Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans

MELEK İNCİ
MUSTAFA ALTAY ATALAY
BURÇİN ÖZER
ÖMER EVİRGEN
NİZAMI DURAN

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation
İNCİ, MELEK; ATALAY, MUSTAFA ALTAY; ÖZER, BURÇİN; EVİRGEN, ÖMER; DURAN, NİZAMI; MOTOR, VİCDAN KÖKSALDI; KOÇ, AYŞE NEDRET; ÖNLEN, YÜSUF; KILINÇ, ÇETİN; and DURMAZ, SÜLEYMAN (2013) "Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans," Turkish Journal of Medical Sciences: Vol. 43: No. 1, Article 22. https://doi.org/10.3906/sag-1205-90
Available at: https://journals.tubitak.gov.tr/medical/vol43/iss1/22

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans

Authors
MELEK İNÇİ, MUSTAFA ALTAY ATALAY, BURÇİN ÖZER, ÖMER EVİRGEN, NİZAMİ DURAN, VİCDAN KÖKSALDI MOTOR, AYŞE NEDRET KOÇ, YÜSUF ÖNLLEN, ÇETİN KILİNÇ, and SÜLEYMAN DURMAZ

This article is available in Turkish Journal of Medical Sciences: https://journals.tubitak.gov.tr/medical/vol43/iss1/22
Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans

Melek İNCİ1*, Mustafa Altay ATALAY2, Burçin ÖZER3, Ömer EVİRGEN3, Nizami DURAN4
Vicdan KÖKSALDI MOTOR5, Ayşe Nedret KOÇ6, Yüsüf ÖNLİ7, Çetin KILINÇ8, Süleyman DURMAZ9

1Department of Medical Microbiology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
2Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
3Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
4Microbiology Laboratory, Government Hospital of Düziçi, Osmaniye, Turkey

Aim: To explore the presence of ALS1 and HWP1 genes by multiplex polymerase chain reaction (PCR) in Candida albicans strains.

Materials and methods: By using the multiplex PCR method, the presence of agglutinin-like sequence 1 (ALS1) and hyphal wall protein 1 (HWP1) genes were investigated in 206 C. albicans strains that were isolated from various clinical samples. Phenotypic identification of slime formation by microplate and tube adherence tests was performed.

Results: The presence of the ALS1 gene was detected in 53.9% of all strains, while the HWP1 gene was present in 5.3%. Slime formation was phenotypically detected in the 62.2% of the strains in which the ALS1 and/or the HWP1 gene was found, using the microplate and/or tube adherence test. The genes evaluated were found to be present in the 76.7% of strains in which slime formation was detected by phenotypic tests. There was a moderate correlation between the presence of the ALS1 gene and the microplate method, yet there was no correlation when using the tube adherence test.

Conclusion: It was concluded that various genes other than those evaluated could be present in slime formation of C. albicans, and the presence of the genes may not always be represented in the phenotype.

Key words: Candida albicans, ALS1, HWP1, slime formation

1. Introduction
Candida species are a commonly seen form of yeast present in the gastrointestinal tract, mucosa, and skin of healthy individuals as a part of normal flora. When the immune defense of a host is deteriorated, Candida spp. can cause life-threatening disorders by invading tissues. Candida albicans is the most commonly isolated species of nearly all forms of candidiasis (1).

Biofilm formation plays an essential role in the pathogenicity of C. albicans (2,3). Biofilm is a cell population that is surrounded by an extracellular matrix consisting of yeast cells and filaments; it has a relationship with the surface and exhibits different phenotypic features than planktonic cells (4). This cell population behaves as a continuous reservoir in the spread of infection. Additionally, it is resistant to many antifungal agents, as compared to planktonic cells (2,3). The initiation of biofilm formation is dependent on the attachment of yeast cells to a substrate, which is followed by the attachment of yeast cells to each other (5). Adherence must extend to the hyphal layers. The agglutinin-like sequence (ALS) gene family is the largest family among known adhesins in C. albicans (6). It is known that ALS family members interact with several substrates, including host cells and proteins (7–9). The finding that expression of ALS1 and other family members increases during biofilm development in vitro suggested that the ALS family plays a role in biofilm formation (10–12). Hyphal wall protein 1 (HWP1), another adhesion gene, is also upregulated during biofilm development (13). HWP1, a glycosylphosphatidylinositol-linked mannanprotein like the ALS proteins, is the best-characterized hyphal adhesin (8,14). It is a substrate for transglutaminase activity derived from a host, and thus it mediates covalent attachment of C. albicans to host cells (8,15). Although there are many studies in the literature investigating pathogenic fungi, antifungal resistance, and
virulence factors of fungi, new studies are still needed on these issues (3,6,11,16–18).

