-(1.3) is obtained from the following variational formulation: find

a pair (v, q) such that v − h1 ∈ V , q ∈ L2(Ω) and

a
(
v,u

)
+ b
(
q,u
)
=
(
f ,u
)
+
(
h2,u

)
ΓN
, ∀u ∈W, (2.4)

where

a
(
v,u

)
= 2ν

∫
Ω

D(u) : D(v) dx and b
(
q,u
)
= −

∫
Ω

q (divu) dx,

where D(u) is the symmetric part of the velocity gradient ∇u . The coercivity of the bilinear form a
(
., .
)

is ensured by Korn’s inequality. Furthermore, by De Rham’s theorem [39, 40], the equation (2.4) yields the
following identity

a
(
v,u

)
=
(
f ,u
)
+
(
h2,u

)
ΓN
, ∀u ∈ V. (2.5)

Remark 2.2 It is noted that when ΓD = ∂Ω that the bilinear form a reduces to

a
(
v,u

)
= ν

∫
Ω

∇u : ∇v dx,

then in this case one does not need Korn’s inequality to prove the coerciveness.
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Remark 2.3 The weak solution of the Navier-Stokes system with homogenous boundary conditions is proved
in [7, 18]. For any f ∈ L2 , there exists a uniquely determined weak solution (v, q) of the homogenous mixed
boundary value problem (1.1)-(1.3) and the following estimate holds:

∥v∥V + ∥q∥L2(Ω) ≤ c∥f∥L2(Ω), (2.6)

where c = c(Ω) . Hence, we have to analyze the smoothness of the weak solution (v, q) and see how it depends
on the sizes of the angles ωi, i = 1, ..., N of our polygonal domain.

Remark 2.4 The weak formulation of the mixed boundary value problem for the Stokes system (1.1)-(1.3) in
a bounded Lipschitz domain for an arbitrary h1 and h2 is proved in [[13], Theorem 3.1, Part (iii)]. That is,
if
∣∣ΓD

∣∣ > 0 and
∣∣ΓN

∣∣ > 0 , there exists a unique solution (v, q) ∈ W × L2(Ω) of the variational problem (2.4)
that depends continuously on the data, i.e.

∥v∥W + ∥q∥L2(Ω) ≤ c
(
∥f∥L2(Ω) + ∥h1∥

H
1
2
(ΓD)

+ ∥h2∥
H

− 1
2

(ΓN )

)
, (2.7)

where the constant c(Ω,ΓD) . The pressure is unique under these conditions, and if
∣∣ΓN

∣∣ = 0 , then lose the
uniqueness up to a constant.

Remark 2.5 If the given data on the right-hand sides of (1.1)-(1.3) are smoother, for example, f ∈ L2(Ω)2 ,
h1 ∈ [H

3
2 (ΓD)]2 and h2 ∈ [H

1
2 (ΓN )]2 , further if the domain is sufficiently smooth and the boundary conditions

do not change their types, then it is proved in [41] that the weak solution (v, q) of the Stokes system belongs
to [H2(Ω)]2 × [H1(Ω)] . Instead, if the domain has corner points or points upon which the type of boundary
conditions changes, in general, the regularity cannot be improved accordingly (see [16, 21]). As a matter
of fact, in these cases, the regularity can be described by a decomposition of the two-dimensional solution

v(x1, x2) =
(
v1, v2, q

)T
(x1, x2) into singular and regular parts of the form

v = vsing + vreg =
∑
j, k

r
λj, k

k Φj, k(λj, k, rk, θk) + vreg. (2.8)

Here, the regular part vreg belongs to [H2(Ω)]2×[H1(Ω)] , the corner points are indicated by k with the equivalent
polar coordinates (rk, θk) , the exponents λj, k are the eigenvalues of the considered problem, and Φj, k are the
corresponding generalized eigenvector fields.

Therefore, the information about the singular terms permits us to determine the Sobolev-Slobodeskij spaces
wherein the weak solution of the considered boundary value problem is contained. Thus, we can subsequently
formulate the regularity problem:

Definition 2.6 (The regularity problem for the two-dimensional Stokes problem). Determine an optimal m ∈ R
with m ≥ 0 , so that the leading singularity belongs to the Sobolev-Slobodeskij space [Hm+1(Ω)]2 × [Hm(Ω)] .

