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Abstract: A combination of interval-valued Fermatean fuzzy sets with Fermatean hesitant fuzzy elements in the form
of interval values is known as an interval-valued Fermatean hesitant fuzzy set. Since Fermatean hesitant fuzzy sets
are effective instruments for representing more complex, ambiguous, and hazy information, interval-valued Fermatean
hesitant fuzzy sets are expansions of these sets. This investigation will concentrate on four different types of correlation
coefficients for Fermatean hesitant fuzzy sets and expand them to include correlation coefficients and weighted correlation
coefficients for interval-valued Fermatean hesitant fuzzy sets. Finally, the numerical examples demonstrate the viability
and usefulness of the suggested methodologies in decision-making under many criteria.

Key words: Correlation, correlation coefficient, Fermatean hesitant fuzzy set, informational energy, interval-valued
Fermatean hesitant fuzzy set

1. Introduction
1.1. Correlation coefficients
The correlation coefficient (KK ) is a precise metric used in correlation studies to express the strength of the
linear relationship between two variables. By measuring the distance of each data point from the variable mean,
the formula indicates how well the link between the variables can be fit to an example line drawn across the
data for two variables. A correlation is a sign of cochange. Using this statistical method, we may measure
the magnitude and direction of the link between two or more variables. The KK is denoted by r . The KK

can have a value between −1 and +1 , according to mathematics. The sign of this coefficient indicates the
direction of the link between the two variables, and its numerical value indicates the strength of the correlation.
The reciprocal contact is taken into consideration while interpreting the connection. Correlation is a reciprocal
relationship rather than a cause-and-effect relationship that can be used to explain the difference or resemblance
between two variables. Due to correlation, the values of the related variables may be maximized if the affecting
factors can be controlled or the relationship between the variables can be estimated by looking at the value of
one variable.

A KK is a bivariate statistic if it depicts the connection between just two variables and a multivariate
statistic if there are more than two variables. There are, thus, many diverse fields of study, from engineering to
physics, from medicine to economics. In statistics, finding a KK between any two parameters or variables is
quite common. Pearson’s KK has been used in statistics research on data analysis and classification, pattern
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recognition, clustering, medical diagnosis, and decision-making. It is shown that conventional correlation cannot
handle data with ambiguous problems. The fuzzy logic approach attempts to quantify human perception and
cognitive uncertainties. Scientists are used to employing binary logic to analyze data. Human logic is ambiguous
and complicated; therefore, using binary logic to study human mental processes causes some distortion. Fuzzy
logic is built on the base of human cognitive processes. Fuzzy logic, for instance, is defined as the ”modeling
of thinking and decision systems that enable people to make consistent and correct judgments in the presence
of extensive and inaccurate information.” The fuzzy type KK s have been expanded based on mathematical
statistics, statistical KK , and the fuzzy logic method. The KK generated for fuzzy data shows both the
strength of the relationship between fuzzy sets as well as whether fuzzy sets are positively or negatively related.

1.2. Uncertainty

Numerous academic fields, including psychology, philosophy, cognitive science, and artificial intelligence, are
interested in how humans reason and make decisions in the face of everyday situations. Usually, numerous
mathematical and statistical models are used to try to characterize these processes. The issue of decision-
making surfaces in this process. Decision-making (DM) is the process of choosing one or more of the available
options for behavior when a person or institution is trying to accomplish a certain objective. According to
research, while many daily judgments may be made instinctively, complicated and important choices require
more than this. Multicriteria decision making (MCDM) is a group of analytical techniques that assesses the
benefits and drawbacks of options based on a variety of criteria. To pick one or more alternatives from a group
of alternatives with varying qualities by competing criteria or to rank these alternatives, MCDM approaches
are employed to help the DM process. In other words, decision-makers use MCDM approaches to rate options
with various features by comparing them to a variety of criteria. MCDM is a collection of techniques that are
regularly applied at all levels and in all spheres of life.

A key idea in decision-making (DM) difficulties is uncertainty. Unpredictable events characterize un-
certainty. Routine choices cannot be discussed under ambiguous circumstances. It is important to consider
both the advantages and disadvantages of potential outcomes under unclear circumstances. It is crucial to do a
thorough analysis of the environmental influences at this stage. Benefiting from prior experiences and decisions
is not always successful when there is ambiguity, even while ultimate judgments are not in doubt. Thanks to
Zadeh’s notion of ”fuzzy sets” (FS) [76], linguistic terms that we unintentionally employ regularly have become
”computable”. Fuzzy logic enabled the grading system to expand the realm of classical mathematics, which was
previously restricted to certainty. This notion resulted in a paradigm shift that spread throughout the world
as a result of its successful implementations in everyday situations. An element with a distinctive function is
either an element of a set in the traditional sense of the word or it is not. The membership function (MF),
which assigns each item a degree of membership in the range [0, 1] , in the FS notion, determines whether or
not an apple is a member of a set.

The degree to which an element belongs to a set in the FS A is ρ(A) , and the degree to which it does
not belong is 1−ρ(A) . As a result, one is equal to the total of the degrees of belonging and nonbelonging. This
circumstance, however, falls short of adequately explaining the ambiguity in several issues. The intuitionistic
fuzzy set (IFS) theory, which is an extension of the FS theory, was developed by Atanassov [4] as a result. In
IFS theory, the nonmembership degree (ND) is specified in addition to the membership degree (MD), whereas
FS theory is modeled to only reveal the membership degree (MD) defined in the range [0, 1] . According to
IFS theory, MD and ND are both in the [0, 1] region. Yager [71] proposed Pythagorean fuzzy sets (PFS)
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and in certain circumstances developed them as an extension of IFSs because IFSs cannot adequately convey
uncertainty. PFSs employ the notion that the sum of the squares of MD and ND is less than or equal to 1
for circumstances when decision-making is impossible when MD and ND are added together. In the literature,
there is a lot of study on FS and its many expansions ([1, 15, 16, 20, 21, 28, 29, 36, 50, 74]).

