On a new subclass of biunivalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order $\rho+i\xi$

HALİT ORHAN
İBRAHİM AKTAŞ
HAVA ARIKAN

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
ORHAN, HALİT; AKTAŞ, İBRAHİM; and ARIKAN, HAVA (2023) "On a new subclass of biunivalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order $\rho+i\xi$," Turkish Journal of Mathematics: Vol. 47: No. 1, Article 7. https://doi.org/10.55730/1300-0098.3348
Available at: https://journals.tubitak.gov.tr/math/vol47/iss1/7

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
On a new subclass of biunivalent functions associated with the \((p, q)\)-Lucas polynomials and bi-Bazilevič type functions of order \(\rho + i\xi\)

Halit ORHAN\(^1\), İbrahim AKTAS\(^2\), Hava ARIKAN\(^1\)

\(^1\)Department of Mathematics, Faculty of Science, Erzurum Atatürk University, Erzurum, Turkey
\(^2\)Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey

Abstract: Using \((p, q)\)-Lucas polynomials and bi-Bazilevič type functions of order \(\rho + i\xi\), we defined a new subclass of biunivalent functions. We obtained coefficient inequalities for functions belonging to the new subclass. In addition to these results, the upper bound for the Fekete-Szegö functional was obtained. Finally, for some special values of parameters, several corollaries were presented.

Key words: Bazilevič functions, Lucas polynomial, analytic functions, univalent functions, biunivalent functions

1. Introduction

Let \(A\) denote the class of functions of the form

\[f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \]

which are analytic in the unit disk \(U = \{z \in \mathbb{C} : |z| < 1\}\) and normalized by the conditions \(f(0) = 0\) and \(f'(0) = 1\). Let \(S\) be the subclass of \(A\) consisting of functions univalent in \(A\). It is known that if \(f \in S\), then there exists the inverse function \(f^{-1}\). Because of the normalization \(f(0) = 0\), \(f^{-1}\) is defined in some neighborhood of the origin.

If the functions \(f\) and \(g \in A\), then \(f\) is said to be subordinate to \(g\) if there exists a Schwarz function \(w \in \Theta\), where

\[\Theta = \{w : w(0) = 0 \text{ and } |w(z)| < 1 \ (z \in U)\}, \]

such that

\[f(z) = g(w(z)) \quad (z \in U). \]

This subordination is shown by

\[f \prec g \quad \text{or} \quad f(z) \prec g(z) \quad (z \in U). \]

If \(g\) is univalent function in \(U\), then this subordination is equivalent to

\[f(0) = g(0), \quad f(U) \subset g(U). \]

Correspondence: aktasibrahim38@gmail.com
2010 AMS Mathematics Subject Classification: 30C45, 05A15, 30D15

This work is licensed under a Creative Commons Attribution 4.0 International License.
Let \mathcal{P} denote the class of functions of the form

$$t(z) = 1 + t_1z + t_2z^2 + t_3z^3 + \cdots \quad (z \in U)$$

which are analytic and $\Re(t(z)) > 0$. Here the function $t(z)$ is called Carathéodory function.

We now turn to the Koebe one-quarter theorem (see [11]), which ensures that the image of U under every function in the normalized univalent function class \mathcal{S} contains a disk of radius $\frac{1}{4}$. Thus, clearly, every such univalent function has an inverse f^{-1} which satisfies the following conditions:

$$f^{-1}(f(z)) = z \quad (z \in U)$$

and

$$f(f^{-1}(w)) = w \quad \left(|w| < r_0(f), \quad r_0(f) \geq \frac{1}{4}\right),$$

where

$$f^{-1}(w) = w - a_2w^2 + \left(2a_2^2 - a_3\right)w^3 - \left(5a_2^3 - 5a_2a_3 + a_4\right)w^4 + \cdots := g(w).$$