3. The Stokes problem in an infinite cone
In this section, we will see the occurrence of the singular terms of the solutions of the boundary value problem
governed by the stationary Stokes problem near the corners and the structure which they have. So, to analyze
these results, the following steps are followed.
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1. We localize the Stokes problem (1.1)-(1.3) in the neighborhood of a corner point and then consider the
problem (1.1)-(1.3) in an infinite cone.

2. The problem (1.1)-(1.3) is written in local polar coordinates (r, θ) and then using the change of variable
r = eτ . Afterward, the Mellin transform concerning the variable τ is applied to obtain a boundary
value problem for a system of ordinary differential equations which depend on the complex parameter λ .
Moreover, the operator pencil Û(λ) is used to represent the generalized form of this parametric boundary
eigenvalue problem.

3. The eigenvalues and the generalized eigensolutions of this parametric boundary eigenvalue problem with
various kinds of boundary conditions are obtained. They enter the asymptotic development of the solution
of the model problem near the corner points. Finally, the regularity results can be followed by the general
theory of ellipticity.

3.1. Localization and the model problem

Assume that Ω is a polygonal domain. To show that the weak solution (v, q) of the underlying boundary value
problem is regular, we have to investigate its behaviour near the corner points Pi (i ∈ J ) . Let us consider the
corner point PN as origin and denote ωN = ω0 ∈ (0, 2π) . An appropriate infinite differentiable cut-off function
χ(|x|) = χ(r) depending on the distance r from the point PN is defined as

χ(r) =

{
1 for 0 ≤ r ≤ ϵ,

0 for r ≥ 2ϵ.

The number ϵ is so small that PN is the only corner point of the domain Ω that lies inside the circle
{x : |x| ≤ 2ϵ} . We multiply both sides of (1.1) and (1.2)-(1.3) by the smooth cut-off function χ , then substitute
(u, p) = (χv, χq) in (1.1) and likewise in (1.2)-(1.3). The derivatives are considered in the distribution sense.
Thus, the boundary value problem is set into an infinite cone

S =
{
(r, θ) : 0 < r <∞, 0 < θ < ω0

}
,

and coincides with the original problem near the point PN . The Stokes system (1.1) becomes

{
−ν∆u+∇p = F in S,

divu = G in S,
(3.1)

where F = χ f − 2ν∇χ · ∇v − ν v∆χ + q∇χ and G = v · ∇χ . The behavior of (u, p) near the corner point
PN determines the regularity of the solution (v, q) in the neighborhood of the point PN . If we suppose that
the right-hand side in (1.1) is f ∈ L2(Ω)2 , then F ∈ L2(S)2 and G ∈ H1(S) . Besides, the following boundary
conditions are prescribed on the subsequent edges ΓS, 0 (θ = 0) and ΓS, ω0

(θ = ω0) of the cone (see Figure 2).
Just one condition is considered per edge to differentiate between the mixed boundary conditions. Therefore,
the obtained boundary conditions are:
Dirichlet boundary conditions:

u = H1 on ΓS, 0, ΓS, ω0
if ΓS, 0, ΓS, ω0

⊂ ΓD, (3.2)
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where χh1 = H1 .
Neumann boundary conditions:

S
[
u, p

]
n = H2 on ΓS, 0, ΓS, ω0

, if ΓS, 0, ΓS, ω0
⊂ ΓN , (3.3)

where χh2 + ν n
(
∇χ · v + v · χ

)
= H2 , and the notation (·) denotes the vector direct product between two

vectors.
Mixed boundary conditions: {

u = H1 on ΓS, 0 if ΓS, 0 ⊂ ΓD,

S
[
u, p

]
n = H2 on ΓS, ω0

if ΓS, ω0
⊂ ΓN .

(3.4)

 
S

 
NP

,
0

S 


,0S


0


Figure 2. The infinite cone S with opening angle ω0.

