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Abstract: We give a new way to obtain the standard isomorphisms of complex Clifford algebras, known as the tensor
product of Pauli matrices, by representing the complex Clifford algebras on the space of complex valued functions defined
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1. Introduction

Clifford algebras (also known as “geometric algebras”) are introduced (1878) by W. K. Clifford as a general-
ization of Grassmann algebras, complex numbers, and quaternions. In the area of mathematical physics, the
representations of Clifford algebras are important for determining the topological and geometric structures of
manifolds [8].

The idea that the Clifford algebras could be represented on fractals is discussed in the paper [7], where
the envisaged representation of Clifford algebras is undertaken via Cuntz algebras (For representations of Cuntz
algebras on fractals, see also [9]). In [2, 3], the authors give a direct realization for this pretty idea of representing
Clifford algebras on fractals, without any use of Cuntz algebras. They represent the infinite dimensional complex
Clifford algebra Cl∞ on L2K which is the complex Hilbert space of square integrable, complex valued functions
on K , where K is the Cantor set.

In this note, we first present a representation for even complex Clifford algebra Cl2n using a special 2n -
element subset of the Cantor set, by the analogue of the representation for infinite-dimensional case [3]. Next,
we show that the matrix for any image of the standard Clifford generator under this representation emerges as
the tensor product of the standard Pauli matrices with respect to a suitable base of the representation space.
In the case of the odd dimension, we can see easily from [7].

We will consider a special finite subset of K , which is the attractor of the iterated functions system on
R consisting of the functions φ0 and φ1 such that φ0(x) =

1
3x, φ1(x) =

1
3x + 2

3 , with 2n elements. Let Vn
denote the set of left endpoints of the nth stage of K . The first three sets of endpoints illustrated in Figure 1
are as follows:
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Figure 1. The finite subsets of the Cantor set V1, V2 , and V3 .

Note that these endpoints are obtained by applying the transformations φ0 and φ1 to the point x = 0 ,
successively. Thus, the first two sets V1 and V2 are also written as follows:

V1 = {φ0(0), φ1(0)}

V2 = {φ0(φ0(0)), φ0(φ1(0)), φ1(φ0(0)), φ1(φ1(0))}

We denote the set of complex-valued functions on Vn by Fn and algebra of bounded linear operators on
Fn by B(Fn) . In our representation, we will construct an algebra homomorphism from Cl2n to B(Fn) .

The rest of this paper is organized as follows. In Section 2, we will introduce special transformations
that will be used in the construction of our representation, which we will call the tilt and switch operators here
and illustrate their geometric behaviour with some examples. In Section 3, we will present our representation
for Cl2n, n ∈ N+ . In that section, we will also construct a base for the representation space Fn by using
symbolic notations of the elements of Vn and determine the matrix of any Clifford generator’s image under the
representation with respect to this base constructed.

2. Tilt and switch operators on Fn

In [3], tilt and switch operators on L2K , which are used to represent infinite dimensional complex Clifford
algebra, were defined. We will define similar operators on Fn which will be used to construct the representation
of Cl2n and call them tilt and switch operators too. We use the symbolic dynamics of these endpoints in
Vn to describe these transformations. For any element x in Vn , it has unique address which are finite words
ω1ω2 . . . ωn such that

x = φω1ω2...ωn(0) = (φω1 ◦ φω2 ◦ · · · ◦ φωn)(0),

where each of the letters ωi belongs to {0, 1} (See [1] and [6] for symbolic dynamics of the points of an attractor.)
We identify a point x ∈ Vn with its address ω1ω2 . . . ωn and write x = ω1ω2 . . . ωn . For some fixed n

and for all 1 ≤ j ≤ n, j ∈ N, one can decompose Vn with respect to the address-letter at a specific slot j:

V j,0n := {x ∈ Vn | x = ω1ω2 · · ·ωj−10ωj+1 · · ·ωn}

and
V j,1n := {x ∈ Vn | x = ω1ω2 · · ·ωj−11ωj+1 · · ·ωn}
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with
Vn = V j,0n ∪ V j,1n .

Now we define the operators Tj and Sj , j = 1, 2, . . . , n on Fn for n ∈ N+ . For a given f ∈ Fn , Tjf and
Sjf are defined as follows:

(Tjf)(x) =

{
f(x) , x ∈ V j,0n

−f(x) , x ∈ V j,1n

and
(Sjf)(x) = f(x̃j) for x = ω1ω2 . . . ωn ∈ Vn,

where

x̃j =

{
ω1ω2 . . . ωj−10ωj+1 . . . ωn , for ωj = 1
ω1ω2 . . . ωj−11ωj+1 . . . ωn , for ωj = 0.

