Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals

HASAN KARA
MUHAMMAD AAMIR ALI
HÜSEYİN BUDAK

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://journals.tubitak.gov.tr/math/vol46/iss6/11

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Hermite–Hadamard–Mercer type inclusions for interval-valued functions via Riemann–Liouville fractional integrals

Hasan KARA1,* , Muhammad Aamir ALI2 , Hüseyin BUDAK1

1Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
2Jiangsu Key Laboratory of NSLSCS, School of Mathematical Sciences, Nanjing Normal University, China

Abstract: In this research, we first establish some inclusions of fractional Hermite–Hadamard–Mercer type for interval-valued functions. Moreover, by special cases of our main results, we show that our main results reduce several inclusions obtained in the earlier works.

Key words: Hermite–Hadamard–Mercer inequality , Riemann–Liouville fractional integrals, interval-valued function, convex function

1. Introduction

In literature, the well-known Jensen inequality [21] states that if \(F \) is a convex function on an interval contains the \(\kappa_k \), then

\[
F \left(\sum_{j=1}^{n} \lambda_j \kappa_j \right) \leq \sum_{j=1}^{n} \lambda_j F (\kappa_j)
\]

where \(\sum_{j=1}^{n} \lambda_j = 1 \), \(\lambda_j \in [0,1] \) and \(0 < \kappa_1 \leq \kappa_2 \leq \kappa_3 \leq \ldots \leq \kappa_n \).

The Hermite–Hadamard (H–H) inequality, discovered by C. Hermite and J. Hadamard (see, also, [13], and [31, p.137]), is one of the most well-known inequalities in the theory of convex functions, with a geometrical interpretation and a wide range of applications. The H–H inequality is stated as:

\[
F \left(\frac{\varpi_1 + \varpi_2}{2} \right) \leq \frac{1}{\varpi_2 - \varpi_1} \int_{\varpi_1}^{\varpi_2} F (\kappa) \, d\kappa \leq \frac{F (\varpi_1) + F (\varpi_2)}{2},
\]

where \(F : I \to \mathbb{R} \) is a convex function over \(I \) and \(\varpi_1, \varpi_2 \in I \) with \(\varpi_1 < \varpi_2 \). In the case that \(F \) is concave mapping, the above inequality satisfies in reverse order. We should point out that H-H inequality is a refinement of the concept of convexity, and it follows obviously from Jensen’s inequality. In recent years, the H–H inequality for convex functions has gotten a lot of attention, and a lot of refinements and generalizations have been studied.

The following variant of Jensen inequality, known as the Jensen–Mercer, was demonstrated by Mercer [20]:

*Correspondence: hasan64kara@gmail.com
2010 AMS Mathematics Subject Classification: 26D10, 26A51, 26D15

This work is licensed under a Creative Commons Attribution 4.0 International License.
Theorem 1.1 If \(F \) is a convex function on \([w_1, w_2]\), then the following inequality is true:

\[
F\left(w_1 + w_2 - \sum_{j=1}^{n} \lambda_j \varpi_j \right) \leq F(w_1) + F(w_2) - \sum_{j=1}^{n} \lambda_j F(\varpi_j),
\]

(1.3)

where \(\sum_{j=1}^{n} \lambda_j = 1 \), \(\lambda_j \in [0, 1] \) and \(\varpi_j \in [w_1, w_2] \).

In [16], the idea of Jensen–Mercer inequality has been used by Kian and Moslehian, and the following H–H–Mercer inequalities were demonstrated:

\[
F\left(w_1 + w_2 - \frac{\varpi + \nu}{2} \right) \leq F(w_1) + F(w_2) - \frac{1}{\nu - \varpi} \int_{\varpi}^{\nu} F(\vartheta) d\vartheta \tag{1.4}
\]

and

\[
F\left(w_1 + w_2 - \frac{\varpi + \nu}{2} \right) \leq \frac{1}{\nu - \varpi} \int_{\varpi}^{\nu} F(w_1 + w_2 - \vartheta) d\vartheta \tag{1.5}
\]

\[
\leq \frac{F(w_1 + w_2 - \varpi) + F(w_1 + w_2 - \nu)}{2} \leq F(w_1) + F(w_2) - \frac{F(\varpi) + F(\nu)}{2},
\]

where \(F \) is convex function on \([w_1, w_2]\). For some recent studies linked to Jensen–Mercer inequality, one can consult [1, 2, 10, 25].