In the present study, our aim was to explore the presence of ALS1 and HWP1 genes by multiplex polymerase chain reaction (PCR) in C. albicans strains isolated from various clinical samples, and to evaluate slime factor by the microplate and tube adherence test methods in order to determine the phenotypic reflection of these genes.

2. Materials and methods

2.1. Strains

In the present study, 206 C. albicans strains isolated from various clinical samples were used. Clinical isolates were provided by the Microbiology Laboratory of Mustafa Kemal University and the School of Medicine and Mycology Laboratory of Erciyes University. All yeast isolates were taken from different patients. Strains were isolated from samples obtained from urine (n = 82), blood (n = 13), vaginal smears (n = 77), wounds (n = 17), cerebrospinal fluid (n = 2), peritoneal fluid (n = 3), and respiratory tracts (n = 12). C. albicans identification was performed according to positive germ tube tests, chlamydospore formation in corn-meal Tween-80 agar, and carbohydrate assimilation tests with the commercially available API 20C AUX kit (bioMérieux, France).

2.2. PCR assay

DNA extraction: DNA extraction was achieved by a modified version of the method that de Baere et al. (19) described previously. A suspension with 0.5 McFarland standard was prepared from strains that were grown in Sabouraud dextrose agar (SDA) culture media and loaded into Eppendorf tubes. They were centrifuged at 10,000 rpm for 5 min. After the discharge of supernatant, 500 µL of distilled water was added. The tubes were kept in a heat block at 100 °C for 10 min. After centrifuging at 12,000 rpm for 15 min the supernatant was put into a new tube and kept at –20 °C until PCR tests.

PCR reagents and amplification conditions: PCR amplification was carried out in a total volume of 25 µL of reaction mixture by using ALS1 and HWP1 primers (Table 1) (11,20). The reaction mixture consisted of 5 µL of 10X reaction buffer without MgCl2 (Fermentas, USA), 10 mM of each deoxynucleoside triphosphate at 0.5 µL (Fermentas), 25 mM of MgCl2 at 2.5 µL, 1 U of Taq polymerase (Fermentas), 1.5 µL of primers, and approximately 10 ng of template DNA at 4 µL, and was then brought to a final volume of 25 µL with distilled water. Each cycle consisted of 3 steps: denaturation, annealing, and extension. PCR was conducted as follows: 1 cycle of 94 °C for 4 min, followed by 35 cycles of 94 °C for 30 s, 52 °C for 1 min, and 72 °C for 2 min. A final extension cycle was performed at 72 °C for 5 min. The amplified products were analyzed in a 2% (w/v) agarose gel in 1X TAE buffer (40 mmol/L Tris-acetate, 1 mmol/L EDTA). Ethidium bromide (0.5 µg/mL TAE)-stained DNA amplicons were seen using a gel imaging system (Wealtec, Dolphin-View, USA).

2.3. Phenotypic tests

Tube adherence test for slime production in C. albicans strains: One colony was taken from C. albicans strains that were grown in SDA culture media. It was inoculated into 5 mL of Sabouraud dextrose broth (SDB) culture media containing 2% glucose. It was incubated at 37 °C for 48 h. After incubation the tube contents were evacuated. After adding 1% safranin solution, they were kept at room temperature for 30 min. Tube contents were then poured out. Tubes were washed twice using sterile phosphate buffered saline (PBS) and the tubes were then inverted and placed onto a blotter for drying. After 48 h, strains that formed an adherent biofilm layer were considered positive, while those not forming such a layer were considered negative. Involvement at the air–fluid junction was not considered (21). Each tube was rated by 2 independent observers.

Microplate method for slime production in C. albicans strains: C. albicans strains were grown in a SDA culture at 37 °C for 48 h. They were diluted at 1/100 with SDB containing 2% glucose, and then 200 µL of this dilution was placed into each well of a sterile, flat-based microplate and incubated at 37 °C for 48 h. The content of each well

Table 1. Primer sequences.