A function $f \in \mathcal{A}$ is called biunivalent function in U if both f and f^{-1} are univalent in U. The class of biunivalent functions defined in the open unit disk U is denoted by Σ. Comprehensive information and some interesting examples of the class Σ can be found in the pioneering work [22] written by Srivastava et al. in 2010. As indicated in [22], the following examples can be given for functions in the class Σ:

$$\frac{z}{1-z}, -\log(1-z), \quad \frac{1}{2}\log\left(\frac{1+z}{1-z}\right)$$

and so on. However, the familiar Koebe function and also the functions

$$z - \frac{z^2}{2} \quad \text{and} \quad \frac{z}{1-z^2}$$

are not biunivalent although they are univalent. Several important coefficient estimates of the functions in the class Σ were given by many authors. For example, Lewin gave a bound for second coefficient of the class Σ as $|a_2| \leq 1.51$ in [17], while, motivated by Lewin’s work, in [9] Brannan and Clunie presented a conjecture that $|a_2| \leq \sqrt{2}$. In the literature, one of the most important open problems for the class Σ is the coefficient estimates on $|a_n|, n \in \mathbb{N}, n \geq 3$, (see [22]). In recent years, Brannan and Taha studied certain subclasses of the class Σ and gave some coefficient estimates. In addition, motivated by the pioneering paper of Srivastava et al. [22], the authors in [1, 4, 5, 13–15, 20, 22, 28, 29] and the references therein defined some subclasses of the class Σ and they gave nonsharp estimates on initial coefficients of mentioned subclasses. These subclasses were defined by using some polynomials such as Faber, Fibonacci, Lucas, Chebyshev, Pell, Lucas-Lehmer, orthogonal polynomials and their generalizations. Special polynomials and their generalizations are of great importance in a variety of branches such as physics, engineering, architecture, nature, art, number theory, combinatorics and numerical analysis. These polynomials have been studied in several papers from a theoretical point of view (see, for example, [25, 27–29, 31] and the references therein). In addition, some subclasses were also defined by making use of certain differential operators like Sălăgean, Hohlov, and Frasin.
This paper is organized as follows: The rest of this section is devoted to some basic definitions and preliminaries. Section 2 deals with initial coefficient estimates on new subclass introduced, while we investigate Fekete-Szegö problem for this new class in Section 3.

For $f(z)$ given by (1.1) and $g(z)$ defined by
\[g(z) = z + \sum_{k=2}^{\infty} b_k z^k, \quad b_k \geq 0 \]
the Hadamard product (or convolution) $(f \ast g)(z)$ of the functions $f(z)$ and $g(z)$ is defined by
\[(f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g \ast f)(z), \quad (z \in U). \]

Let $f \in A$. In [19], Sălăgean considered the following differential operator:
\[
\begin{align*}
D^0 f(z) &= f(z) \\
D^1 f(z) &= D f(z) = zf'(z) \\
&\vdots \\
D^\tau f(z) &= D(D^{\tau-1} f(z)). \quad (\tau \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}).
\end{align*}
\]
Note that
\[D^\tau f(z) = z + \sum_{k=2}^{\infty} k^\tau a_k z^k \quad (\tau \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \quad (1.2) \]

Consider the function
\[f_\delta(z) = \int_0^z \left(\frac{1+r}{1-r} \right)^\delta \frac{1}{1-r^2} dr = z + \sum_{k=2}^{\infty} b_k(\delta) z^k, \quad \delta > 0, \; z \in U, \quad (1.3) \]
where
\[b_2(\delta) = \delta \quad \text{and} \quad b_3(\delta) = \frac{1}{3} (2\delta^2 + 1). \]

It is worth mentioning that for $\delta < 1$, the function $zf_\delta'(z)$ is starlike with two slits. Moreover, since $zf_\delta'(z)$ is the Koebe function, all functions f_δ for $0 \leq \delta \leq 1$ are univalent and convex. More details about the function f_δ can be found in [26].