In contrast, interval analysis is a well-known example of set-valued analysis, which is the study of sets in the context of mathematical and general topology analysis. It was created as a solution to the interval instability of deterministic real-world phenomena that can be found in many mathematical or computer models. The technique of Archimede’s, which is related to computing the diameter of a circle, is an old example of an interval enclosure. Moore, who is credited with being the first to use intervals in computational mathematics, published the first book on interval analysis in 1966 (see, [23]). Following the publication of his book, a number of scientists began to study the theory and applications of interval arithmetic.

In addition, several significant inequalities (H–H, Ostrowski, and others) for interval-valued functions have been studied in recent years. Chalco-Cano et al. obtained Ostrowski type inequalities for interval-valued functions in [8, 9] using the Hukuhara derivative for interval-valued functions. We refer readers to [7, 11, 12, 14, 15, 22, 26, 27, 32–34, 38, 39] for additional relevant results.

The aim of this paper is to generalize the Hermite–Hadamard–Mercer inequality for interval-valued functions in the case of Riemann–Liouville fractional integrals.

2. Interval calculus and inequalities

In this section, we provide notation and background information on interval analysis. The space of all closed intervals of \(\mathbb{R} \) is denoted by \(I_\mathbb{R} \) and \(\Delta \) is a bounded element of \(I_\mathbb{R} \). We have the representation

\[
\Delta = [\alpha, \overline{\alpha}] = \{ \vartheta \in \mathbb{R} : \alpha \leq \vartheta \leq \overline{\alpha} \},
\]
where \(\alpha, \pi \in \mathbb{R} \) and \(\alpha \leq \pi \). \(L(\Delta) = \pi - \alpha \) can be used to express the length of the interval \(\Delta = [\alpha, \pi] \). The left and right endpoints of interval \(\Delta \) are denoted by the numbers \(\alpha \) and \(\pi \), respectively. The interval \(\Delta \) is said to be degenerate when \(\alpha = \pi \), and the form \(\Delta = [\alpha, \alpha] \) is used. Also, if \(\alpha > 0 \), we can say \(\Delta \) is positive, and if \(\pi < 0 \), we can say \(\Delta \) is negative. \(I^+ \) and \(I^- \) denote the sets of all closed positive intervals and closed negative intervals of \(\mathbb{R} \), respectively. Between the intervals \(\Delta \) and \(\Lambda \), the Pompeiu–Hausdorff distance is defined by

\[
d_H(\Delta, \Lambda) = \max \{|\alpha - \beta|, |\pi - \beta|\}.
\]

\((I_c, d_H)\) is a complete metric space, as far as we know (see, \([4]\)).

\(|\Delta|\) denotes the absolute value of \(\Delta \), which is the maximum of the absolute values of its endpoints:

\[|\Delta| = \max \{|\alpha|, |\pi|\}.
\]

The following are the concepts for fundamental interval arithmetic operations for the intervals \(\Delta \) and \(\Lambda \):

\[
\begin{align*}
\Delta + \Lambda & = [\alpha + \beta, \pi + \beta], \\
\Delta - \Lambda & = [\alpha - \beta, \pi - \beta], \\
\Delta \cdot \Lambda & = [\min U, \max U] \text{ where } U = \left\{\alpha \beta, \alpha \bar{\beta}, \pi \beta, \pi \bar{\beta}\right\}, \\
\Delta / \Lambda & = [\min V, \max V] \text{ where } V = \left\{\alpha / \beta, \alpha / \bar{\beta}, \pi / \beta, \pi / \bar{\beta}\right\} \text{ and } 0 \notin \Lambda.
\end{align*}
\]

The interval \(\Delta \)'s scalar multiplication is defined by

\[
\mu \Delta = \mu [\alpha, \pi] = \begin{cases}
[\mu \alpha, \mu \pi], & \mu > 0; \\
\{0\}, & \mu = 0; \\
[\mu \pi, \mu \alpha], & \mu < 0,
\end{cases}
\]

where \(\mu \in \mathbb{R} \).