It is observed that the right-hand sides of the obtained boundary conditions have similar smoothness
as the original problem in the domain Ω . To analyze the regularity results of the boundary value problem
(3.1)-(3.4) , we rewrite the operators in polar coordinates. Hence, the transformed form is

−ν
(∂2ur
∂r2

+
1

r

∂ur
∂r

+
1

r2
∂2ur
∂θ2

− ur
r2

− 2

r2
∂uθ
∂θ

)
+
∂p

∂r
= Fr,

−ν
(∂2uθ
∂r2

+
1

r

∂uθ
∂r

+
1

r2
∂2uθ
∂θ2

− uθ
r2

+
2

r2
∂ur
∂θ

)
+

1

r

∂p

∂θ
= Fθ,

1

r

∂

∂r
(r ur) +

1

r

∂

∂θ
uθ = G,

(3.5)

where (ur, uθ) are the polar components of the velocity vector u , (Fr, Fθ) are the polar components of F and
are given by

u =

(
ur
uθ

)
= A

(
u1
u2

)
,F =

(
Fr

Fθ

)
= A

(
F1

F2

)
, A =

(
cos θ sin θ
− sin θ cos θ

)
.

Similarly, the boundary conditions (3.2)-(3.4) emerge as

u
∣∣
θ=0, ω0

= (ur, uθ)
T
∣∣
θ=0, ω0

= H
1
, (3.6)
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{
1
r

∂ur

∂θ + ∂uθ

∂r − 1
r uθ

∣∣
θ=0, ω0

= H
2

r,

−p+ 2ν
(
1
r

∂uθ

∂θ + 1
r ur

)∣∣
θ=0, ω0

= H
2

θ,
(3.7)


ur
∣∣
θ=0

= H
1

r,

uθ
∣∣
θ=0

= H
1

θ,

1
r
∂ur

∂θ + ∂uθ

∂r − 1
ruθ
∣∣
θ=ω0

= H
2

r,

−p+ 2ν
(
1
r
∂uθ

∂θ + 1
rur
)∣∣

θ=ω0
= H

2

θ,

(3.8)

and H
m

= (H
m

r , H
m

θ )T , where m = 1 for Dirichlet and m = 2 for Neumann boundary conditions. They hold
in the infinite cone where u(r, θ) = u(x1, x2), p(r, θ) = p(x1, x2), F(r, θ) = F(x1, x2) and G(r, θ) = G(x1, x2) .

Now, the variable τ is introduced by the relation r = eτ . Accordingly, the system (3.5) is set on the
infinite strip with width ω0 as

−ν
(∂2ũτ
∂τ2

+
∂2ũτ
∂θ2

− ũτ − 2
∂ũθ
∂θ

)
+
∂p̃

∂τ
− p̃ = F̃τ in S̄,

−ν
(∂2ũθ
∂τ2

+
∂2ũθ
∂θ2

− ũθ + 2
∂ũτ
∂θ

)
+
∂p̃

∂θ
= F̃θ in S̄,

∂ũτ
∂τ

+ ũτ +
∂ũθ
∂θ

= G̃ in S̄.

(3.9)

Here, S̄ =
{
(τ, θ) : −∞ < τ < ∞, 0 < θ < ω0

}
and ũ = u(eτ , θ), p̃ = eτ p(eτ , θ), F̃ = e2τ F(eτ , θ) and

G̃ = eτ G(eτ , θ) . The Dirichlet, Neumann, and mixed boundary conditions also yield the transformed form

with the boundary data H̃l+1 = elτH
l+1

(eτ , θ), l = 0, 1 as

ũ
∣∣
θ=0, ω0

= (ũτ , ũθ)
T
∣∣∣
θ=0, ω0

= H̃1, (3.10)

 ±ν
(
∂ũτ

∂θ + ∂ũθ

∂τ − ũθ
)∣∣∣

θ=0, ω0

= H̃2
τ ,

±
(
− p̃+ 2ν(∂ũθ

∂θ + ũτ )
)∣∣∣

θ=0, ω0

= H̃2
θ ,

(3.11)



ũτ
∣∣
θ=0

= H̃1
τ ,

ũθ
∣∣
θ=0

= H̃1
θ ,

ν
(
∂ũτ

∂θ + ∂ũθ

∂τ − ũθ
)∣∣∣

θ=ω0

= H̃2
τ ,

−p̃+ 2ν
(
∂ũθ

∂θ + ũτ
)∣∣∣

θ=ω0

= H̃2
θ .