For $f \in A$, given by (1.1), we define the function h_δ ($\delta > 0$) as follows:
\[h_\delta(z) = (f \ast f_\delta)(z) = z + \sum_{k=2}^{\infty} b_k(\delta) a_k z^k = (f_\delta \ast f)(z), \quad z \in U. \quad (1.4) \]

For $D^\tau f(z)$ given by (1.2) and $h_\delta(z)$ given by (1.4), we define the function $F(z)$ as follows:
\[F(z) = D^\tau h_\delta(z) = z + \sum_{k=2}^{\infty} b_k(\delta) k^\tau a_k z^k. \quad (1.5) \]
In that case every such function \(F(z) \) has an inverse \(F^{-1}(z) \), which satisfies
\[
F^{-1}(w) = w - b_2(\delta) 2^\gamma a_2 w^2 + (b_2^2(\delta) 2^{2\gamma+1} a_2^2 - b_3(\delta) 3^\gamma a_3)w^3 \\
- (5b_2^3(\delta) 2^{3\gamma} a_2^3 - 5b_2 (\delta) 2^\gamma b_3(\delta) 3^\gamma a_2 a_3 + b_4(\delta) 4^\gamma a_4) w^4 + \cdots := G(w).
\]

The following is the definition of \((p,q)\)-Lucas polynomials introduced by Lee and Asci [16] and it is related to our study.

Definition 1.1 [16] Let \(p(x) \) and \(q(x) \) be polynomials with real coefficients. The \((p,q)\)-Lucas Polynomials \(L_{p,q,n}(x) \) are defined by the recurrence relation
\[
L_{p,q,n}(x) = p(x)L_{p,q,n-1}(x) + q(x)L_{p,q,n-2}(x) \quad (n \geq 2),
\]
from which the first few Lucas polynomials can be expressed as below:
\[
L_{p,q,0}(x) = 2, \quad L_{p,q,1}(x) = p(x), \quad L_{p,q,2}(x) = p^2(x) + 2q(x).
\]

(1.6)

For the special cases of \(p(x) \) and \(q(x) \), the \((p,q)\)-Lucas polynomials reduce to the special polynomials below: \(L_{x,1,n}(x) \equiv L_n(x) \) Lucas Polynomials, \(L_{2x,1,n}(x) \equiv D_n(x) \) Pell-Lucas Polynomials, \(L_{1,2x,n}(x) \equiv J_n(x) \) Jacobsthal-Lucas Polynomials, \(L_{3x,-2,n}(x) \equiv F_n(x) \) Fermat-Lucas Polynomials, \(L_{2x,-1,n}(x) \equiv T_n(x) \) Chebyshev Polynomials of the first kind.

Lemma 1.2 [16] Let \(G_{\{L_n(x)\}}(z) \) be the generating function of the \((p,q)\)-Lucas Polynomials Sequence \(L_{p,q,n}(x) \). Then,
\[
G_{\{L_n(x)\}}(z) = \sum_{n=0}^{\infty} L_{p,q,n}(x) z^n = \frac{2 - p(x)z}{1 - p(x)z - q(x)z^2}
\]

and
\[
\Psi_{\{L_n(x)\}}(z) = G_{\{L_n(x)\}}(z) - 1 = 1 + \sum_{n=1}^{\infty} L_{p,q,n}(x) z^n = \frac{1 + q(x)z^2}{1 - p(x)z - q(x)z^2}.
\]

Definition 1.3 [24] For \(\rho \geq 0, \xi \in \mathbb{R}, \rho + i\xi \neq 0, \) and \(F \in \mathcal{A} \), let \(\mathcal{B}(\rho, \xi, \delta, \tau) \) denote the class of Bazilević type function if and only if
\[
\Re \left[\frac{zF'(z)}{F(z)} \left(\frac{F(z)}{z} \right)^{\rho+i\xi} \right] > 0.
\]