1.3. Motivation
Tools like aggregation operators and information measurements are frequently used in decision-making difficul-
ties. Another method for determining the best option is to utilize the KK s measure of the level of dependence
between two sets. Using KK s, one may assess how strongly two variables are associated. Since the information
is frequently vague, ambiguous, and incomplete in many situations, several academics have developed the KK s
in fuzzy contexts. In addition to supplying the correlation for fuzzy information in accordance with conven-
tional statistics, Chiang and Lin [10] provided a technique for KK of FSs. According to the conventional
understanding of ”KKs,” the KK of fuzzy information has been investigated in [44] using a mathematical
programming approximation. According to [4], intuitionistic fuzzy set (IFS) results were more complete and
exact based on the findings from the FS theory. Both membership degree (MD) and nonmembership degree
(ND) are taken into consideration by the IFS theory, and it requires that their sum be one or less than one.
There are several applications for the IFS-derived KK s, including DM, cluster analysis, image processing, and
pattern recognition ([42, 64–66, 69]). Thanks to Pythagorean fuzzy set (PFS) ([29, 34, 49, 50, 70, 71, 73, 77]),
which were developed to address an IFS issue, several DM problems involving Pythagorean fuzzy information
have been published in the literature.

Senapati and Yager [53] were the first to propose the Fermat fuzzy set (FFS). The MD and ND in the
FFS achieve the property 0leqmA3 + nA3leq1 . When identifying uncertainties, the FFS, a novel idea in the
literature, performs better than the IFS and PFS. As an illustration, consider 0.9+0.6 > 1 , 0.92+0.62 > 1 , and
0.93+0.63 > 1 . Some FFS characteristics, score, and accuracy functions are provided in [53]. Additionally, the
TOPSIS approach, which is widely used to solve MCDM issues, has been employed to solve FFS. Additionally,
Senapati and Yager [53] used the TOPSIS method, which is frequently used in MCDM issues, to solve FFS
difficulties. Senapati and Yager [54] continued this work by investigating a number of additional operations
including arithmetic mean operations over FFSs in addition to using the FF weighted product model to address
MCDM issues. New aggregation operations that are FFS-related are described and their associated attributes
are studied in [55]. Shahzadi and Akram [56] created the new aggregated operators and provided a new decision
support algorithm for the FFSS. Garg et al. [26] defined new FFS type aggregated operators defined by t-norm
and t-conorm. Donghai et al. [13] suggested the concept of FF linguistic term sets. Operations, score, and
accuracy functions belonging to these sets are given. In [14], a new similarity measure related to FF linguistic
term sets is constructed. The new measurement is a combination of Euclidean distance measure and cosine
similarity measure. Kirisci [30] defined FF soft sets and gave the measure of entropy based on FF soft sets.
In [31], a new hesitant fuzzy set called the fermatean hesitant fuzzy set is given and some of its properties
are investigated. Kirisci and Simsek [33] offer aggregation operations to extend FFHSs to interval-valued
Fermatean hesitant fuzzy sets (IVFHFS) and to improve MCGDM methods in IVFHF environments. In [32],
the ELECTRE I method is defined with Fermatean fuzzy sets according to the group DM process in which more
than one individual interacts at the same time. In [? ], various FF reference relations (consistent, incomplete,
consistent incomplete, acceptable incomplete) are defined. An additive consistency based on a priority vector
is given. In addition, a model is presented to obtain missing decisions in incomplete FF preference relations.
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Torra and Narukawa [61] and Torra [62] provide HFSs, which authorize an object’s MD to a set of
potential values. Particularly useful in GDM difficulties, HFSs have generated strong solutions for these issues.
Because of these qualities, HFSs have gained prominence in the literature. Following that, several interval-
valued hesitant fuzzy sets were investigated [2, 3, 5, 7, 9, 12, 27, 40, 41, 48, 51]. KK s for HFSs have been
studied in [68] and [8]. In these investigations, the hesitant fuzzy element (HFE), which has fewer element
cardinalities, has had its possible MDs enlarged by the addition of some extreme values. If the extreme value
is distant from the other possible membership values, the extended HFE will be very different from the original
HFE. Additionally, it is impossible to determine the KK s between two HFS if one HFS’s hesitant MDs are
always zero. With respect to the mean of an HFE, Liao et al. [43] established a unique KK formula and
expanded the KK s’ range to the interval [−1; 1] . The KK between an HFS and other HFSs will still not be
calculated when an HFS is characterized by a constant function. The improvement of the counterintuition of
the current KK s of HFSs in [8, 43, 68] was the main goal of Sun et al.’s [59] study. Its key contribution is to
better the weighted KK s; however, the general case is not improved. Meng and Chen [45] suggested the KK s
of HFSs based on IVF measures, and they [46] extended the technique to study the situation. The term is too
complicated, though. The KK s of dual HFSs were also explored in [63] and [75]. The KK s of HF soft sets
were discussed by Das et al. [11]. Although there are many KK s for HFSs, these notions might lead to a lot
of irrational claims.

The originality of this work can be stated as follows. There have been various extensions of the classical
KK s such as fuzzy KK , IF KK , and PF KK . These extensions have improved the performance of the
KK s. FFSs can handle problems with ambiguity and incomplete information more efficiently than that of
IFSs and PFSs Figure. In this study, the interval-valued Fermatean fuzzy KK s were developed considering the
hesitant KKs, intuitionistic fuzzy KK s, Pythagorean fuzzy KK s, and Fermatean fuzzy KKs studies. Since the
MD3 +ND3 ≤ 1 requirement is satisfied for an object in the use of FFSs, there will be the possibility to cover
more elements than IFSs and PFSs. Examples of pattern recognition and medical decision-making regarding
the new KK s are given. KK s based on different fuzzy sets given in previous studies were compared with newly
proposed KK s.

Figure 1. Comparison of space of FMGs, PMGs. and IFGs [53].

In this study, for IVFHFSs, KKs and weighted KKs were defined, and some characteristics were examined.
The correlation coefficient for PFSs is a particular instance of the correlation coefficient for FFSs. As a result,
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IVFHFS’s discovery of correlation coefficients provides more alternatives for handling uncertainty. The suggested
correlation coefficient is consequently more general than the current ones, making it more appropriate for solving
problems in the real world. Illustrative examples such as pattern recognition and medical decision-making to
show the practicality and efficiency of the suggested KKs are given.

The organization of this work’s structure is as follows. Fundamental ideas and findings from HFSs, FHFSs,
and IVFHFSs are given in Section 2. The informational energies, correlations, and KK s and weighted KK s of
IVFHFSs are defined in Section 3. Using the weighted KK s recommended in IVFHF environments, numerical
examples are given in Section 4 demonstrating the effectiveness of the proposed method. A comparison of
the new method with previous methods is made in Section 5 and this section is concluded with a subsection
explaining the advantages of the new method.

2. Preliminaries
It will be regarded as the X = {x1, x2, · · · , xn} initial universe throughout the work.

The intuitionistic fuzzy set(IFS) in X is defined:

N = {(x, ζN (x), ηN (x))|x ∈ X}. (2.1)

In this definition, ζN (x), ηN (x) : X → [0, 1] is said to be MD and ND, with ζN (x) + ηN (x) ≤ 1 .