The opposite of the interval \(\Delta \) is

\[-\Delta := (-1)\Delta = [-\pi, -\alpha],
\]

where \(\mu = -1 \).

In general, \(-\Delta \) is not additive inverse for \(\Delta \), i.e. \(\Delta - \Delta \neq 0 \).

Definition 2.1 For some kind of the intervals \(\Delta, \Lambda \in I_c \), we denote the the \(H \)-difference of \(\Delta \) and \(\Lambda \) as the \(\Omega \in I_c \), we have

\[
\Delta \ominus g \Lambda = \Omega \iff \begin{cases}
(i) \Delta = \Lambda + \Omega \\
(ii) \Lambda = \Delta + (-\Omega).
\end{cases}
\]

It seems beyond controversy that

\[
\Delta \ominus g \Lambda = \begin{cases}
[\alpha - \beta, \pi - \beta], & \text{if } L(\Delta) \geq L(\Lambda) \\
[\pi - \beta, \alpha - \beta], & \text{if } L(\Delta) \leq L(\Lambda),
\end{cases}
\]

2195
where \(L(\Delta) = \overline{\alpha} - \underline{\alpha} \) and \(L(\Lambda) = \overline{\beta} - \underline{\beta} \).

The definitions of operations generate a large number of algebraic properties, enabling \(I_c \) to be a quasilinear space (see, [19]). The following are some of these characteristics (see, [4, 18, 19, 23]):

1. (Law of associative under \(+ \)) \((\Delta + \Lambda) + C = \Delta + (\Lambda + C) \) for all \(\Delta, \Lambda, C \in I_c \),
2. (Additivity element) \(\Delta + 0 = 0 + \Delta = \Delta \) for all \(\Delta \in I_c \),
3. (Law of commutative under \(+ \)) \(\Delta + \Lambda = \Lambda + \Delta \) for all \(\Delta, \Lambda \in I_c \),
4. (Law of cancellation under \(+ \)) \(\Delta + C = \Lambda + C \implies \Delta = \Lambda \) for all \(\Delta, \Lambda, C \in I_c \),
5. (Law of associative under \(\times \)) \((\Delta \cdot \Lambda) \cdot C = \Delta \cdot (\Lambda \cdot C) \) for all \(\Delta, \Lambda, C \in I_c \),
6. (Law of commutative under \(\times \)) \(\Delta \cdot \Lambda = \Lambda \cdot \Delta \) for all \(\Delta, \Lambda \in I_c \),
7. (Multiplicativity element) \(\Delta \cdot 1 = 1 \cdot \Delta \) for all \(\Delta \in I_c \),
8. (The first law of distributivity) \(\lambda(\Delta + \Lambda) = \lambda \Delta + \lambda \Lambda \) for all \(\Delta, \Lambda \in I_c \) and all \(\lambda \in \mathbb{R} \),
9. (The second law of distributivity) \((\lambda + \mu) \Delta = \lambda \Delta + \mu \Delta \) for all \(\Delta \in I_c \) and all \(\lambda, \mu \in \mathbb{R} \).