Many researchers have worked different subclasses of the famous Bazilević functions of type \(\rho \) from various view points (see [3] and [23]). In the literature, there are not many papers for \((p,q)\)-Lucas polynomials associated with Bazilević type functions of order \(\rho + i\xi \). One of the main goals of this paper is to contribute to this kind of studies. For this purpose, motivated by the very recent work of Ala Amourah et al. [6] (also see [18]), we introduce the new subclass \(\mathcal{B}(\rho, \xi, \delta, \tau) \) of biunivalent functions associated with bi-Bazilević type function and \((p,q)\)-Lucas polynomials.
Definition 1.4 For $F \in \Sigma$, $\rho \geq 0$, $\xi \in \mathbb{R}$, $\rho + i\xi \neq 0$, let $\bar{B}(\rho, \xi, \delta, \tau)$ denote the class of bi-Bazilevič type function of order type $\rho + i\xi$ if and only if

$$
\left[\left(\frac{zF'(z)}{F(z)} \right) \left(\frac{F(z)}{z} \right) \right]^{\rho + i\xi} < \Psi_{\{L_n(x)\}}(z), \quad z \in \mathcal{U}
$$

(1.7)

and

$$
\left[\left(\frac{wG'(w)}{G(w)} \right) \left(\frac{G(w)}{w} \right) \right]^{\rho + i\xi} < \Psi_{\{L_n(x)\}}(w), \quad w \in \mathcal{U},
$$

(1.8)

where $\Psi_{L_p,q_n(x)}(z) \in \mathcal{P}$ and the function G is described as $G(w) = F^{-1}(w)$.

Remark 1.5 Note that, by specializing the parameters ρ, ξ, δ and τ, we obtain the following subclasses studied by various authors.

1. $\bar{B}(\rho, \xi, 1, 0) \equiv B(\rho, \xi)$ (Ala Amourah et al. [6]).
2. $\bar{B}(\rho, 0, 1, 0) \equiv B(\rho)$ (Altınkaya et al. [2])

The class $\bar{B}(0, 0, \delta, \tau) = S_{\Sigma}^\ast$ is defined as follows:

Definition 1.6 A function $F \in \Sigma$ is said to be in the class S_{Σ}^\ast, if the following subordinations hold

$$
\left(\frac{zF'(z)}{F(z)} \right) < \Psi_{\{L_n(x)\}}(z), \quad z \in \mathcal{U}
$$

and

$$
\left(\frac{wG'(w)}{G(w)} \right) < \Psi_{\{L_n(x)\}}(w), \quad w \in \mathcal{U},
$$

where $G(w) = F^{-1}(w)$.

2. Coefficient estimates for the function class $\bar{B}(\rho, \xi, \delta, \tau)$

In this section, we propose to find the estimates on the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in the class $\bar{B}(\rho, \xi, \delta, \tau)$ which is introduced in Definition (1.4). We first state the following theorem.

Theorem 2.1 Let the function $F(z)$ given by (1.5) be in the class $\bar{B}(\rho, \xi, \delta, \tau)$. Then,

$$
|a_2| \leq \frac{1}{b_2(\delta) 2^\tau} \frac{|p(x)| \sqrt{2 |p(x)|}}{\sqrt{(\rho + 1)^2 + \xi^2 |(\rho + i\xi) p^2(x) + 4q(x) (\rho + i\xi + 1)|}}
$$

and

$$
|a_3| \leq \frac{1}{b_3(\delta) 3^\tau} \left\{ \frac{p^2(x)}{(\rho + 1)^2 + \xi^2} + \frac{|p(x)|}{\sqrt{(\rho + 2)^2 + \xi^2}} \right\}.
$$
Proof Let \(F(z) \in \mathcal{B}(\rho, \xi, \delta, \tau) \). Then, there exist two analytic functions \(\gamma, \varphi : \mathcal{U} \to \mathcal{U} \) such that \(\gamma(0) = \varphi(0) = 0 \), \(|\gamma(z)| < 1 \) and \(|\varphi(w)| < 1 \). Thus, we can write from (1.7) and (1.8) that

\[
\left[\left(\frac{zF'(z)}{F(z)} \right) \right]^{\rho + i\xi} = \Psi_{L_n(z)}(\gamma(z)) \quad (z \in \mathcal{U}) \tag{2.1}
\]

and

\[
\left[\left(\frac{wG'(w)}{G(w)} \right) \right]^{\rho + i\xi} = \Psi_{L_n(z)}(\varphi(w)) \quad (w \in \mathcal{U}). \tag{2.2}
\]