Tj ’s are the “tilt” operators as they tilt the portion of the graph on V j,1n , and Sj ’s are the “switch” operators
as they switch the portions of graphs on V j,0n and V j,1n like the tilt and switch operators defined on L2K in
[3]. We note that as n changes, the tilt and stitch operators will also be different, as the domains will change.
We write Tj and Sj without n in order not to cause indices confusion.

Example 2.1 Let a function f on V2 be given as in Figure 2. We illustrate T1(f) , S1(f) , T2(f) , and S2(f)

as in Figures 3–6, respectively. Note that the elements in V2 have been shown with their address representations.

b b b b

00

b

b
b

b

01 10 11

Figure 2. The graph of f on V2 .
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Figure 3. The graph of T1f .
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Figure 4. The graph of S1f .
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Figure 5. The graph of T2f .
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Figure 6. The graph of S2f .

We now give a lemma about commutation properties of tilt and switch operators on Fn .

Lemma 2.2 For a fixed integer n ≥ 1 and p, q ∈ N, 1 ≤ p, q ≤ n , the following equalities hold:

i) TpTq = TqTp

ii) SpSq = SqSp

iii) TpSq = SqTp (p 6= q)

iv) TpSp = −SpTp

Proof Let f ∈ Fn be given. Then,
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i)

(TpTq)(f)(x) =

 (Tqf)(x) , x ∈ V p,0n

−(Tqf)(x) , x ∈ V p,1n

(2.1)

=



f(x) , x ∈ V p,0n and V q,0n

−f(x) , x ∈ V p,0n and V q,1n

−f(x) , x ∈ V p,1n and V q,0n

f(x) , x ∈ V p,1n and V q,1n

(2.2)

(TpTq)(f)(x) has the same explicit expression.

ii) (SpSq)(f)(x) = (Sqf)(x̃
p) = f((̃x̃p)

q
) = f((̃x̃q)

p
) = (Spf)(x̃

q) = (SqSp)(f)(x) .

iii)

(TpSq)(f)(x) =

{
(Sqf)(x) , x ∈ V p,0n

−(Sqf)(x) , x ∈ V p,1n
(2.3)

=

{
f(x̃q) , x ∈ V p,0n

−f(x̃q) , x ∈ V p,1n
(2.4)

For p 6= q , we have x ∈ V p,0n ⇔ x̃q ∈ V p,0n and x ∈ V p,1n ⇔ x̃q ∈ V p,1n . Hence, we can write:

(TpSq)(f)(x) =

{
f(x̃q) , x̃q ∈ V p,0n

−f(x̃q) , x̃q ∈ V p,1n
(2.5)

= (Tpf)(x̃
q) (2.6)

= (SqTp)(f)(x). (2.7)

iv)

(SpTp)(f)(x) = (Tpf)(x̃
p) (2.8)

=

{
f(x̃p) , x̃p ∈ V p,0n

−f(x̃p) , x̃p ∈ V p,1n
(2.9)

=

{
f(x̃p) , x ∈ V p,1n

−f(x̃p) , x ∈ V p,0n
(2.10)

=

{
(Spf)(x) , x ∈ V p,1n

−(Spf)(x) , x ∈ V p,0n
(2.11)

= −(TpSp)(f)(x). (2.12)

2
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3. Representations of complex Clifford algebras on Fn

It is well known that the structures of finite-dimensional real and complex Clifford algebras for a nondegenerate
quadratic form have been completely classified [4]. In this section, we construct representation for complex
Clifford algebra in even dimension via tilt and switch operators and show that the matrix representation of
every Clifford generator is the form of the tensor product of the Pauli matrices.

Let us denote the generators of the complex Clifford algebra Cl2n by ej (j = 1, 2, ..., 2n) with ej
2 =

1 and ejek = −ekej for j 6= k . We map these generators in the following way into B(Fn) :

ψ2n : e1 7→ T1
e2 7→ S1

...
(1 < k ≤ n) e2k−1 7→ i(k+1)2(TkTk−1Sk−1Tk−2Sk−2 · · ·T1S1)

e2k 7→ i(k+1)2(SkTk−1Sk−1Tk−2Sk−2 · · ·T1S1),

(3.1)

where i is the imaginary unit.

Theorem 3.1 ψ2n , defined above, induces an algebra homomorphism from Cl2n to B(Fn) , i.e. a representation
of Cl2n on Fn .

Proof
For all 1 ≤ p, q ≤ 2n, p 6= q , we have to check that both

(ψ2n(ep))
2 = I

and
ψ2n(ep)ψ2n(eq) = −ψ2n(eq)ψ2n(ep).