<table>
<thead>
<tr>
<th>Primer</th>
<th>5’-sequence-3’</th>
<th>Length of PCR product (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans ALS1</td>
<td>(Forward) GAC TAG TGA ACC AAC AAA TAC CAG A (Reverse) CCA GAA GAA ACA GCA GGA GGT GA</td>
<td>318</td>
</tr>
<tr>
<td>C. albicans HWP1</td>
<td>(Forward) ATG ACT CCA GGT GGT TC (Reverse) TAG ATC AAG AAT GCA GC</td>
<td>572</td>
</tr>
</tbody>
</table>

bp: base pairs.
was evacuated and washed with PBS 4 times. Next, 200 µL of methylene blue was placed into each well and stained at room temperature for 1 h. Each well was washed with distilled water 3 times and microplates were inverted and placed onto a blotter for drying. Sterile SDB was used as a negative control in this study. The microplate was read at 492 nm with an ELISA reader (TekTIME, Organon Tecnica, France). These processes were performed 3 times for each sample, and the arithmetic mean of optical densities was taken. The cut-off value was determined by adding +2 standard deviations to the optical density of wells containing sterile SDB. Specimens found to be above the cut-off value for optical density were considered positive (22).

2.4. Statistical analysis
Statistical analyses were performed using SPSS 15.0. While investigating the associations between ordinal variables, the correlation coefficients and their significance were calculated using the Spearman test. A 5% type-I error level was used to infer statistical significance.

3. Results
Among all strains, the ALS1 gene was positive in 111 strains (53.9%) and negative in 95 strains (46.1%), whereas the HWP1 gene was positive in 11 strains (5.3%) and negative in 195 strains (94.7%). The presence of the ALS1 gene was seen in all strains containing the HWP1 gene. The presence of the ALS1 and HWP1 genes are shown in the Figure. In the present study, slime activity was evaluated in order to see the reflection of gene presence to phenotype. The slime factor was found to be positive in 71 strains (34.5%) and negative in 135 strains (65.5%) when using the microplate test, whereas it was positive in 34 strains (16.5%) and negative in 172 strains (83.5%) when using the tube adherence test. However, slime formation was found to be phenotypically positive in 90 strains (43.7%) when using the microplate and/or tube adherence test. Table 2 shows the results of slime formation by phenotypic test, according to the source from which strains were isolated, and the presence of the ALS1 and HWP1 genes.

It was observed that, of the strains in which the ALS1 or/and HWP1 genes were present, slime formation was found to be phenotypically positive in 59 strains (53.2%) when using the microplate method and in 22 strains (19.8%) when using the tube adherence test. Slime

Table 2. Presence of ALS1 and HWP1 genes and slime production according to source of strains.

<table>
<thead>
<tr>
<th>Strains isolated from specimens</th>
<th>Presence of ALS1 gene</th>
<th>Presence of HWP1 gene</th>
<th>Positive slime production by MPM*</th>
<th>Positive slime production by TAT**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine (n = 82)</td>
<td>43 (52.4)</td>
<td>4 (48.8)</td>
<td>26 (31.7)</td>
<td>15 (18.3)</td>
</tr>
<tr>
<td>Vaginal swabs (n = 77)</td>
<td>37 (48.0)</td>
<td>3 (3.9)</td>
<td>26 (33.8)</td>
<td>8 (10.4)</td>
</tr>
<tr>
<td>Wounds (n = 17)</td>
<td>7 (41.7)</td>
<td>2 (11.8)</td>
<td>6 (35.3)</td>
<td>5 (29.4)</td>
</tr>
<tr>
<td>Blood (n = 13)</td>
<td>11 (84.6)</td>
<td>1 (7.7)</td>
<td>7 (53.8)</td>
<td>2 (15.4)</td>
</tr>
<tr>
<td>Respiratory specimens (n = 12)</td>
<td>8 (66.7)</td>
<td>1 (8.3)</td>
<td>5 (41.7)</td>
<td>2 (16.7)</td>
</tr>
<tr>
<td>Peritoneal fluid (n = 3)</td>
<td>3 (100)</td>
<td>-</td>
<td>-</td>
<td>2 (66.7)</td>
</tr>
<tr>
<td>Cerebrospinal fluid (n = 2)</td>
<td>2 (100)</td>
<td>-</td>
<td>1 (50)</td>
<td>-</td>
</tr>
<tr>
<td>Total (n = 206)</td>
<td>111 (53.9)</td>
<td>11 (5.3)</td>
<td>71 (34.5)</td>
<td>34 (16.5)</td>
</tr>
</tbody>
</table>