The Pythagorean fuzzy set (PFS) is characterized as:

N = {(x, ζN (x), ηN (x))|x ∈ X}, (2.2)

if ζN (x), ηN (x) : X → [0, 1] are MD and ND of element of the x ∈ X , with ζ2N (x) + η2N (x) ≤ 1 .

Fermatean fuzzy set (FFS) is given as:

N = {(x, ζN (x), ηN (x))|x ∈ X}, (2.3)

if ζF (x), ηF (x) : X → [0, 1] are MD and ND of element of the x ∈ X , with ζ3N (x) + η3N (x) ≤ 1 .

The set

Γ = {(u, τΓ(u)) : u ∈ U} (2.4)

is called hesitant fuzzy set, where τΓ(u) indicates the set of some values in unit interval, that is probable MD
of u ∈ U to Γ [67].

The set

FT = {(u, ζFT
(u), ηFT

(u)) : u ∈ U} (2.5)

is called a Fermatean hesitant fuzzy set (FHFS) [31], where
(i.) For each element u ∈ U , ζFT

(u) , ηFT
(u) are functions from U to [0, 1] , demonstrating a likely MD and

ND of element u ∈ U in FT respectively,
(ii.) ∀ tFT

(u) ∈ ζFT
(u) , ∃ t

′

FT
(u) ∈ ηFT

(u) , such that 0 ≤ t3FT
(u) + t

′3
FT

(u) ≤ 1 ,
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(iii.) ∀ t
′

FT
(u) ∈ ηFT

(u) , ∃ tFT
(u) ∈ ζFT

(u) , such that 0 ≤ t3FT
(u) + t

′3
FT

(u) ≤ 1 .

From this stage on, the set of all elements belonging to FHFSs will be denoted by FH(U) . If U has
only (u, ζFT

(u), ηFT
(u)) , then it is said to be a fermatean hesitant fuzzy number (FHFN) and is represented by

t̃ = {ζt̃, ηt̃} .

F = {(u, hF (u) : u ∈ U}, (2.6)

is called an interval-valued Fermatean hesitant (IVFH) F on U , where

hF (u) =
{
(ζ̂F (u), η̂F (u)) : ζ̂F (u) = [ζ−F , ζ+F ] ∈ D[0, 1], η̂F (u) = [η−F , η

+
F ] ∈ D[0, 1], (ζ+F )3 + (η+F )

3 ≤ 1
}
,

where ζ̂F (u) is the possible Fermatean membership interval and η̂F (u) is the possible Fermatean nonmember-
ship intervals of F . Throughout this article, Υ will show the set of all IVFHs.

Principle of recognition is defined as: In discourse universe X , let it be assumed that there are m patterns
defined by FFS Nk (k = 1, 2, · · · ,m). Again, let us suppose that there is a model to be identified with FFS P

in X .

The relationship index degree between FFSs Nk and P is described as:

R(Nk0,P) = max
1≤k≤m

{R(Nk,P)} .

In this case, it is decided that sample P belongs to Nk0 .

The set

IEF (N) =

n∑
i=1

[
ζ6N (xi) + η6N (xi) + θ6N (xi)

]
(2.7)

is called informational energies of Fermatean fuzzy set N [35].

For FFSs N and M , correlation and KK are defined as [35]:

CF (N,M) =

n∑
i=1

[
ζ3N (xi).ζ

3
M (xi) + η3N (xi).η

3
M (xi) + θ3N (xi).θ

3
M (xi)

]
(2.8)

CF (N,M) =
CF (N,M)√

IEF (N).IEF (M)
(2.9)

=

∑n
i=1

[
ζ3N (xi).ζ

3
M (xi) + η3N (xi).η

3
M (xi) + θ3N (xi).θ

3
M (xi)

]√∑n
i=1 [ζ

6
N (xi) + η6N (xi) + θ6N (xi)].

√∑n
i=1 [ζ

6
M (xi) + η6M (xi) + θ6M (xi)]

(2.10)

DF (N,M) =
CI(N,M)

max{IE(N).IE(M)}
(2.11)

=

∑n
i=1

[
ζN (xi).ζM (xi) + ηN (xi).ηM (xi) + θ3N (xi).θ

3
M (xi)

]
max [

∑n
i=1 [ζ

6
N (xi) + η6N (xi) + θ6N (xi)].

∑n
i=1 [ζ

6
MB(xi) + η6M (xi) + θ6M (xi)]]

. (2.12)
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3. Correlation coefficients
The set

F = {(u, hF (u) : u ∈ U}, (3.1)

is called an ÌVFH F on U , where

hF (u) =
{
(ζ̂F (u), η̂F (u)) : ζ̂F (u) = [ζ−F , ζ+F ] ∈ D[0, 1], η̂F (u) = [η−F , η

+
F ] ∈ D[0, 1], (ζ+F )3 + (η+F )

3 ≤ 1
}
,

where ζ̂F (u) is the possible Fermatean membership interval and η̂F (u) is the possible Fermatean nonmember-
ship intervals of F . Throughout this article, Υ will show the set of all IVFHs.

The indeterminacy degree of u to F is described as θF (u) =
3
√

1− (ζ3F (u) + η3F (u)) , for any FFS F and
u ∈ U .

Let F = {ui, ζF (ui, ηF (ui)|ui ∈ U} be a IVFHFS, where ζF (ui), ηF (ui) ∈ [0, 1] and ζ3F (ui+η3F (ui)|ui ≤ 1

for each ui ∈ U , we define the informational energy of the FFS F as

IE(F) =

n∑
i=1

[(
ζ−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
η−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
θ−F (ui)

)6
+

(
θ+F (ui)

)6]
. (3.2)

Suppose that two IVFHFS’s F = {ui, ζF (ui, ηF (ui)|ui ∈ U} and G = {ui, ζG(ui, ηG(ui)|ui ∈ U} , where
ζF (ui, ηF (ui), ζF (ui, ηF (ui) ∈ [0, 1] for each ui ∈ U . Hence, the correlation of the FFVs F , G is defined:

C(F ,G) =
n∑

i=1

[
(ζ−F (ui))

3(ζ−G (ui))
3 + (η−F (ui))

3(η−G (ui))
3 + (θ−F (ui))

3(θ−G (ui))
3 + (3.3)

(ζ+F (ui))
3(ζ+G (ui))

3 + (η+F (ui))
3(η+G (ui))

3 + (θ+Fui))
3(θ+G (ui))

3

]
.