Aside from any of these characteristics, the distributive law does not always apply to intervals. As an example, \(\Delta = [1, 2], \Lambda = [2, 3] \) and \(C = [-2, -1] \).

\[
\Delta \cdot (\Lambda + C) = [0, 4],
\]

whereas

\[
\Delta \cdot \Lambda + \Delta \cdot C = [-2, 5].
\]

Another distinct feature is the inclusion \(\subseteq \), which is described by

\[
\Delta \subseteq \Lambda \iff \underline{\alpha} \geq \underline{\beta} \text{ and } \overline{\alpha} \leq \overline{\beta}.
\]

In [23], Moore gave the definition of the Riemann integral for functions of interval-valued. \(IR_{([\varpi_1, \varpi_2])} \) and \(R_{([\varpi_1, \varpi_2])} \) denote the set of all Riemann integrable interval-valued functions and real-valued functions on \([\varpi_1, \varpi_2]\), respectively. The following theorem defines a relationship between Riemann integrable (\(R \)-integrable) functions and (\(IR \))-integrable functions (see, [24, pp. 131]):

Theorem 2.2 For an interval-valued mapping \(\mathcal{F} : [\varpi_1, \varpi_2] \to I_c \) with \(\mathcal{F}(\vartheta) = [\mathcal{F}_1(\vartheta), \mathcal{F}_2(\vartheta)] \). The mapping \(\mathcal{F} \in IR_{([\varpi_1, \varpi_2])} \) if and only if \(\mathcal{F}(\vartheta), \mathcal{F}_1(\vartheta), \mathcal{F}_2(\vartheta) \in R_{([\varpi_1, \varpi_2])} \) and

\[
(IR) \int_{\varpi_1}^{\varpi_2} \mathcal{F}(\vartheta)d\vartheta = \left[(R) \int_{\varpi_1}^{\varpi_2} \mathcal{F}_1(\vartheta)d\vartheta, (R) \int_{\varpi_1}^{\varpi_2} \mathcal{F}_2(\vartheta)d\vartheta \right].
\]

Zhao et al. defined the following convex interval-valued function in [40, 42]:

Definition 2.3 For all \(\kappa, \nu \in [\varpi_1, \varpi_2] \) and \(\vartheta \in (0, 1) \), the \(h \)-convex mapping \(\mathcal{F} : [\varpi_1, \varpi_2] \to I_c^+ \) is stated as:

\[
h(\vartheta)\mathcal{F}(\kappa) + h(1 - \vartheta)\mathcal{F}(\nu) \subseteq \mathcal{F}(\vartheta \kappa + (1 - \vartheta)\nu).
\]

Here, \(h : [c, d] \to \mathbb{R} \) is a nonnegative mapping, \(h \neq 0 \), \((0, 1) \subseteq [c, d] \). We will show the set of all \(h \)-convex interval-valued functions with \(SX(h, [\varpi_1, \varpi_2], I_c^+) \).
The standard definition of a convex interval-valued function is (2.2) with $h(\vartheta) = \vartheta$ (see, [34]). In addition, if we take $h(\vartheta) = \vartheta^s$ into (2.2), then Definition 2.3 gives the definition of s-convex interval-valued function (see, [6]).

In [40], Zhao et al. used the h-convexity of interval-valued functions and obtained the following H-H inclusion:

Theorem 2.4 If $F \in SX(h, [\varpi_1, \varpi_2], I^+_c)$ and $h(\frac{1}{2}) \neq 0$, then following inclusions are true:

$$\frac{1}{2h(\frac{1}{2})}F\left(\frac{\varpi_1 + \varpi_2}{2}\right) \supseteq \frac{1}{\varpi_2 - \varpi_1}(IR) \int_{\varpi_1}^{\varpi_2} F(\kappa)d\kappa \supseteq \left[F(\varpi_1) + F(\varpi_2) \right] \int_{0}^{1} h(\vartheta)d\vartheta. \tag{2.3}$$

Remark 2.5 (i) The Inclusions (2.3) becomes the following for $h(\vartheta) = \vartheta$:

$$F\left(\frac{\varpi_1 + \varpi_2}{2}\right) \supseteq \frac{1}{\varpi_2 - \varpi_1}(IR) \int_{\varpi_1}^{\varpi_2} F(\kappa)d\kappa \supseteq \frac{F(\varpi_1) + F(\varpi_2)}{2}, \tag{2.4}$$

which Sadowska has discovered in [34].