(3.12)

To obtain the boundary eigenvalue value problem, the Mellin transform with respect to r ∈ R+
0 is introduced

as

M[ū(r)](α) = û(α) = (2π)−
1
2

∫ ∞

0

ū(r)r−α−1dr, α ∈ C. (3.13)
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Letting r = eτ , (3.13) yields

M[ū(r)](α) = û(α) = (2π)−
1
2

∫ ∞

−∞
e−iλτ ũ(eτ )dτ = F [ũ(eτ )](λ), (3.14)

where α = iλ, λ ∈ C , i2 = −1 and F [ũ(eτ )](λ) is the complex Fourier transform with respect to the variable
τ . We have

Reα = −Imλ, Imα = Reλ.

Now, by applying (3.14) to (3.9)-(3.12) with respect to τ , the two-point boundary value problem for the
unknown functions (ûτ , ûθ, p̂) is obtained. It depends on the complex parameter λ and holds on the interval
I = (0, ω0) . Let L̂(λ) denote the matrix differential operator of the transformed form of the system (3.9) and
maps W 2, 2(I)2 ×W 1, 2(I) → L2(I)2 ×W 1, 2(I) . Therefore, one has

L̂(λ)(û, p̂) = (F̂, Ĝ) on I = (0, ω0), (3.15)

where

L̂(λ) =

−ν
[

∂2

∂θ2 − (1 + λ2)
]

2ν ∂
∂θ −(1− iλ)

−2ν ∂
∂θ −ν

[
∂2

∂θ2 − (1 + λ2)
]

∂
∂θ

(1 + iλ) ∂
∂θ 0

 . (3.16)

Additionally, the matrix boundary operators for different kinds of boundary conditions can be written as:
For Dirichlet boundary conditions

B̂DD1(λ)
∣∣
θ=0

=

(
1 0 0
0 1 0

)
, B̂DD2(λ)

∣∣
θ=ω0

=

(
1 0 0
0 1 0

)
. (3.17)

For Neumann boundary conditions

B̂NN1(λ)
∣∣
θ=0

=

(
ν ∂
∂θ −ν(1− iλ) 0

2ν 2ν ∂
∂θ −1

)
, B̂NN2(λ)

∣∣
θ=ω0

=

(
−ν ∂

∂θ ν(1− iλ) 0

−2ν −2ν ∂
∂θ 1

)
. (3.18)

For mixed boundary conditions

B̂DN1(λ)
∣∣
θ=0

=

(
1 0 0

0 1 0

)
, B̂DN2(λ)

∣∣
θ=ω0

=

(
ν ∂
∂θ −ν(1− iλ) 0

2ν 2ν ∂
∂θ −1

)
. (3.19)

Therefore, the operator B̂[. .](λ) is used below to define the general transformed form of the matrix boundary
operators for different kinds of boundary conditions{

B̂[. .](λ)(û, p̂)
}
=
(
Ĥ1, Ĥ2

)
on ∂I = (0, ω0). (3.20)

Accordingly, the generalized form of the operator pencil Û(λ) for the two-point boundary value problem can
be written as

Û(λ) =
[
L̂(λ),

{
B̂[. .](λ)

}]
. (3.21)
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Therefore, the operator Û(λ) maps W 2, 2(I)2 ×W 1, 2(I) into L2(I)2×W 1, 2(I)×C2×C2 . Note that Û(λ) can
be defined for every boundary point in the sense of [2, 3]. Thus, Û(λ)(θ, λ) = 0 is used to describe a generalized
eigenvalue problem and the solvability of these type of problems is discussed in [24]. Besides, the eigenvalues
of the operator Û(λ) are obtained with the determinant method; this means that the nontrivial solution of the
generalized eigenvalue problem leads to a transcendental equation whose zeros are the eigenvalues of Û(λ) . To
compute the eigenvalues and the corresponding eigenfunctions, we proceed as follows.