It is well known that the following inequalities

\[|\gamma(z)| = |\gamma_1 z + \gamma_2 z^2 + \cdots| < 1 \]

and

\[|\varphi(w)| = |\varphi_1 w + \varphi_2 w^2 + \cdots| < 1, \]

imply that

\[|\gamma_j| \leq 1 \quad \text{and} \quad |\varphi_j| \leq 1 \quad (j \in \mathbb{N}). \]

It can be easily seen that

\[
\Psi_{L_n(z)}(\gamma(z)) = 1 + L_{p,q,1}(x)\gamma_1 z + \left[L_{p,q,1}(x)\gamma_2 + L_{p,q,2}(x)\gamma_1^2 \right] z^2 + \cdots \tag{2.3}
\]

and

\[
\Psi_{L_n(z)}(\varphi(w)) = 1 + L_{p,q,1}(x)\varphi_1 w + \left[L_{p,q,1}(x)\varphi_2 + L_{p,q,2}(x)\varphi_1^2 \right] w^2 + \cdots. \tag{2.4}
\]

By taking into account the equalities (2.3) and (2.4) in the equalities (2.1) and (2.2), respectively, we deduce

\[
\left[\left(\frac{zF'(z)}{F(z)} \right) \right]^{\rho + i\xi} = 1 + L_{p,q,1}(x)\gamma_1 z + \left[L_{p,q,1}(x)\gamma_2 + L_{p,q,2}(x)\gamma_1^2 \right] z^2 + \cdots \tag{2.5}
\]

and

\[
\left[\left(\frac{wG'(w)}{G(w)} \right) \right]^{\rho + i\xi} = 1 + L_{p,q,1}(x)\varphi_1 w + \left[L_{p,q,1}(x)\varphi_2 + L_{p,q,2}(x)\varphi_1^2 \right] w^2 + \cdots. \tag{2.6}
\]

It follows from (2.5) and (2.6) that

\[
(\rho + i\xi + 1) b_2(\delta) 2^\tau a_2 = L_{p,q,1}(x)\gamma_1, \tag{2.7}
\]

\[
(\rho + i\xi + 2) \left[(\rho + i\xi - 1) b_2^2(\delta) 2^{2\tau-1} a_2^2 + b_3(\delta) 3^\tau a_3 \right] = L_{p,q,1}(x)\gamma_2 + L_{p,q,2}(x)\gamma_1^2 \tag{2.8}
\]

and

\[
- (\rho + i\xi + 1) b_2(\delta) 2^\tau a_2 = L_{p,q,1}(x)\varphi_1, \tag{2.9}
\]

\[
(\rho + i\xi + 2) \left[(\rho + i\xi + 3) b_2^2(\delta) 2^{2\tau-1} a_2^2 - b_3(\delta) 3^\tau a_3 \right] = L_{p,q,1}(x)\varphi_2 + L_{p,q,2}(x)\varphi_1^2. \tag{2.10}
\]
respectively. From (2.7) and (2.9), we get

\[\gamma_1 = -\varphi_1 \]

(2.11)

and

\[2(\rho + i\xi + 1)^2 b_2^2(\delta) 2^{2\tau} a_2^2 = L_{p,q,1}^2(x) \left(\gamma_1^2 + \varphi_1^2 \right). \]

(2.12)

Also, adding (2.8) to (2.10) yields

\[(\rho + i\xi + 1) (\rho + i\xi + 1) b_2^2(\delta) 2^{2\tau} a_2^2 = L_{p,q,1}(x) (\gamma_2 + \varphi_2) + L_{p,q,2}(x) \left(\gamma_1^2 + \varphi_1^2 \right). \]

(2.13)