For the correlation of FFSs, the conditions
(1) C(F ,F) = IE(F)

(2) C(F ,G) = C(G,F)

are hold.

Definition 3.1 Choose two FFSs F and G on X . Then the KK between F ,G is defined by

C(F ,G) =
C(F ,G)

[IE(F).IE(G)]1/2
(3.4)

=

∑n
i=1(ζ

−
F (ui))

3(ζ−G (ui))
3 + (η−F (ui))

3(η−G (ui))
3 + (θ−F (ui))

3(θ−G (ui))
3√∑n

i=1

[(
ζ−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
η−F (ui)

)6
+

(
ζ+F (ui)

)6
+

(
θ−F (ui)

)6
+

(
θ+F (ui)

)6]
+(ζ+F (ui))

3(ζ+G (ui))
3 + (η+F (uxi))

3(η+G (ui))
3 + (θ+F (ui))

3(θ+G (ui))
3

×
√∑n

i=1

[(
ζ−G (ui)

)6
+
(
ζ+G (ui)

)6
+
(
η−G (ui)

)6
+
(
ζ+G (ui)

)6
+
(
θ−G (ui)

)6
+

(
θ+G (ui)

)6]
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Theorem 3.2 For any two FFSs F ,G in X , the KK of FFSs satisfies the following conditions:

(P1) C(F ,G) = C(G,F) ,

(P2) If F = G , then C(F ,G) = 1 ,

(P3) 0 ≤ C(F ,G) ≤ 1 .

Proof We only proved condition (P2). Obviously, C(F ,G) ≥ 0 .

C(F ,G) =

n∑
i=1

[
(ζ−F (ui))

3(ζ−G (ui))
3 + (η−F (ui))

3(η−G (ui))
3 + (θ−F (ui))

3(θ−G (ui))
3

+ (ζ+F (ui))
3(ζ+G (ui))

3 + (η+F (ui))
3(η+G (ui))

3 + (θ+F (ui))
3(θ+G (ui))

3

]

=

[
(ζ−F (u1))

3(ζ−G (u1))
3 + (η−F (u1))

3(η−G (u1))
3 + (θ−F (u1))

3(θ−G (u1))
3

+ (ζ+F (u1))
3(ζ+G (u1))

3 + (η+F (u1))
3(η+G (u1))

3 + (θ+F (u1))
3(θ+G (u1))

3

]

=

[
(ζ−F (u2))

3(ζ−G (u2))
3 + (η−F (u2))

3(η−G (u2))
3 + (θ−F (u2))

3(θ−G (u2))
3

+ (ζ+F (u2))
3(ζ+G (u2))

3 + (η+F (u2))
3(η+G (u2))

3 + (θ+F (u2))
3(θ+G (u2))

3

]

+ · · ·+ =

[
(ζ−F (un))

3(ζ−G (un))
3 + (η−F (un))

3(η−G (un))
3 + (θ−F (un))

3(θ−G (un))
3

+ (ζ+F (un))
3(ζ+G (un))

3 + (η+F (un))
3(η+G (un))

3 + (θ+F (un))
3(θ+G (un))

3

]
.

Using the Cauchy–Schwarz inequality, for (ζ1 + · · ·+ ζn) ∈ Rn and (η1 + · · ·+ ηn) ∈ Rn ,

(ζ1η1 + ζ2η2 + · · ·+ ζnηn)
2 ≤

(
ζ21 + · · ·+ ζ2n

)
.
(
η21 + · · ·+ η2n

)
.
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Then,

[
C(F ,G)

]2
≤

[ (
(ζ−F (u1))

6 + (η−F (u1))
6 + (θ−F (u1))

6
)
+

(
(ζ+F (u1))

6 + (η+F (u1))
6 + (θ+F (u1))

6
)

+
(
(ζ−F (u2))

6 + (η−F (u2))
6 + (θ−F (u2))

6
)
+
(
(ζ+F (u2))

6 + (η+F (u2))
6 + (θ+F (u2))

6
)
+ · · ·

+
(
(ζ−F (un))

6 + (η−F (un))
6 + (θ−F (un))

6
)
+
(
(ζ+F (un))

6 + (η+F (un))
6 + (θ+F (un))

6
) ]

×
[ (

(ζ−G (u1))
6 + (η−G (u1))

6 + (θ−G (u1))
6
)
+

(
(ζ+G (u1))

6 + (η+G (u1))
6 + (θ+G (u1))

6
)

+
(
(ζ−G (u2))

6 + (η−G (u2))
6 + (θ−G (u2))

6
)
+
(
(ζ+G (u2))

6 + (η+G (u2))
6 + (θ+G (u2))

6
)
+ · · ·

+
(
(ζ−G (un))

6 + (η−G (un))
6 + (θ−G (un))

6
)
+
(
(ζ+G (un))

6 + (η+G (un))
6 + (θ+G (un))

6
) ]

=

n∑
i=1

[(
(ζ−F (ui))

6 + (η−F (ui))
6 + (θ−F (ui))

6
)
+

(
(ζ+F (ui))

6 + (η+F (ui))
6 + (θ+F (ui))

6
)]

×
n∑

i=1

[ (
(ζ−G (ui))

6 + (η−G (ui))
6 + (θ−G (ui))

6
)
+

(
(ζ+G (ui))

6 + (η+G (ui))
6 + (θ+G (ui))

6
) ]

= IE(F).IE(G).

Therefore, [C(F ,G)]2 ≤ IE(F).IE(G) and C(F ,G) ≤ 1 . 2

Example 3.3 Take three FFSs F = {([0.6, 0.8], [0.5, 0.7])} , G = {([0.3, 0.7], [0.5, 0.6]), ([0.4, 0.7], [0.5, 0.7])} in
X . By Equation 3.2, the informational energies of F , G :

IE(F) = (0.66 + 0.86 + 0.876) + (0.56 + 0.76 + 0.536) = 0.9

IE(G) = (0.36 + 0.76 + 0.956) + (0.56 + 0.66 + 0.766) + (0.46 + 0.76 + 0.936) + (0.56 + 0.76 + 0.686) = 2.74

By using Equation 3.4, the correlation between the FFSs F ,G is written as:

C(F ,G) =

[
(ζ−F )3(ζ−G1

)3 + (η−F )
3(η−G1

)3 + (θ−F )
3(θ−G1

)3 + (ζ+F )3(ζ+G1
)3 + (η+F )

3(η+G1
)3 + (θ+F )

3(θ+G1
)3 +

(ζ−F )3(ζ−G2
)3 + (η−F )