Definition 3.1 A complex number λ = λ0 is known as eigenvalue of Û(λ) if there exists a nontrivial solution,
i.e. û(., λ0) ̸= 0, which is holomorphic at λ0 , such that Û(λ0) û(θ, λ0) = 0 . û(θ, λ0) is called an eigenfunction
of Û(λ0) corresponding to the eigenvalue λ0 . The set of fields

{
û0(θ, λ0), û0,1(θ, λ0), ..., û0,s(θ, λ0)

}
with

û0,0 = û0 is said to be a Jordan chain corresponding to the eigenvalue λ0 , if the equation

m∑
q=0

1

q!

( ∂
∂λ

)q Û(λ) v̂0,m−q(θ, λ)
∣∣
λ=λ0

= 0 for m = 1, 2, ..., s,

is satisfied. The number s+ 1 is called the length of the Jordan chain.

Remark 3.2 It is noted [22–24] that if the complex number λ is not an eigenvalue of the operator Û(λ) , then
Û(λ) is an isomorphism between the spaces W 2, 2(I)2 ×W 1, 2(I) and L2(I)2 ×W 1, 2(I)× C2 × C2 .

3.2. The calculation of the eigenvalues

To evaluate the eigenvalues and the corresponding eigenfunctions of the stationary Stokes system for various
boundary conditions, the determinant method is considered (see [5]). The result is the transcendental equations
whose roots are the eigenvalues, namely, λµ wherein (µ is used for multiple eigenvalues, i.e., µ = 1, ..., N ).
Dirichlet boundary conditions (DD): It means that Dirichlet boundary conditions are given on both sides
of the corner point. The solutions of the equation

sin2(λω0) = λ2 sin2(ω0), (3.22)

are the eigenvalues of Û(λ) .
Neumann boundary conditions (NN): It means that the Neumann boundary conditions are given on both
sides of the corner point. The eigenvalues are the solutions of the equation

λ2 sin2(ω0)− sin2(λω0) = 0. (3.23)

Mixed boundary conditions (DN): It means that Dirichlet or Neumann boundary condition is given on
one-side of the corner point and the other condition is given on the other side. The eigenvalues are the solutions
of the equation

cos2(λω0)− λ2 sin2(ω0) = 0. (3.24)
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4. Regularity results

Let (v, q) ∈W 1, 2(Ω)2×L2(Ω) be the unique weak solution of the stationary Stokes problem. The information of
the singular terms permits us to evaluate the optimal regularity of the weak solution (see [4, 38]). The exponent
λµ (generally complex) described below are the resulting eigenvalues that can be obtained from the above
derived transcendental equations of the generalized boundary eigenvalue problem. For the optimal regularity of
the weak solution, it holds that the solution belongs to H1+Reλω0

−ϵ(Ω) , where ϵ > 0 and λω0 is that eigenvalue
which has the smallest real part Re λω0 that lies in the interval (0, 1) . In the subsequent figures (Figures 3 and
4), the black lines reveal the real eigenvalues, while the red lines reveal the real parts of the conjugate pair of
complex eigenvalues.

Figure 3. Distribution of the eigenvalues for DD and NN
boundary conditions, where black lines −→ real eigenval-
ues and red lines −→ real parts of the conjugate pair of
complex eigenvalues.

Figure 4. Distribution of the eigenvalues for Dirichlet-
Neumann boundary conditions, where black lines −→ real
eigenvalues and red lines −→ real parts of the conjugate
pair of complex eigenvalues.

To estimate the singular terms in solutions, the query arises whether we have achieved all the feasible
singular terms. The response is yes if all the eigenvalues are simple. The following theorem [11, 24] expresses
the singular behavior of the solution of the problem (2.4) in the neighborhood of a corner point.

Theorem 4.1 Given f ∈ Lp(Ω)2 , 1 ≤ p < ∞ , (v, q) is the uniquely determined weak solution of the problem
(2.4) and let P be an isolated corner point of Γ . If λ1, λ2, ..., λN are the eigenvalues of the operator Û(λ) ,
then the solution (v, q) admits the subsequent expansion in a neighborhood Pδ of P , i.e.