Now, using (2.12) in (2.13) implies that

\[(\rho + i\xi + 1) \left[(\rho + i\xi + 1) \frac{2L_{p,q,2}(x)(\rho + i\xi + 1)}{L_{p,q,1}(x)} \right] b_2^2(\delta) 2^{2\tau} a_2^2 = L_{p,q,1}(x) (\gamma_2 + \varphi_2) \]

and so, we can write that

\[a_2^2 = \frac{L_{p,q,1}^3(x) (\gamma_2 + \varphi_2)}{b_2^2(\delta) 2^{2\tau} (\rho + i\xi + 1) \left[(\rho + i\xi + 2) L_{p,q,1}(x) - 2L_{p,q,2}(x) (\rho + i\xi + 1) \right].} \]

(2.14)

Considering (1.6) in (2.14), we can write that

\[|a_2| \leq \frac{1}{b_2(\delta) 2^\tau \sqrt{(\rho + 1)^2 + \xi^2}} \frac{|\rho(x)| 2 |p(x)|}{\sqrt{2(\rho + 1)|p(x)| + |p(x)| (\rho + i\xi)(\rho + i\xi + 1)}}. \]

In order to prove the estimate on \(|a_3|\), let us subtract (2.10) from (2.8). As a result of this computation, we have

\[(\rho + i\xi + 2) \left[2b_3(\delta) 3^\tau a_3 - b_2^2(\delta) 2^{2\tau + 1} a_2^2 \right] = L_{p,q,1}(x) (\gamma_2 - \varphi_2) + L_{p,q,2}(x) \left(\gamma_1^2 - \varphi_1^2 \right), \]

and since (2.11), we get

\[2(\rho + i\xi + 2) b_3(\delta) 3^\tau a_3 = L_{p,q,1}(x) (\gamma_2 - \varphi_2) + (\rho + i\xi + 2) b_2^2(\delta) 2^{2\tau + 1} a_2^2. \]

Thus, it is easily obtained that

\[a_3 = \frac{L_{p,q,1}(x) (\gamma_2 - \varphi_2)}{2b_3(\delta) 3^\tau (\rho + i\xi + 2)} + \frac{b_2^2(\delta) 2^{2\tau} a_2^2}{b_3(\delta) 3^\tau}. \]

(2.15)

By virtue of (2.11) and (2.12), we can write from (2.15) that

\[a_3 = \frac{L_{p,q,1}(x)}{2b_3(\delta) 3^\tau (\rho + i\xi + 1)^2} \left(\gamma_1^2 + \varphi_1^2 \right) + \frac{L_{p,q,1}(x)}{2b_3(\delta) 3^\tau (\rho + i\xi + 2)} (\gamma_2 - \varphi_2), \]

and

\[|a_3| \leq \frac{p^2(x)}{b_3(\delta) 3^\tau |\rho + i\xi + 1|^2} + \frac{p(x)}{b_3(\delta) 3^\tau |\rho + i\xi + 2|} = \frac{1}{b_3(\delta) 3^\tau} \left\{ \frac{p^2(x)}{(\rho + 1)^2 + \xi^2} + \frac{p(x)}{\sqrt{(\rho + 2)^2 + \xi^2}} \right\}. \]

The proof is thus completed. \hfill \Box

Putting \(\xi = 0 \), in Theorem 2.1, we get:
Corollary 2.2 Let the function $F(z)$ given by (1.5) be in the class $B(\rho, 0, \delta, \tau)$. Then,

$$|a_2| \leq \frac{1}{b_2(\delta)} \frac{|p(x)| \sqrt{2|p(x)|}}{(\rho + 1)^{3/2}|\rho p^2(x) + 4q(x)(\rho + 1)|}$$

and

$$|a_3| \leq \frac{1}{b_3(\delta)} \left\{ \frac{p^2(x)}{(\rho + 1)^2} + \frac{|p(x)|}{\rho + 2} \right\}$$

Remark 2.3 For the certain special values of the parameters in Theorem 2.1 and Corollary 2.2, respectively, we obtain some earlier results as follows:

i. By giving $\delta = 1$ and $\tau = 0$ in Theorem 2.1, we have the results by [6, Theorem 2.1].

ii. Letting $\tau = 0$ and $\delta = 1$ in Corollary 2.2, we have the results given by [6, Corollary 2.2].

iii. Taking $\rho = \xi = \tau = 0$ and $\delta = 1$ in Corollary 2.2, we get the results given by [3, Corollary 1].