3(η−G2
)3 + (θ−F )

3(θ−G2
)3 + (ζ+F )3(ζ+G2

)3 + (η+F )
3(η+G2

)3 + (θ+F )
3(θ+G2

)3

]

= 0.630.33 + 0.830.73 + 0.8730.953 + 0.530.53 + 0.730.63 + 0.53730.763

+ 0.630.43 + 0.830.73 + 0.8730.933 + 0.530.53 + 0.730.73 + 0.5330.683 = 1.81

Hence, the KK between the FFSs F ,G is given by:

C(F ,G) = C(F ,G)
[IE(F).IE(G)]1/2

=
1.81

[(0.9).(2.74)]1/2
= 0.734
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Definition 3.4 For F and G , the definition of KK as:

D(F ,G) =
C(F ,G)

max [IE(F).IE(G)]
(3.5)

=

∑n
i=1(ζ

−
F (ui))

3(ζ−G (ui))
3 + (η−F (ui))

3(η−G (ui))
3 + (θ−F (ui))

3(θ−G (ui))
3

max

{∑n
i=1

[(
ζ−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
η−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
θ−F (ui)

)6
+

(
θ+F (ui)

)6]
,

+(ζ+F (ui))
3(ζ+G (ui))

3 + (η+F (ui))
3(η+G (ui))

3 + (θ+F (ui))
3(θ+G (ui))

3

∑n
i=1

[(
ζ−G (ui)

)6
+
(
ζ+G (ui)

)6
+
(
η−G (ui)

)6
+
(
ζ+G (ui)

)6
+
(
θ−G (ui)

)6
+

(
θ+G (ui)

)6]}

Theorem 3.5 For any two FFSs F ,G D(F ,G) satisfies the following conditions:

(P1) D(F ,G) = D(G,F) ,

(P2) F = G iff D(F ,G) = 1 ,

(P3) 0 ≤ D(F ,G) ≤ 1 .

Proof We only proved condition (P2). It is clear that D(F ,G) ≥ 0 . Since from Theorem 3.2,
[
C(F ,G)

]2
≤

IE(F).IE(G) . Therefore, C(F ,G) ≤ max[IE(F).IE(G)] ; thus, D(F ,G) ≤ 1 . 2

It is possible to define these KK s in a different way. Weights will be used for these new definitions
because, in numerous real-life practices, the distinct sets can have diverse weights. Therefore, weight ρi of
every element xi ∈ X must be considered in new definitions. The KK s to be defined by weights will be called
weighted KK s. For these definitions, choose the weight vector as ρ with the condition

∑n
i=1 ρi = 1 for ρi ≥ 1 .

Therefore, Cρ(F ,G) , Cρ(F ,G) are defined as follows:

Cρ(F ,G) =
Cρ(F ,G)

[IEρ(F).IEρ(G)]1/2
(3.6)

=

∑n
i=1 ρi(ζ

−
F (ui))

3(ζ−G (ui))
3 + (η−F (ui))

3(η−G (ui))
3 + (θ−F (ui))

3(θ−G (ui))
3√∑n

i=1 ρi

[(
ζ−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
η−F (ui)

)6
+
(
ζ+F (ui)

)6
+
(
θ−F (ui)

)6
+

(
θ+F (ui)

)6]
+(ζ+F (ui))

3(ζ+G (ui))
3 + (η+F (ui))

3(η+G (ui))
3 + (θ+F (xi))

3(θ+G (ui))
3√∑n

i=1

[(
ζ−G (ui)

)6
+
(
ζ+G (ui)

)6
+

(
η−G (ui)

)6
+
(
ζ+G (ui)

)6
+

(
θ−G (ui)

)6
+

(
θ+G (ui)

)6]
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Dρ(F ,G) =
Cρ(F ,G)

max [IEρ(F).IEρ(G)]
(3.7)

=

∑n
i=1 ρi(ζ

−
F (ui))

3(ζ−G (ui))
3 + (η−F (ui))

3(η−G (ui))
3 + (θ−F (ui))

3(θ−G (ui))
3

max
∑n

i=1 ρi
(
ζ−F (ui)

)6
+
(
ζ+F (ui)

)6
+

(
η−F (ui)

)6
+

(
ζ+F (ui)

)6
+

(
θ−F (ui)

)6
+
(
θ+F (ui)

)6
+(ζ+F (ui))

3(ζ+G (ui))
3 + (η+F (ui))

3(η+G (ui))
3 + (θ+F (ui))

3(θ+G (ui))
3

,
∑n

i=1 ρi

[(
ζ−G (ui)

)6
+
(
ζ+G (ui)

)6
+
(
η−G (ui)

)6
+
(
ζ+G (ui)

)6
+
(
θ−G (ui)

)6
+

(
θ+G (ui)

)6]
The following theorems are proved as similar to Theorems 3.2 and 3.5:

Theorem 3.6 Take a weight vector of xi as ρ and it is considered to satisfy the
∑n

i=1 ϱi = 1 condition for
ρi ≥ 1 . The weighted KK between the FFSs N,M defined by Equation 3.6 satisfies:

(P1) Cρ(F ,G) = Cρ(F ,G) ,

(P2) 0 ≤ Cρ(F ,G) ≤ 1 ;

(P3) Cρ(F ,G) = 1 iff F = G

Theorem 3.7 The weighted KK between the FFSs F ,G defined by Equation 3.7 satisfies:

(P1) Dρ(F ,G) = Dρ(F ,G) ,

(P2) 0 ≤ Dρ(F ,G) ≤ 1 ;

(P3) Dρ(F ,G) = 1 iff F = G

4. Numerical examples
4.1. Pattern recognition application
In this subsection, an example for the multicriteria decision-making problem of alternatives, from the field of
pattern recognition is used as the demonstration of the application of the proposed decision-making method, as
well as the effectiveness of the proposed method.

Choose three known patterns PR1, PR2, PR3 . For the finite universe U = {u1, u2, u3} as

PR1 = {(u1, [1.0, 0.0], [0.9, 0.2]), (u2, [0.8, 0.0], [0.7, 0.1]), (u3, [0.7, 0.4], [0.6, 0.5])}

PR2 = {(u1, [0.8, 0.1], [0.9, 0.1]), (u2, [1.0, 0.0], [0.9, 0.1]), (u3, [0.8, 0.3], [0.7, 0.4])}

PR3 = {(u1, [0.6, 0.2], [0.7, 0.3]), (u2, [0.8, 0.2], [0.7, 0.2]), (u3, [1.0, 0.0], [0.9, 0.1])}.