We first show that (ψ2n(ep))
2 = I. For p = 1 and p = 2 , it can be easily verified from the following

equalities:
(ψ2n(e1))

2 = T1T1 = I

and
(ψ2n(e2))

2 = S1S1 = I.

Now let p = 2k − 1 (k > 1) :

(ψ2n(e2k−1))
2 = (i(k+1)2TkTk−1Sk−1 · · ·T1S1)(i

(k+1)2TkTk−1Sk−1 · · ·T1S1)

(by Lemma 2.2) = i2(k+1)2(−1)k−1(TkTkTk−1Tk−1Sk−1Sk−1 · · ·T1T1S1S1)

= (−1)(k+1)2(−1)k−1I = (−1)k(k+3)I = I.

For p = 2k , we obtain

(ψ2n(e2k))
2 = (i(k+1)2SkTk−1Sk−1 · · ·T1S1)(i

(k+1)2SkTk−1Sk−1 · · ·T1S1)

= i2(k+1)2(−1)k−1(SkSkTk−1Tk−1Sk−1Sk−1 · · ·T1T1S1S1)

= I.
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Let us now check the anticommutativity relations. By Lemma 2.2,

ψ2n(e1)ψ2n(e2) = −ψ2n(e2)ψ2n(e1).

Likewise, ψ2n(e1) and ψ2n(e2) anticommute with all ψ2n(ej) for j > 2 by Lemma 2.2.
Now we consider various cases:
i) Let p = 2k − 1 , q = 2l − 1 for k > 1, l > 1 and k < l .

ψ2n(ep)ψ2n(eq) = (i(k+1)2TkTk−1Sk−1 · · ·T1S1)(i
(l+1)2TlTl−1Sl−1 · · ·T1S1)

= i(k+1)2+(l+1)2(TlTl−1Sl−1 · · ·Tk+1Sk+1)(TkTk−1Sk−1 · · ·T1S1)

(TkSkTk−1Sk−1 · · ·T1S1)

= i(k+1)2+(l+1)2(−1)2k−1(TlTl−1Sl−1 · · ·T1S1(TkTk−1Sk−1 · · ·T1S1)

= −ψ2n(eq)ψ2n(ep).

ii) Let p = 2k , q = 2l for k > 1, l > 1 and k < l .

ψ2n(ep)ψ2n(eq) = (i(k+1)2SkTk−1Sk−1 · · ·T1S1)(i
(l+1)2SlTl−1Sl−1 · · ·T1S1)

= i(k+1)2+(l+1)2(SlTl−1Sl−1 · · ·Tk+1Sk+1)(SkTk−1Sk−1 · · ·T1S1)

(TkSkTk−1Sk−1 · · ·T1S1)

= i(k+1)2+(l+1)2(−1)2k−1(SlTl−1Sl−1 · · ·T1S1)(TkTk−1Sk−1 · · ·T1S1)

= −ψ2n(eq)ψ2n(ep).

iii) Let p = 2k − 1 < q = 2l , k > 1, l > 1 .

ψ2n(ep)ψ2n(eq) = (i(k+1)2TkTk−1Sk−1 · · ·T1S1)(i
(l+1)2SlTl−1Sl−1 · · ·T1S1)

= i(k+1)2+(l+1)2(SlTl−1Sl−1 · · ·Tk+1Sk+1)(TkTk−1Sk−1 · · ·T1S1)

(TkSk · · ·T1S1)

= i(k+1)2+(l+1)2(−1)2k−1(SlTl−1Sl−1 · · ·T1S1)(TkTk−1Sk−1 · · ·T1S1)

= −ψ2n(eq)ψ2n(ep).

It can be shown similarly in the remaining cases with the help of Lemma 2.2. 2

Our current aim is to determine the corresponding matrix for all ψ2n(ei), i = 1, 2, . . . , 2n . We present
the base for Fn denoted by

En = {fj | j = 0, 1, . . . , 2n − 1}

that we use to determine the matrices such that

fj(x) =

{
1 , x = φi1i2...in(0), j = (in . . . i1)2
0 , otherwise (3.2)

As an example for n = 1 each of the base functions f0 and f1 can be thought of an element of C2 such as
f0 = (1, 0), f1 = (0, 1) and the base functions for F2 will be the following elements of C4 :

f0 = (1, 0, 0, 0), f1 = (0, 0, 1, 0), f2 = (0, 1, 0, 0), f3 = (0, 0, 0, 1). (3.3)
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With these definitions, we can now state our main theorem.