(ii) The Inclusions (2.3) becomes the following for $h(\vartheta) = \vartheta^s$:

$$2^{s-1}F\left(\frac{\varpi_1 + \varpi_2}{2}\right) \supseteq \frac{1}{\varpi_2 - \varpi_1}(IR) \int_{\varpi_1}^{\varpi_2} F(\kappa)d\kappa \supseteq \frac{F(\varpi_1) + F(\varpi_2)}{s + 1},$$

which Osuna-Gómez et al. have discovered in [29].

Definition 2.6 [34] A function $F : [\varpi_1, \varpi_2] \rightarrow I^+_c$ is said to be a convex interval-valued, if for all $\kappa, \upsilon \in [\varpi_1, \varpi_2]$ and $\vartheta \in (0, 1)$, we have

$$\vartheta F(\kappa) + (1 - \vartheta) F(\upsilon) \subseteq F(\vartheta \kappa + (1 - \vartheta) \upsilon).$$

Theorem 2.7 [5, 34] A function $F : [\varpi_1, \varpi_2] \rightarrow I^+_c$ is said to be a convex interval-valued if and only if F is a convex function on $[\varpi_1, \varpi_2]$ and F is a concave function on $[\varpi_1, \varpi_2]$.

In [18] Lupulescu introduced the following left-sided Riemann–Liouville fractional integral based on interval-valued functions.

Definition 2.8 Let $F : [\varpi_1, \varpi_2] \rightarrow IR$ be an interval-valued mapping such that $F(\vartheta) = \left[F(\vartheta), \overline{F}(\vartheta) \right]$ and let $\alpha > 0$. The interval-valued left-sided Riemann–Liouville fractional integral of function F is defined by

$$J^\alpha_{\varpi_1,+} F(\kappa) = \frac{1}{\Gamma(\alpha)}(IR) \int_{\varpi_1}^{\kappa} (\kappa - \vartheta)^{\alpha-1} F(\vartheta)d\vartheta, \quad \kappa > \varpi_1,$$

where Γ is Euler Gamma function.
On the other hand, Budak et al. in [7] gave the definition of interval-valued right-sided Riemann–Liouville fractional integral of function F by

$$J_{\varpi_2}^\alpha F(\varpi) = \frac{1}{\Gamma(\alpha)} (IR) \int_{\varpi}^{\varpi_2} (\varpi - \varpi)^{\alpha-1} F(\varpi)d\varpi, \quad \varpi < \varpi_2,$$

where Γ is Euler Gamma function.

In addition, the authors gave the following fractional Hermite–Hadamard inequality for interval-valued functions.

Theorem 2.9 [7] Let $F = [F(\varpi), \Gamma(\varpi)] : [\varpi_1, \varpi_2] \to \mathbb{R}^+_I$ be a convex interval-valued function and $\alpha > 0$, then we have the following inclusion

$$F \left(\frac{\varpi_1 + \varpi_2}{2} \right) \supseteq \frac{\Gamma(1 + \alpha)}{2(\varpi_2 - \varpi_1)^\alpha} \left[J_{\varpi_1}^\alpha + F(\varpi_2) + J_{\varpi_2}^\alpha - F(\varpi_1) \right] \supseteq \frac{F(\varpi_1) + F(\varpi_2)}{2}. \quad (2.5)$$

Many researchers in the literature have worked on generalizations and extensions of the inclusions (2.5). For example, Liu et al. introduced the Hermite–Hadamard type inequalities for interval-valued harmonically convex functions in [17]. Zhou et al. obtained Hermite–Hadamard type inequalities for interval-valued exponential type preinvex functions in Riemann-Liouville interval-valued fractional operator settings in [41]. Shi et al. presented some fractional Hermite–Hadamard-type inequalities via the product of two coordinated h-convex interval-valued mappings in [37]. Sharma et al. proved (h_1, h_2)-preinvex interval-valued function and obtained the Hermite–Hadamard inequality for preinvex interval-valued functions by utilizing interval-valued Riemann–Liouville fractional integrals in [36].