Consider an unknown pattern UP ∈ FFS(U) that will be recognized, where

UP = {(u1, [0.5, 0.3], [0.4, 0.3]), (u2, [0.6, 0.2], [0.6, 0.3]), (u3, [0.8, 0.1], [0.8, 0.2])}.

The target of this problem is to classify the pattern UP in one of the classes PR1, PR2, PR3 . For it, proposed
correlation coefficient index, C ,D , have been computed from UP to PRi (i = 1, 2, 3) and are given as follows:

C(PR1, UP ) = 0.098, C(PR2, UP ) = 0.084, C(PR3, UP ) = 0.1167,

D(PR1, UP ) = 0.2652, D(PR2, UP ) = 0.1195, D(PR3, UP ) = 0, 4582.
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Thus, from these two proposed correlation coefficient indexes, we conclude that the pattern UP belongs to the
pattern PR3 .

On the other hand, if we assume that weights of u1, u2, u3 are 0.5, 0.3, 0.2 , respectively, then we utilize
the correlation coefficient Cρ , Dρ for obtaining the most suitable pattern as:

Cρ(PR1, UP ) = 0.175, Cρ(PR2, UP ) = 0.162, Cρ(PR3, UP ) = 0.29,

Dρ(PR1, UP ) = 0.2, Dρ(PR2, UP ) = 0.056, Dρ(PR3, UP ) = 0, 327.

Thus, ranking order of the three patterns PR1, PR2, PR3 and hence PR3 is the most desirable pattern
to be classified with UP .

4.2. Multicriteria decision-making
This subsection will apply the correlation coefficients for interval-valued Pythagorean hesitant fuzzy sets
(IVPHFSs) to MCDM problems and clustering analysis.

Let L = {Li : i = 1, 2, · · · ,m} be a finite set of alternatives and K = {Kj : j = 1, 2, · · · , n} be a
set of criteria, ω be a weight vector of the criteria (ωj ∈ [0, 1],

∑n
j=1 ωj = 1). Suppose M = (hF⟩|)m×n is

an interval-valued Fermatean hesitant fuzzy decision matirx (IVFHFDM) where hF⟩| = {([ζ−ij , ζ
+
ij ], [η

−
ij , η

+
ij ]) :

(ζ+ij )
3 + (η+ij)

3 ≤ 1} (i = 1, 2, · · · ,m; j = 1, 2, · · · , n) is an INFHFE given by decision makers to evaluate the
alternative Li with respect to the criteria Kj .

The concrete algorithm is listed as follows:

Step 1: Input M = (hF⟩|)m×n , ω = (ω1, · · · , ωn)
T and λ ∈ [0, 1] .

Step 2: Make M the revised IVFHFDM M
′
= (h

′

F⟩|
)m×n .

Step 3: Compute the weighted correlation coefficients between each Fi and F∗
i .

Step 4: Get the priority of the alternatives Li by ranking the above correlation coefficients.

Example 4.1 A scientific committee should evaluate four possible R&D projects Li (i = 1, 2, 3, 4) according
to the three criteria Kj (j = 1, 2, 3). Here C1, C2 are both benefit criteria and C3 is a cost criterion. Take the
weight vector of criteria as ω = (0.3, 0.5, 0.3)T . The decision matrix is given by the experts as Table 1.

Considering that |hF∞| | ̸= |hF∈| | for any j ∈ {1, 2, 3} , we revised the matrix M and M ′ in Table 2.
Furthermore, compute the four correlation coefficients between these alternatives and the ideal alternatives in
Table 3. The result shows the R&D project L3 are always the most optimal, although the four ranking results
(Table 4) are little different.

4.3. Medical decision-making
Example 4.2 A clinic wants to buy a panoramic X-ray machine. In the research conducted for this purchase
process, a selection will be made from four different brands (F̂ = {F̂1, F̂2, F̂3, F̂4}). When making this choice,
three different criteria are considered: C1 : Robustness and permanence, C2 : service support, C3 : price
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Table 1. IVFHFDM M .

C1 C2 C3

F1 {([0.6, 0.8], [0.4, 0.5]), {([0.5, 0.7], [0.1, 0.3]), {([0.5, 0.7], [0.3, 0.4])}
([0.5, 0.8], [0.1, 0.3]), ([0.4, 0.6], [0.2, 0.5])}

F2 {([0.4, 0.7], [0.2, 0.3])} {([0.5, 0.6], [0.3, 0.4])} {([0.3, 0.7], [0.2, 0.4]),
{([0.3, 0.5], [0.2, 0.3])} ([0.2, 0.5], [0.3, 0.4])}
{([0.2, 0.7], [0.2, 0.4])} ([0.2, 0.6], [0.2, 0.3])}
{([0.3, 0.5], [0.2, 0.7])}

F3 {([0.3, 0.5], [0.1, 0.2])} {([0.6, 0.8], [0.2, 0.3]), {([0.3, 0.4], [0.5, 0.6]),
{([0.5, 0.7], [0.3, 0.4])} ([0.6, 0.9], [0.1, 0.2])} {([0.3, 0.4], [0.6, 0.7])}

{([0.4, 0.5], [0.4, 0.6])}
F4 {([0.5, 0.6], [0.2, 0.4])} {([0.4, 0.5], [0.3, 0.4]), {([0.5, 0.8], [0.3, 0.4]),

([0.3, 0.5], [0.3, 0.4])}

Table 2. Revised IVFHFDM M ′ .

C1 C2 C3

F1 {([0.5, 0.8], [0.1, 0.3]), {([0.5, 0.7], [0.1, 0.3]), {([0.5, 0.7], [0.3, 0.4])}
([0.6, 0.8], [0.4, 0.5]), ([0.4, 0.6], [0.2, 0.5])} {([0.5, 0.7], [0.3, 0.4])}

([0.4, 0.6], [0.2, 0.5])} {([0.5, 0.7], [0.3, 0.4])}
([0.4, 0.6], [0.2, 0.5])}

F2 {([0.4, 0.7], [0.2, 0.3])} {([0.5, 0.6], [0.3, 0.4])} {([0.3, 0.7], [0.2, 0.4])},
{([0.4, 0.7], [0.2, 0.3])} {([0.2, 0.7], [0.2, 0.4])} {([0.2, 0.6], [0.2, 0.3])}