Theorem 3.2 For each ei, 1 ≤ i ≤ 2n , the matrix of ψ2n(ei) with respect to En is obtained by the tensor
product of Pauli matrices such as

ψ2n(e1) : I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1

⊗ U ,

ψ2n(e2) : I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1

⊗ V ,

(1 < k ≤ n) ψ2n(e2k−1) : −I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−k

⊗ U ⊗ J ⊗ · · · ⊗ J︸ ︷︷ ︸
k−1

,

ψ2n(e2k) : −I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−k

⊗ V ⊗ J ⊗ · · · ⊗ J︸ ︷︷ ︸
k−1

,

(3.4)

where

U =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
, J =

(
0 −i
i 0

)
.

Proof We prove this theorem by the method of induction. In the first step, we show the result is true for
n = 1 ; in the second, we suppose that the result is true for n and prove it for n+ 1 .

It can be easily verified that the matrices of ψ2(e1) and ψ2(e2) with respect to E1 are as follows:

U =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
.

Let us assume the claim is true for n and determine the matrix corresponding to ψ2n+2(ei) with respect to
En+1 for all i = 1, . . . , 2n+ 2. By definition, ψ2n+2 is as follows:

ψ2n+2 : Cl2n+2 → B(Fn+1)
e1 7→ T1
e2 7→ S1

...
(1 < k ≤ n+ 1), e2k−1 7→ i(k+1)2(TkTk−1Sk−1Tk−2Sk−2 · · ·T1S1)

e2k 7→ i(k+1)2(SkTk−1Sk−1Tk−2Sk−2 · · ·T1S1).

At this point, we need the transformation that gives the identification between the algebras B(Fn) and
B(Fn+1) defined in the following way:

σn : B(Fn) →B(Fn+1), (σnT )(f)(x) = (Tf |Vn
)(x′)

for T ∈ B(Fn), f ∈ Fn+1 and x′ = ω1ω2 . . . ωn where x = ω1ω2 . . . ωnωn+1. One can check that the following
diagram is commutative:

Cl2n
ψ2n−→ B(Fn)

ι
y yσn

Cl2n+2
ψ2n+2−→ B(Fn+1),
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where ι is the inclusion map. With the help of this diagram, we now identify the restriction of ψ2n+2 to
Cl2n with ψ2n . We know from the assumption that for all j = 1, . . . , 2n the matrix of ψ2n(ej) relative to
En = {f0, f1, . . . , f2n−1} is given as in 3.4.

We will use the following property given in [5] and apply this to ψ2n and ψ2 :

Property: Let f : A → End(V ) and g : B → End(W ) be representations and a ∈ A , b ∈ B be given. The
matrix of (f ⊗ g)(a⊗ b) with respect to

{v1 ⊗ w1, . . . , v1 ⊗ wn, v2 ⊗ w1, . . . , v2 ⊗ wn, vm ⊗ w1, . . . , vm ⊗ wn}

is C ⊗ D such that C is the matrix of f(a) , D is the matrix of g(b) with respect to {v1, v2, . . . , vn} ,
{w1, w2, . . . , wm} basis for V and W , respectively [5].

If we consider the following isomorphism with Fn ⊗ F1 and Fn+1 as

φ : Fn ⊗ F1 → Fn+1

a⊗ b 7→ b⊗ a

then the base En+1 of Fn+1 emerges as the image of the ordered base of Fn ⊗ F1

{f0 ⊗ f0, f0 ⊗ f1, f1 ⊗ f0, f1 ⊗ f1, . . . , f2n−1 ⊗ f0, f2n−1 ⊗ f1}.

Remark 3.3 Note that the functions f0 and f1 in both basis are not the same. We will use the same notation
to avoid indices confusion and distinguish these functions by looking at the spaces to which they belong.

We now consider the isomorphism ρ between Cl2n+2 and Cln ⊗ Cl2 given in [4].

ρ : Cln+2 → Cln ⊗ Cl2

e1 7→ 1⊗ e1

e2 7→ 1⊗ e2

e3 7→ ie1 ⊗ e1e2

e4 7→ ie2 ⊗ e1e2

k ≥ 5, ek 7→ − iek−2 ⊗ e1e2.