Theorem 2.10 (Jensen’s Inclusion) [35] Let $0 < \varpi_1 \leq \varpi_2 \leq \varpi_3 \leq ... \leq \varpi_n$ and F be a convex interval-valued function on an interval containing ϖ_k, then following inclusion is true:

$$F \left(\sum_{j=1}^{n} \lambda_j \varpi_j \right) \supseteq \sum_{j=1}^{n} \lambda_j F(\varpi_j), \quad (2.6)$$

where $\sum_{j=1}^{n} \lambda_j = 1$, $\lambda_j \in [0, 1]$.

In [35], the authors extend the inequality (2.6) to the convex interval-valued functions as follows:

Theorem 2.11 (Jensen–Mercer inclusion) [35] Let F be a convex interval-valued function on $[\varpi_1, \varpi_2]$ such that $L(\varpi_2) \geq L(\varpi_0)$ for all $\varpi_0 \in [\varpi_1, \varpi_2]$, then following inclusion is true:

$$F \left(\varpi_1 + \varpi_2 - \sum_{j=1}^{n} \lambda_j \varpi_j \right) \supseteq F(\varpi_1) + F(\varpi_2) \ominus g \sum_{j=1}^{n} \lambda_j F(\varpi_j) \quad (2.7)$$

where $\sum_{j=1}^{n} \lambda_j = 1$, $\lambda_j \in [0, 1]$.

2198
3. Main results

In this section, we prove Hermite–Hadamard–Mercer type inclusion for convex interval-valued function via Riemann–Liouville fractional integrals.

Theorem 3.1 Let $F : [\varpi_1, \varpi_2] \to I^+_n$ be an interval-valued convex function such that $F(\vartheta) = [F(\vartheta), F(\vartheta)]$ and $L(\varpi_2) \supseteq L(\varpi_0)$ for all $\varpi_0 \in [\varpi_1, \varpi_2]$. Then, we have the following inclusions:

$$
\mathcal{F}
\left(\varpi_1 + \varpi_2 - \frac{\varpi + \varpi}{2}\right)
\supseteq \frac{\Gamma(\alpha + 1)}{2(v - \varpi)^\alpha}
\left[
J_\alpha^{\varpi_1 + \varpi_2 - \varpi}(\varpi_1 + \varpi_2 - \varpi) + J_\alpha^{\varpi_1 + \varpi_2 - v}(\varpi_1 + \varpi_2 - v)
\right]
\supseteq \frac{F(\varpi_1 + \varpi_2 - \varpi) + F(\varpi_1 + \varpi_2 - v)}{2} \supseteq \frac{\mathcal{F}(\varpi_1) + \mathcal{F}(\varpi_2)}{2}.
$$

Proof Since F is an interval-valued convex function, then for all $u, v \in [\varpi_1, \varpi_2]$, we have

$$
\mathcal{F}
\left(\varpi_1 + \varpi_2 - \frac{u + v}{2}\right) = \mathcal{F}
\left(\varpi_1 + \varpi_2 - \frac{u + v}{2}\right)
\supseteq \frac{1}{2}[\mathcal{F}(\varpi_1 + \varpi_2 - u) + \mathcal{F}(\varpi_1 + \varpi_2 - v)].
$$