{([0.3, 0.5], [0.2, 0.3])} {([0.2, 0.5], [0.3, 0.4])}
{([0.3, 0.5], [0.2, 0.7])}

F3 {([0.5, 0.7], [0.3, 0.4])} {([0.6, 0.8], [0.2, 0.3])}, {([0.4, 0.5], [0.4, 0.6])},
{([0.3, 0.5], [0.1, 0.2])} {([0.6, 0.8], [0.2, 0.3])}, {([0.3, 0.4], [0.5, 0.6])}

{([0.6, 0.9], [0.1, 0.2])} ([0.3, 0.4], [0.6, 0.7])}
{([0.6, 0.9], [0.1, 0.2])}

F4 {([0.5, 0.6], [0.2, 0.4])} {([0.4, 0.5], [0.3, 0.4])}, {([0.5, 0.8], [0.3, 0.4])},
{([0.5, 0.6], [0.2, 0.4])} ([0.4, 0.5], [0.3, 0.4])} {([0.5, 0.8], [0.3, 0.4])}

([0.3, 0.5], [0.3, 0.4])} {([0.5, 0.8], [0.3, 0.4])}
([0.3, 0.5], [0.3, 0.4])}

Table 3. Correlations Coefficients of IVFHFSs.

(F1,F∗) (F2,F∗) (F3,F∗) (F4,F∗)

C 0.3144 0.207 0.4737 0.2116
D 0.2225 0.1864 0.3974 0.1721
Cρ 0.5937 0.4851 0.6803 0.498
Dρ 0.4765 0.4469 0.5154 0.4319
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Table 4. Ranking.

C(F3,F∗) > C(F1,F∗) > C(F4,F∗) > C(F2,F∗)

D(F3,F∗) > D(F1,F∗) > D(F2,F∗) > D(F4,F∗)

Cρ(F3,F∗) > Cρ(F1,F∗) > Cρ(F4,F∗) > Cρ(F2,F∗)

Dρ(F3,F∗) > Dρ(F1,F∗) > Dρ(F2,F∗) > Dρ(F4,F∗)

performance. C1 and C2 are benefit criteria, C3 are cost criteria. Let the weight vector of criteria be
ω = (0.28, 0.47, 0.25)T .

Table 5. IVFHF M .

C1 C2 C3

F̂1 {⟨[0.58, 0.68], [0.41, 0.52]⟩, {⟨[0.46, 0.59], [0.15, 0.35]⟩, {⟨[0.56, 0.72], [0.18, 0.37]⟩}
⟨[0.57, 0.76], [0.18, 0.33]⟩} ⟨[0.37, 0.58], [0.23, 0.54]⟩}

F̂2 {⟨[0.46, 0.67], [0.27, 0.41]⟩} {⟨[0.54, 0.62], [0.35, 0.42]⟩, {⟨[0.39, 0.51], [0.22, 0.35]⟩,
⟨[0.38, 0.51], [0.20, 0.33]⟩ ⟨[0.21, 0.53], [0.37, 0.42]⟩
⟨[0.25, 0.65], [0.24, 0.40]⟩, ⟨[0.25, 0.58], [0.14, 0.36]⟩}
⟨[0.35, 0.48], [0.21, 0.68]⟩}

F̂3 {⟨[0.33, 0.45], [0.16, 0.22]⟩, {⟨[0.60, 0.80], [0.14, 0.22]⟩, {⟨[0.33, 0.44], [0.37, 0.59]⟩,
⟨[0.58, 0.68], [0.26, 0.37]⟩} ⟨[0.66, 0.72], [0.24, 0.29]⟩} ⟨[0.38, 0.44], [0.55, 0.75]⟩

⟨[0.43, 0.58], [0.34, 0.67]⟩}
F̂4 {⟨[0.55, 0.65], [0.22, 0.44]⟩} {⟨[0.46, 0.51], [0.37, 0.42]⟩, {⟨[0.48, 0.77], [0.23, 0.37]⟩}

⟨[0.28, 0.48], [0.31, 0.42]⟩}

IVFHF values are given in Table 5. Table 6 shows the revised IVFHF decision matrix, since |hF̂1j
| ̸= |hF̂2j

|

(j = 1, 2, 3). Table 7 gives the correlations and informational energies of the four IVFHFSs. The values in
Table 8 are the calculated four KK s between these alternatives and the ideal alternatives.

As can be seen from these results, there is not much difference between the ranking results, and it is seen
that the F̂3 panoramic X-ray machine is suitable for all criteria.

5. Discussion
5.1. Comparison

The KK formulas given below were defined by Chen et al. [8] and Garg [78], respectively. For the values given
below, we will calculate the correlation coefficients using the formulas 5.1 and 5.2.

In order to comprehend the examples, it is helpful to keep in mind the following details: The correlation
coefficient is a measure of how strongly and in what direction the independent variables are related. The range
of values for this coefficient is −1 to +1 . A direct linear relationship is shown by a positive number, and an
inverse linear relationship is indicated by a negative value. If the correlation coefficient is 0 , the aforementioned
variables do not have a linear connection. The closer the coefficient is to +1 or −1 , the stronger the linearity
of the relationship.
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Table 6. Revised IVFHF M
′ .

C1 C2 C3

F̂1 {⟨[0.57, 0.76], [0.18, 0.33]⟩, {⟨[0.46, 0.59], [0.15, 0.35]⟩, {⟨[0.56, 0.72], [0.18, 0.37]⟩,
⟨[0.58, 0.68], [0.41, 0.52]⟩} ⟨[0.46, 0.59], [0.15, 0.35]⟩} ⟨[0.56, 0.72], [0.18, 0.37]⟩}

{⟨[0.37, 0.58], [0.23, 0.54]⟩, {⟨[0.56, 0.72], [0.18, 0.37]⟩}
⟨[0.37, 0.58], [0.23, 0.54]⟩}

F̂2 {⟨[0.46, 0.67], [0.27, 0.41]⟩, {⟨[0.54, 0.62], [0.35, 0.42]⟩, {⟨[0.39, 0.51], [0.22, 0.35]⟩,
⟨[0.46, 0.67], [0.27, 0.41]⟩} ⟨[0.38, 0.51], [0.20, 0.33]⟩ ⟨[0.25, 0.58], [0.14, 0.36]⟩

⟨[0.2, 0.7], [0.2, 0.4]⟩, ⟨[0.21, 0.53], [0.37, 0.42]⟩}
⟨[0.35, 0.48], [0.21, 0.68]⟩}

F̂3 {⟨[0.58, 0.68], [0.26, 0.37]⟩, {⟨[0.60, 0.80], [0.14, 0.22]⟩, {⟨[0.43, 0.58], [0.34, 0.67]⟩,
⟨[0.33, 0.45], [0.16, 0.22]⟩} ⟨[0.60, 0.80], [0.14, 0.22]⟩} ⟨[0.3, 0.4], [0.4, 0.6]⟩