(
v, q
)
= χ(r)

[
N∑

µ=1

Iµ∑
ρ=1

κµρ−1∑
κ=0

cµ, ρ, κ Φµ, ρ, κ(r, θ)

]
+
[
vreg(r, θ), qreg(r, θ)

]
, (4.1)

with
(
vreg(r, θ), qreg(r, θ)

)
∈W 2,p(Pδ)

2 ×W 1,p(Pδ) . Here, N be the number of all eigenvalues of the operator

Û(λ) in the strip Reλµ ∈ (0, 2 − 2
p ) , the constants cµ, ρ, κ depend on the data and the singular functions,

Iµ = dimKer Û(λµ) , κµρ is the length of the Jordan chains of Û(λµ) and the corresponding singular functions
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are given by

Φµ, ρ, κ(r, θ) =
(
vµ, ρ, κ(r, θ), qµ, ρ, κ(r, θ)

)
, (4.2)

with

vµ, ρ, κ(r, θ) = rλµ

κ∑
j=0

( log r)j

j!
Φρ, κ−j

µ (θ), (4.3)

qµ, ρ, κ(r, θ) = rλµ−1
κ∑

j=0

( log r)j

j!
φρ, κ−j
µ (θ). (4.4)

The logarithmic terms occur only if λµ has the algebraic multiplicity greater than one.
For a detailed explanation of the eigenvalues and the equivalent eigenvectors, we refer to [[25] Chapter

5.1] and the results specified in [[25] Theorem 5.1.1].
Now, we briefly describe the results on the eigenvalues of the equations (3.22)-(3.24) and the corresponding

eigenvectors. We consider the equation (3.22) to find the roots, and the others will be treated analogously.
Ordering these solutions with the nondecreasing real part, a nondecreasing sequence of numbers λi, j : j = 1, 2, ...

is obtained, where i = 1, ..., N is used to represent the number of vertices or corner points of Ω .
The numbers si, j are defined by

si, j = Re λi, j + 1, j = 1, 2, ...,

which is known as the order of the regularity of the solution space. Let [Φi, j , φi, j ] be the singular functions
corresponding to the velocity and pressure with the singular exponents λi, j and defined as

Φi, j = χi r
λi, j

i τi, j(θ), φi, j = χi r
λi, j−1
i ξi, j(θ). (4.5)

The functions ξi, j(θ) and τi, j(θ) are certain trigonometric pressure and velocity eigenfunctions respectively,
relative to the eigenvalues λi, j , j = 1, 2, ... , where χi is a smooth cutoff function. More information about
the number λi, j can be found in [22, 25]. Furthermore, the nonconvex and convex cases are discussed below
separately regarding the apex angle ω0 .
Case 1. For the nonconvex case, that is ω0 ∈ (π, 2π) , the first 3 leading eigenvalues λi, j , j = 1, 2, 3 are real
and the properties

1

2
< λi, 1 <

π

ω0
< λi, 2 = 1 < λi, 3 <

2π

ω0
, ω0 ∈ (π, ω∗], (4.6)

1

2
< λi, 1 <

π

ω0
< λi, 2 < λi, 3 = 1 <

2π

ω0
, ω0 ∈ (ω∗, 2π). (4.7)

hold. In particular, ω∗ ≈ 1.4303π is the unique solution of the equation tanω−ω = 0 in the interval ω ∈ [0, 2π) .
It can be seen that for an angle ω0 ∈ (ω∗, 2π) , there are two eigenvalues λi, 1, λi, 2 less than 1.
Case 2. For the convex case, that is ω0 ∈ (0, π) , λi, 1 is a simple and unique eigenvalue that lie in the strip
0 < Reλi, 1 <

π
ω0

. For this, the relative pressure eigenfunction ξi, j(θ) has a constant value and the velocity
eigenfunction τi, j(θ) is zero.
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Similarly, the dual singular functions for the velocity vector and the pressure function are
{(

Φ−
i, j , φ

−
i, j

)
, for j ≥

1
}

and defined by

Φ−
i, j = χi r

−λi, j

i τ−i, j(θ),

φ−
i, j = χi r

−λi, j−1
i ξ−i, j(θ).

(4.8)

Hence, the functions
{
τ−i, j(θ), ξ

−
i, j(θ)

}
are obtained by replacing λ = −λi, j into the eigenfunctions

{
τi, j(θ), ξi, j(θ)

}
.