*MPM: microplate method, **TAT: tube adherence test.
formation was found to be positive in 69 strains (66.2%), while phenotypically, no slime formation was detected in 42 strains (37.8%) when using the microplate and/or tube adherence test. A moderate correlation was detected between the \textit{ALS1} gene and the microplate method \((r = 0.425, P < 0.001)\), while no correlation was found between the \textit{ALS1} gene and the tube adherence test \((r = 0.097, P = 0.168)\). It was found that there was a moderate correlation between the \textit{ALS1} gene and microplate and/or tube adherence test \((r = 0.403, P < 0.001)\). However, this correlation coefficient was lower when compared to the microplate test.

Gene presence was found in 59 (83.1%) of the strains in which slime formation was detected by the microplate method, and in 22 (64.7%) of those in which slime formation was detected by the tube adherence test. The \textit{ALS1} and/or \textit{HWP1} genes were found in 69 (76.7%) of the strains in which slime formation was detected by the microplate and/or tube adherence test, while neither was found in 21 strains (23.3%). Comparisons of both genes and phenotypic tests are shown in Table 3.

4. Discussion

Genes belonging to the \textit{ALS} gene family and \textit{HWP1} genes encode cell-surface–related glycosylphosphatidylinositol that binds to glycoprotein, which then mediates the adhesion of \textit{C. albicans} strains to mucosal surfaces (7,15). It has been reported that the \textit{HWP1} gene and the \textit{ALS1} gene of the \textit{ALS} family play important roles in \textit{C. albicans} biofilms, both in vivo and in vitro (8,23,24). Detecting the presence of the \textit{ALS1} and \textit{HWP1} genes in \textit{C. albicans} strains isolated from clinical specimens will help to ascertain the roles of these genes in colonization and disease.

Green et al. (11) evaluated the expression patterns of genes in the \textit{ALS} gene family in a reconstituted human buccal epithelium (RHE) model and clinical oral specimens by reverse transcriptase-PCR (RT-PCR). They showed that the \textit{ALS1} gene was expressed at all time points and inoculation densities. Moreover, they reported that gene expression patterns were found to be similar in the RHE model and the clinical strains. In another study, biofilms were formed on silicone elastomers by using reference \textit{C. albicans} strain and clinical isolates; \textit{ALS} gene expression was explored in these biofilms by the real-time PCR method (12). It was found that the \textit{ALS1} gene was clearly upregulated in biofilms when compared to planktonic cells. García-Sánchez et al. (13) explored specific features of \textit{C. albicans} biofilms by using transcript profile. They found that genes were expressed in 325 different manners in biofilms developed under different environmental conditions, and they reported that the \textit{ALS1} gene was clearly upregulated in \textit{C. albicans} biofilms. Nailsis et al. (16) explored \textit{ALS1} and \textit{ALS3} gene expression levels in \textit{C. albicans} biofilms by 4 different normalization strategies. They found that the \textit{ALS1} gene was overexpressed in biofilm cells when compared to planktonic cells. In another study by Nailsis et al. (25), expressions of several adhesin genes (including the \textit{ALS} gene family and \textit{HWP1} gene) were evaluated in \textit{C. albicans} biofilms produced in different model systems by using the real-time PCR technique. They found that the \textit{HWP1} gene and most members of the \textit{ALS} gene family were upregulated in all tested model systems and at all time points of biofilm formation. Expression of \textit{ALS} genes was evaluated in both clinical samples and vaginal candidiasis models by using the RT-PCR method in another study (26). \textit{ALS1}, \textit{ALS2}, \textit{ALS3}, and \textit{ALS9} were reported as the most commonly expressed genes of the \textit{ALS} gene family and, in the same study, similar expression frequencies and patterns were reported on clinical samples and model systems. Nas et al. (20) investigated the expression of \textit{ALS1} and \textit{HWP1} genes in vaginal swab