⟨[0.66, 0.72], [0.24, 0.29]⟩, ⟨[0.38, 0.44], [0.55, 0.75]⟩}
⟨[0.38, 0.44], [0.55, 0.75]⟩}

F̂4 {⟨[0.55, 0.65], [0.22, 0.44]⟩, {⟨[0.46, 0.51], [0.37, 0.42]⟩, {⟨[0.48, 0.77], [0.23, 0.37]⟩,
⟨[0.55, 0.65], [0.22, 0.44]⟩} ⟨[0.46, 0.51], [0.37, 0.42]⟩} ⟨[0.48, 0.77], [0.23, 0.37]⟩

{⟨[0.28, 0.48], [0.31, 0.42]⟩, {⟨[0.48, 0.77], [0.23, 0.37]⟩}
⟨[0.28, 0.48], [0.31, 0.42]⟩}

Table 7. Correlations of M
′ .

C D Cρ Dρ

F̂1 0.108 0.2623 0.3941 0.2616
F̂2 0.0963 0.2037 0.3628 0.1962
F̂3 0.1485 0.2809 0.4039 0.2508
F̂4 0.0842 0.1875 0.3612 0.2084

Table 8. Correlation coefficients of IVFHFSs.

(F̂1, F̂∗) (F̂2, F̂∗) (F̂3, F̂∗) (F̂4, F̂∗)

C 0.4033 0.2816 0.5413 0.2896
Dρ 0.2861 0.2440 0.3837 0.2121
Cρ 0.6514 0.5702 0.7302 0.5728
Dρ 0.5029 0.4576 0.5734 0.4562

C(F,G)Chen1
=

∑n
i=1

[
1
li

∑li
j=1 ρFσ(j)(ui)ρGσ(j)(ui)

]
[∑n

i=1

(
1
lFi

∑lFi

j=1 ρ
2
Fσ(j)(ui)

)]1/2 [∑n
i=1

(
1

l(Gi)

∑l(Gi)

j=1 ρ2Gσ(j)(ui)
)]1/2 (5.1)

Consider the two HFSs F1 = {(u, [0.0])} , F2 = {(u, [0.2, 0.3])} for U = {u} . Using the formula 5.1, since
the informational energy of F is equal to 0, then the correlation coefficient between F1 and F2 cannot compute.
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For hF (u) = {ρF (u)} , take the HFS F = {(u, hF (u)) : u ∈ U} . Now, we can generalize hF (u) to
F = {(ρF (u),

√
1− ρ2F (u))} . Therefore, F is extended to Pythagorean hesitant fuzzy set (PHFS). Zheng et

al. [78] developed the LCME method to solve the problems caused by the different cardinati of the PHFEs.
According to this method, the KK of the PHFS is as follows:

C(F,G)Chen2
=

1
n

∑n
i=1

(
1

3Si

∑Si

j=1

[
ρ2Fσ(j)ρ

2
Gσ(j) + η2Fσ(j)η

2
Gσ(j) + θ2Fσ(j)θ

2
Gσ(j)

])
√

1
n

∑n
i=1

(
ρ4Fj(ui) + η4Fj(ui) + θ4Fj(ui)

)√
1
n

∑n
i=1

(
ρ4Gj(ui) + η4Gj(ui) + θ4Gj(ui)

) (5.2)

Consider the two PHFSs F1 = {(u, [0.0])} , F2 = {(u, [0.2, 0.3])} for U = {u} . Then, we can obtain
hF1

(u) = {(0, 1)} , hF2
(u) = {(0.2,

√
0.96), (0.3,

√
0.91)} . Using the formula 5.2, C(F,G)Chen2

= 0.935 .

If we use similar thinking for FHFS and calculate with the same values, then hF1
(u) = {(0, 1)} , hF2

(u) =

{(0.2,
√
0.997), (0.3,

√
0.991)} , where F = {(ρF (u), 3

√
1− ρ3F (u))} . Hence, we can obtain C(F,G) = 0.9969 .

5.2. Advantages of the new approach

The following merits have been taken into account from the proposed correlation coefficient:
As mentioned above, the FFS is one of the generalizations of the classic set, FS, IFS, and PFS. As PFS is

one of the most successful extensions, which is characterized by the degrees of membership and nonmembership
satisfaction of the particular alternative concerning the criteria, such that their sum of the square is equal
to or less than 1. However, there may be a situation where the decision-maker may provide the degree of
membership and nonmembership of a particular attribute in such a way that their sum of squares is greater
than 1. Therefore, this situation is not properly handled in the PFS. To overcome this shortcoming, FFS
theory is one of the more general and can handle not only incomplete information but also indeterminate
information and inconsistent information, which exist commonly in real situations. Therefore, the Fermatean
fuzzy information decision-making is more suitable for real scientific and engineering applications.

Furthermore, it has been observed from the existing studies that various researchers proposed an algorithm
by using a correlation coefficient for PFSs. As mentioned above, some situations cannot be represented by PFSs,
so their corresponding algorithm may not give appropriate results.

The correlation coefficient for PFSs is a special case of the correlation coefficient of FFSs. Accordingly,
obtaining correlation coefficients according to IVFHFS gives wider opportunities to deal with uncertainty.
Therefore, the proposed correlation coefficient is more generalized and suitable to solve real-life problems more
accurately than the existing ones.

6. Conclusion
In this paper, a correlation coefficient for IVFHFSs has been proposed. The short-coming of the existing
operators have also been highlighted in this paper. Based on that, the present paper have extended the theory
of correlation coefficient from PFS to the FFSs in which the constraint condition of sum of membership and
nonmembership degrees be less than one has been relaxed. Numerical example have been given that demonstrate
that the proposed correlation coefficient can easily handle the situation where the existing correlation coefficient
in PFS environment fails. The proposed correlation coefficient in FFS has been developed by taking the degree
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of membership, nonmembership, and their degree of hesitation between them. Also to deal with the situations
where the elements in a set are correlative, a weighted correlation coefficient has been defined. To demonstrate
the efficiency of the proposed coefficients, numerical examples of pattern recognition and multicriteria decision-
making have been taken. From the experimental studies, it has been concluded that the proposed correlation
coefficient in the FFS environment can suitably handle the real-life decision-making problem with their targets.
In future studies, it will be possible to create new concepts with the methods proposed in this article and ideas
from studies such as [37–39, 47, 57].
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