Remark 4.2 It is noted from the abovementioned results that the qualitative properties of the solution including
regularity of the underlying boundary value problem depends on the properties of the eigenvalues λ

µ
. It is observed

that if Re λµ ≥ 1 , then the general solution defined in (4.1) is regular and belong to [H2(Ω)]2 × [H1(Ω)] . If
Re λµ ≤ 0 , then the solution does not belong to [H1(Ω)]2 × [L2(Ω)] . The case Re λµ = 0 represents the
translation which is regular. Hence, we consider only those eigenvalues of the generalized boundary eigenvalue
problem that lies in the strip 0 ≤ Re λµ < 1 . Furthermore, the generalized eigenvalues depend on the values of
the apex angle ω0 .

It is stated in Section 2 that the presence of the corner points on the boundary of the domain Ω does not affect
the behavior of the regular part of the solution of the underlying boundary value problem. Thus, the following
theorem describes the regularity of the singular terms of the solution of the corresponding problem in Ω .

Theorem 4.3 (Regularity) Let λω0
be a simple eigenvalue with the real part Re λω0

lies in the interval
(0, 1) , and presume that it comprehends an eigenvalue with the smallest real part. The equivalent leading
singular solutions of the considered boundary value problem in S is defined in (4.1), where the functions(
Φρ, κ−j

µ (θ), φρ, κ−j
µ (θ)

)
given in (4.3) and (4.4) are the angular dependent part of the solution. Then for an

arbitrary small but fixed ϵ > 0 , we have

vsing = (vs, qs) ∈ [HRe λω0+1−ϵ(Ω)]2 × [HRe λω0−ϵ(Ω)]. (4.9)

Proof For the proof, we use the idea of [[17] Section 1.4.5] and [22, 25]. Let Ω ⊂ R2 be a bounded plane
polygonal domain, whose boundary comprises the corner points Pi : 1 ≤ i ≤ N . Let η(Pi) be the neighborhood
of Pi such that

η(Pi) ∩ Ω̄ ⊆
{
(r, θ) : 0 ≤ r <∞, 0 < θ < ω0

}
, (4.10)

with ω0 < 2π . Let vsing be a function which is smooth on Ω̄ \ {Pi} and coincides with rλµΨ(θ) on η(Pi)∩Ω ,
where Ψ(θ) = (Φρ, κ−j

µ (θ), φρ, κ−j
µ (θ)) ∈ C∞(0, ω0) . Thus, for p = 2 , we get

vs ∈ [Hm(Ω)]2 for any m < Re λω0
+ 1,

and

qs ∈ [Hm(Ω)] for any m < Re λω0 ,

and hence the assertion is shown. 2
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Remark 4.4 The method of proof is first developed by [6] and consists of proving that vsing ∈ W l
r(Ω) for an

integer l > m and r < p and then using the Sobolev imbeddings. So far, we have considered the case for p ≥ 2 .
The general proof for p < 2 makes use of the weighted Sobolev spaces.

Similar results hold for functions of the form rλµ(ln r)Ψ(θ) .

5. Conclusion
In this article, we have studied the boundary singularities and regularity of the weak solution of the mixed
boundary value problem for the stationary Stokes system in a nonsmooth domain with corner points and points
at which the type of boundary conditions changes. It is noted that near these points, the Stokes flow can
generate infinite pressures and infinite velocity gradients. However, physical implications of these results are
worth exploring to understand whether the singularities in a natural flow are discrepancies in the mathematical
tools while modeling the complex phenomena. This is considered a topic of separate research efforts. Moreover,
to obtain the singular terms, the transcendental equations of the generalized boundary eigenvalue problem for
the Stokes system are derived for different boundary conditions. The roots of these equations are the eigenvalues
of the operator Û(λ) . These eigenvalues and corresponding eigensolutions produce singular terms.