<table>
<thead>
<tr>
<th>Presence of genes</th>
<th>Microplate method</th>
<th>Tube adherence test</th>
<th>Total n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos** (n)</td>
<td>Neg* (n)</td>
<td>Pos (n)</td>
</tr>
<tr>
<td>ALS1</td>
<td>59</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>83</td>
<td>12</td>
</tr>
<tr>
<td>HWP1</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>132</td>
<td>32</td>
</tr>
<tr>
<td>Total n (%)</td>
<td>71 (34.5)</td>
<td>135 (65.5)</td>
<td>34 (16.5)</td>
</tr>
</tbody>
</table>

*Neg: negative, **Pos: positive.
samples taken from pregnant, postmenopausal, and reproductive-aged women with vulvovaginal candidiasis by using the RT-PCR method. They found that the ALS1 gene was expressed in 70%, 75%, and 67% of the strains isolated from these groups, respectively, while the HWP1 gene was expressed in 60%, 25%, and 73% of the same strains, respectively. HWP1 is suggested as a substrate for host transglutaminases, which allow C. albicans to bind covalently to epithelial cells (8,15). It has been suggested that HWP1 surface protein requires ALS1/3 association to initiate in vivo biofilm formation (23). A complementary role was suggested for ALS1/3 and HWP1 genes in vivo and in vitro biofilm formation (24). Ene and Bennett (27) reported that HWP1, HWP2, and Rbt1 genes played an important role in biofilm formation and emphasized that, among these, HWP1 was the most important factor. In our study, it was found that ALS1 was present in 53.9% of C. albicans isolates, while HWP1 was present in 5.3%. We thought the difference in the results of the ALS1 and HWP1 genes might have resulted from the sample group and the distinct methods used.

There are various studies that have explored biofilm formation in C. albicans isolates phenotypically (28–30). By using the tube adherence test, Dolapci and Tekeli (28) found that 15.1% of 350 clinical Candida strains produced slime factor. Demirbilek et al. (29) reported slime factor positivity as 23% in 79 clinical C. albicans isolates by using the microplate method. Yücesoy and Karaman (30) evaluated biofilm formation in Candida species isolated from different clinical samples by the tube adherence and microplate methods. When using the microplate method, they found that 16.7% of strains produced slime factor, whereas when using tube adherence test, they found that 27.6% produced slime factor. They found a rate of biofilm formation of 17%–55% by the tube adherence test and of 0%–48% by the microplate method. They reported that no significant difference was found between C. albicans and non-albicans Candida species in terms of biofilm formation by the tube adherence test, whereas a significant difference was found by the microplate method. In our study, slime positivity was found to be 34.5% by the microplate method, whereas it was found to be 16.5% by the tube adherence test. The discrepancy of our study from other studies may be due to the difference in sources from which samples were isolated and sample number.

In the present study, slime formation was phenotypically found in 62.2% of the strains in which ALS1 and/or HWP1 genes were detected. Slime positivity was found to be higher by the microplate than by the tube adherence test. Phenotypically, no slime formation was seen in 37.8% of the strains in which the gene was detected. This could result from inadequacy of phenotypic tests or the presence of various other genes. Of the strains in which phenotypic slime formation was detected, the ALS1 and/or HWP1 genes were found to be positive in 76.6% and negative in 23.3%. This can be explained by the presence of different genes involved in slime formation.

There are some limitations of the present study. First, this study is oriented toward demonstrating the ALS1 and HWP1 genes in DNA. This is not a gene expression study. Second, only 2 of many genes implicated in slime production in clinical strains of C. albicans are focused on. Other genes should be evaluated in further comprehensive studies. Third, the strains included in the study were obtained from varying sources.

In conclusion, the presence of the ALS1 gene was found in about half of the clinical isolates of C. albicans, whereas HWP1 was present in a minority of the strains. A significant relationship was found between the ALS1 gene and slime production by the microplate method, whereas no relation was found by the tube adherence test. There is a need for further comprehensive studies that include more clinical samples isolated from the same source and also various other genes in order to assess the slime formation of C. albicans strains by genotypic and phenotypic aspects.

Acknowledgments
This study was conducted with the financial support of the Mustafa Kemal University Scientific Research Council, Project Number: 1003 M 0102.

References