3. Fekete-Szegö inequality for the class $B(\rho, \xi, \delta, \tau)$

In geometric function theory, the Fekete-Szegö inequality is an inequality for the coefficients of univalent analytic functions founded by Fekete and Szegö [12], related to the Bieberbach conjecture. Finding similar estimates for other classes of functions is called the Fekete-Szegö problem. This problem have been handled by many authors for some function classes (see [7, 8, 21, 30]).

The Fekete-Szegö inequality states that if

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$

is a univalent analytic function on the unit disk U and $\lambda \in [0, 1)$, then

$$|a_3 - \lambda a_2^2| \leq 1 + 2e^{-2\lambda}.$$

In the limit case when $\lambda \to 1^-$, an elementary inequality is obtained given by $|a_3 - a_2^2| \leq 1$. It is known that the coefficient functional

$$\varsigma_\lambda(f) = a_3 - \lambda a_2^2$$

for the normalized analytic functions f in the unit disk U plays an important role in function theory.

In this section, we aim to provide Fekete-Szegö inequalities for functions in the class $B(\rho, \xi, \delta, \tau)$.

Theorem 3.1 Let F given by (1.5) be in the class $B(\rho, \xi, \delta, \tau)$ and $\lambda \in \mathbb{R}$. Then,

$$|a_3 - \lambda a_2^2| \leq \begin{cases} \frac{p(x)}{b_3(\delta)} \frac{1}{\sqrt{(\rho + 2)^2 + \xi^2}}, & |\varsigma_\lambda(f)| \leq \frac{1}{2\sqrt{(\rho + 2)^2 + \xi^2}} \frac{1}{\sqrt{(\rho + 2)^2 + \xi^2}}, \\ \frac{b_3(\delta)}{2p(x)|\varsigma_\lambda(f)|} & |\varsigma_\lambda(f)| \geq \frac{1}{2\sqrt{(\rho + 2)^2 + \xi^2}}, \end{cases}$$

(3.1)

where

$$\varsigma_\lambda(f) = \frac{(b_3^2(\delta)2^{2\tau} - \lambda b_3(\delta)3^{3\tau}) L_{p,q,1}(x)}{b_3^2(\delta)2^{2\tau} (\rho + i\xi + 1) [(\rho + i\xi + 2) L_{p,q,1}(x) - 2L_{p,q,2}(x)(\rho + i\xi + 1)].}$$
Proof In order to prove the inequality (3.1), consider (2.14) and (2.15). It follows that

\[
a_3 - \lambda a_2^2 = \frac{\left(b_2^3(\delta) 2^{2\tau} - \lambda b_3(\delta) 3^\tau \right) L_{p,q,1}^3(x) \gamma_2 + \varphi_2}{b_2(\delta) 2^{2\tau} b_3(\delta) 3^\tau (\rho + i\xi + 1) \left[(\rho + i\xi + 2) L_{p,q,1}^2(x) - 2 L_{p,q,2}(x)(\rho + i\xi + 1) \right]}
+ \frac{L_{p,q,1}(x) \gamma_2 - \varphi_2}{2 b_3(\delta) 3^\tau (\rho + i\xi + 2)}
+ \frac{L_{p,q,1}(x)}{b_3(\delta) 3^\tau} \left[\left(h(\lambda) + \frac{1}{2(\rho + i\xi + 2)} \right) \gamma_2 + \left(h(\lambda) - \frac{1}{2(\rho + i\xi + 2)} \right) \varphi_2 \right].
\]

As a result, by virtue of (2.13), we deduce the desired result given in (3.1). □

By putting some special values to the parameters in Theorem 3.1, we arrive at the following corollaries.