Using our assumption for n and the isomorphism ρ , if we apply the above property mentioned in [5] to ψ2n
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and ψ2 , then we obtain the matrices from the following equalities:

(ψ2n ⊗ ψ2)(1⊗ e1) = ψ2n(1)⊗ ψ2(e1)

= I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n

⊗ U

(ψ2n ⊗ ψ2)(1⊗ e2) = ψ2n(1)⊗ ψ2(e2)

= I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n

⊗ V

(ψ2n ⊗ ψ2)(ie1 ⊗ e1e2) = iψ2n(e1)⊗ ψ2(e1e2)

= (I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1

⊗ U)⊗ (−J)

= −I2 ⊗ · · · ⊗ I2 ⊗ U ⊗ J

(ψ2n ⊗ ψ2)(ie2 ⊗ e1e2) = iψ2n(e2)⊗ ψ2(e1e2)

= −I2 ⊗ I2 ⊗ · · · ⊗ I2 ⊗ V ⊗ J

(ψ2n ⊗ ψ2)(−ie2k−1 ⊗ e1e2) = −iψ2n(e2k−1)⊗ ψ2(e1e2)

= (−I2 ⊗ · · · I2︸ ︷︷ ︸
n−k

⊗ U ⊗ J ⊗ · · · ⊗ J︸ ︷︷ ︸
k−1

)⊗ J

= −I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−k

⊗ U ⊗ J ⊗ · · · ⊗ J︸ ︷︷ ︸
k

(ψ2n ⊗ ψ2)(−ie2k ⊗ e1e2) = −iψ2n(e2k)⊗ ψ2(e1e2)

= (−I2 ⊗ · · · I2︸ ︷︷ ︸
n−k

⊗ V ⊗ J ⊗ · · · ⊗ J︸ ︷︷ ︸
k−1

)⊗ J

= −I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−k

⊗ V ⊗ J ⊗ · · · ⊗ J︸ ︷︷ ︸
k

which completes the proof. We note that the identification between the spaces B(Fn ⊗ F1) and B(Fn+1) is
given as follows:

h : B(Fn ⊗ F1) → B(Fn+1), h(T )(g) = (φTφ−1)(g).

2

To understand the dynamics of the generators’ image better, we present the case n = 2 in Example 3.4.

Example 3.4 Let us consider the transformation ψ4 and the corresponding base {f0, f1, f2, f3} given in 3.3
such that

ψ4 : Cl4 → B(F2)

e1 7→ T1

e2 7→ S1

e3 7→ iT2T1S1

e4 7→ iS2T1S1.
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Since
T1(1, 0, 0, 0) = (1, 0, 0, 0)

T1(0, 0, 1, 0) = (0, 0,−1, 0)

T1(0, 1, 0, 0) = (0, 1, 0, 0)

T1(0, 0, 0, 1) = (0, 0, 0,−1),

the matrix of ψ4(e1) is obtained as follows which is equal to I2 ⊗ U :
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

Similarly since
S1(1, 0, 0, 0) = (0, 0, 1, 0)

S1(0, 0, 1, 0) = (1, 0, 0, 0)

S1(0, 1, 0, 0) = (0, 0, 0, 1)

S1(0, 0, 0, 1) = (0, 1, 0, 0),

we obtain the following matrix which is equal to I2 ⊗ V as the matrix of ψ4(e2) :
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Since
iT2T1S1(1, 0, 0, 0) = iT2T1(0, 0, 1, 0) = iT2(0, 0,−1, 0) = (0, 0,−i, 0)

iT2T1S1(0, 0, 1, 0) = iT2T1(1, 0, 0, 0) = iT2(1, 0, 0, 0) = (i, 0, 0, 0)

iT2T1S1(0, 1, 0, 0) = iT2T1(0, 0, 0, 1) = iT2(0, 0, 0,−1) = (0, 0, 0, i)

iT2T1S1(0, 0, 0, 1) = iT2T1(0, 1, 0, 0) = iT2(0, 1, 0, 0) = (0,−i, 0, 0),

we obtain the following matrix which is equal to −U ⊗ J as the matrix of ψ4(e3) :
0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 .

And using the following equalities
iS2T1S1(1, 0, 0, 0) = iS2T1(0, 0, 1, 0) = iS2(0, 0,−1, 0) = (0, 0, 0,−i)

iS2T1S1(0, 0, 1, 0) = iS2T1(1, 0, 0, 0) = iS2(1, 0, 0, 0) = (0, i, 0, 0)

iS2T1S1(0, 1, 0, 0) = iS2T1(0, 0, 0, 1) = iS2(0, 0, 0,−1) = (0, 0,−i, 0)

iS2T1S1(0, 0, 0, 1) = iS2T1(0, 1, 0, 0) = iS2(0, 1, 0, 0) = (i, 0, 0, 0),
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we obtain the following matrix which is equal to −V ⊗ J as the matrix of ψ4(e4) :
0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 ,

which is equal to −V ⊗ J .

Remark 3.5 So far, we have verified our claim in every even dimensional case. The odd case of the theorem
follows immediately from the results of [7].
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