To get the maximal regularity of the underlying problem, we have accounted for only those eigenvalues
that lie in the strip 0 ≤ Re λµ < 1 . The generalized eigenvalues λµ depend on the values of the apex angle
ω0 . It is noted from the above achieved results that if Re λµ ≥ 1 then the solution defined in (4.1) is regular
and belongs to [H2(Ω)]2 × [H1(Ω)] . The case Re λµ = 0 represents the translation which is regular. It is seen
for the case of Dirichlet and Neumann boundary conditions that for an apex angle ω0 ∈ (ω∗, 2π) , there are
two eigenvalues λi, 1, λi, 2 which are less than 1. For these cases, the weak solution (v, q) of the considered
problem has singularities, if the domain Ω has reentrant corners (ωi > π : i = 1, 2, ...N) . On the other hand,
for the case of mixed conditions, the singularities appear at corners with (ωi >

π
4 : i = 1, 2, ...N) . Moreover,

it is observed that if singularities exist, then splitting the solution into a singular part which defines a linear
combination of explicit model singularity functions sm for the Stokes operator with corresponding unknown
coefficients Cm , and a regular part that belongs to H2 ×H1 . The results to be achieved here can be extended
to general three-dimensional domains (not necessarily axisymmetric or prismatic) with straight edges to analyze
the edge singularities and regularity expansion of the solution.

Presently, the Stokes and Navier-Stokes systems with the Navier-slip boundary conditions and the free-
boundary problems in bounded domains with corners have very interesting phenomena. The issues regarding
their existence and regularity are considered for smooth domains, but theoretical results for the corner singularity
decomposition are still not obtained. Therefore, these issues are numerically interesting. In future works, it
is important to show the unique existence of the approximations for the regular parts and coefficients, and to
derive their error estimates. On the other hand, it is also observed that the nonstationary compressible Stokes
and Navier-Stokes equations on polygonal domains could be considered.
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[7] Ben ěs M, K ǔcera P. Solutions of the Navier-Stokes equations with various types of boundary conditions. Archiv
Der Mathematik 2012; 98 (5): 487-497. https://doi.org/10.1007/s00013-012-0387-x

[8] Choi HJ, Kweon JR. The stationary Navier-Stokes system with no-slip boundary condition on polygons: cor-
ner singularity and regularity. Communications in Partial Differential Equations 2013; 38 (7): 1235-1255.
https://doi.org/10.1080/03605302.2012.752386

[9] Chorfi N. Geometric singularities of the Stokes problem. Abstract and Applied Analysis 2014; 2014: 1-8.
https://doi.org/10.1155/2014/491326

[10] Dauge M. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. part I.
linearized equations. SIAM Journal on Mathematical Analysis 1989; 20 (1): 74-97. https://doi.org/10.1137/0520006

[11] Dauge M. Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions. Springer,
2006.

[12] Durand M. Singularities in elliptic problems. Singularities and constructive methods for their treatment. Springer,
1985; 104-112.

[13] Fabricius J. Stokes flow with kinematic and dynamic boundary conditions. Quarterly of Applied Mathematics 2019;
77 (3): 525-544. http://doi.org/10.1090/qam/1534

[14] Gilbarg D, Trudinger NS. Elliptic partial differential equations of second order. Springer, 2015.

[15] Girault V, Raviart PA. Finite element methods for Navier-Stokes equations: theory and algorithms. Springer Science
and Business Media, 2012.

[16] Grisvard P. Behavior in a polygonal or polyhedral domain. Numerical solution of partial differential equations, III.
Academic Press, 1976, 207-274.

[17] Grisvard P. Elliptic problems in nonsmooth domains. Volume 2, 2-2. Pitman Advanced Pub. Program, Boston,
1985.

[18] Hou Y, Pei S. On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions. Mathe-
matische Zeitschrift 2019; 291 (1-2): 47-54. https://doi.org/10.1007/s00209-018-2072-7

[19] Jang DK, Pyo JH. Algorithms to apply finite element dual singular function method for the Stokes equations
including corner singularities. Journal of the Korean Society for Industrial and Applied Mathematics 2019; 23 (2):
115-138. https://doi.org/10.12941/jksiam.2019.23.115

[20] Kellogg B. Some simple boundary value problems with corner singularities and boundary layers.
Computers and Mathematics with Applications. An International Journal 2006; 51 (5): 783-792.
https://doi.org/10.1016/j.camwa.2006.03.010

[21] Kellogg RB, Osborn JE. A regularity result for the Stokes problem in a convex polygon. Journal of Functional
Analysis 1976; 21 (4): 397-431. https://doi.org/10.1016/0022-1236(76)90035-5

277



ANJAM/Turk J Math
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