Taking \(\xi = 0 \) in Theorem 3.1, we get

Corollary 3.2 Let \(\mathcal{F} \) given by (1.5) be in the class \(\overline{B}(\rho,0,\delta,\tau) \). Then,

\[
|a_3 - \lambda a_2^2| \leq \begin{cases}
\frac{p(x)}{(\rho^2 + 2)^2 + \xi^2}, & |s(\lambda)| \leq \frac{1}{2(\rho^2 + 2)}, \\
\frac{2^\tau x(1)}{2 b_3(\delta) 3^\tau}, & |s(\lambda)| \geq \frac{1}{2(\rho^2 + 2)},
\end{cases}
\]

where

\[
s(\lambda) = \frac{\left[b_2^3(\delta) 2^{2\tau} - \lambda b_3(\delta) 3^\tau \right] L_{p,q,1}^2(x)}{b_2^2(\delta) 2^{2\tau}(\rho + 1) \left[(\rho + 2) L_{p,q,1}^2(x) - 2 L_{p,q,2}(x)(\rho + 1) \right]}.
\]

It is important to mention here that the Fekete-Szegö functional will become second Hankel determinant \(H_2(1) \) for \(\lambda = 1 \). Taking \(\lambda = 1 \) in Theorem 3.1, we have

Corollary 3.3 If \(\mathcal{F} \in \overline{B}(\rho,\xi,\delta,\tau) \), then

\[
|a_3 - a_2^2| \leq \begin{cases}
\frac{p(x)}{b_3(\delta) 3^\tau \sqrt{[\rho + 2]^2 + \xi^2}}, & |h(1)| \leq \frac{1}{2 \sqrt{[\rho + 2]^2 + \xi^2}}, \\
\frac{2^\tau x(1)}{b_3(\delta) 3^\tau}, & |h(1)| \geq \frac{1}{2 \sqrt{[\rho + 2]^2 + \xi^2}},
\end{cases}
\]

where

\[
h(1) = \frac{\left[b_2^3(\delta) 2^{2\tau} - b_3(\delta) 3^\tau \right] L_{p,q,1}^2(x)}{b_2^2(\delta) 2^{2\tau}(\rho + i\xi + 1) \left[(\rho + i\xi + 2) L_{p,q,1}^2(x) - 2 L_{p,q,2}(x)(\rho + i\xi + 1) \right]}
\]

By choosing \(\rho = 0 = \xi \) and \(\lambda = 1 \) in Theorem 3.1, we obtain the following result

Corollary 3.4 Let \(\mathcal{F} \) given by (1.5) be in the class \(\overline{B}(0,0,\delta,\tau) \). Then,

\[
|a_3 - a_2^2| \leq \begin{cases}
\frac{p(x)}{2 b_3(\delta) 3^\tau}, & |s(1)| \leq \frac{1}{4}, \\
\frac{2^\tau x(1)}{b_3(\delta) 3^\tau}, & |s(1)| \geq \frac{1}{4},
\end{cases}
\]

where

\[
s(1) = \frac{\left[b_1(\delta) 3^\tau - b_2^3(\delta) 2^{2\tau} \right] p^2(x)}{4^\tau + 1 b_2^2(\delta) q(x)}.
\]
Remark 3.5 Theorem 3.1 reduces to the following earlier results for special values of parameters:

i. For $\delta = 1$ and $\tau = 0$, we have the results given by [6, Theorem 3.1].

ii. For $\delta = \lambda = 1$ and $\tau = 0$, we have the results given by [6, Corollary 3.2].

iii. For $\delta = 1$ and $\tau = \xi = 0$, we have the results given by [6, Corollary 3.3].

iv. For $\delta = \lambda = 1$ and $\rho = \tau = \xi = 0$, we have the results given by [6, Corollary 3.4].

4. Conclusion

In the present investigation, we have defined a new subclass of analytic biunivalent function class Σ by using (p, q)-Lucas polynomial and bi-Bazilevič type functions of order $\rho + i\xi$. Then, we have investigated certain properties such as nonsharp initial coefficient estimates and Fekete-Szegö problem for this subclass. Also, we have derived corresponding results for the some special values of the parameters. Our results generalize the recent papers [2, 3] and [6]. In the future, Hankel determinant problem for the subclass introduced here can be handled by researchers.

Acknowledgments

The authors are thankful to the referees for their helpful comments and suggestions.

References