Using $\varpi_1 + \varpi_2 - u = \vartheta(\varpi_1 + \varpi_2 - \varpi) + (1 - \vartheta)(\varpi_1 + \varpi_2 - v)$ and $\varpi_1 + \varpi_2 - v = \vartheta(\varpi_1 + \varpi_2 - v) + (1 - \vartheta)(\varpi_1 + \varpi_2 - \varpi)$ for $\varpi, v \in [\varpi_1, \varpi_2]$ and $\vartheta \in [0, 1]$, we get

$$
\mathcal{F}
\left(\varpi_1 + \varpi_2 - \frac{u + v}{2}\right)
\supseteq \frac{1}{2} [\mathcal{F}(\vartheta(\varpi_1 + \varpi_2 - \varpi) + (1 - \vartheta)(\varpi_1 + \varpi_2 - v))
+ \mathcal{F}(\vartheta(\varpi_1 + \varpi_2 - v) + (1 - \vartheta)(\varpi_1 + \varpi_2 - \varpi))].
$$

Now multiplying both sides of (3.3) by $\vartheta^{\alpha-1}$ and integrating the obtaining inclusion with respect to ϑ over $[0, 1]$, we obtain

$$
\frac{1}{\alpha} \mathcal{F}
\left(\varpi_1 + \varpi_2 - \frac{u + v}{2}\right)
\supseteq \frac{1}{2} \left[\int_0^1 \vartheta^{\alpha-1} \mathcal{F}(\vartheta(\varpi_1 + \varpi_2 - \varpi) + (1 - \vartheta)(\varpi_1 + \varpi_2 - v)) d\vartheta
+ \int_0^1 \vartheta^{\alpha-1} \mathcal{F}(\vartheta(\varpi_1 + \varpi_2 - v) + (1 - \vartheta)(\varpi_1 + \varpi_2 - \varpi)) d\vartheta\right]
= \frac{1}{2(v - \varpi)^\alpha}
\left[
\int_{\varpi_1 + \varpi_2 - \varpi}^{\varpi_1 + \varpi_2 - v} [w - (\varpi_1 + \varpi_2 - v)]^{\alpha-1} \mathcal{F}(w) dw
+ \int_{\varpi_1 + \varpi_2 - \varpi}^{\varpi_1 + \varpi_2 - \varpi} [(\varpi_1 + \varpi_2 - \varpi) - w]^{\alpha-1} \mathcal{F}(w) dw\right]
= \frac{\Gamma(\alpha)}{2(v - \varpi)^\alpha}
\left[
J_\alpha^{\varpi_1 + \varpi_2 - v}(\varpi_1 + \varpi_2 - \varpi) + J_\alpha^{\varpi_1 + \varpi_2 - \varpi}(\varpi_1 + \varpi_2 - \varpi)
\right].
$$
and the proof of first inclusion in (3.1) is completed. To prove the second inclusion in (3.1), first we note that F is an interval-valued convex functions, we have

\begin{equation}
F(\varphi (w_1 + w_2 - \kappa) + (1 - \varphi)(w_1 + w_2 - \nu)) \geq \varphi F(w_1 + w_2 - \kappa) + (1 - \varphi)F(w_1 + w_2 - \nu) \tag{3.4}
\end{equation}

\begin{equation}
F(\varphi (w_1 + w_2 - \kappa) + (1 - \varphi)(w_1 + w_2 - \nu)) \geq (1 - \varphi)F(w_1 + w_2 - \kappa) + \varphi F(w_1 + w_2 - \nu). \tag{3.5}
\end{equation}

Adding (3.4) and (3.5), we obtain the following from Jensen–Mercer inclusion

\begin{equation}
F(\varphi (w_1 + w_2 - \kappa) + (1 - \varphi)(w_1 + w_2 - \nu)) + F(\varphi (w_1 + w_2 - \kappa) + (1 - \varphi)(w_1 + w_2 - \nu)) \geq F(w_1 + w_2 - \kappa) + F(w_1 + w_2 - \nu)
\end{equation}

\begin{equation}
\geq 2[F(w_1) + F(w_2)] \ominus \varphi [F(\kappa) + F(\nu)].
\end{equation}

Multiplying both sides of (3.6) by $\varphi^{\alpha - 1}$ and integrating the resultant one with respect to φ over $[0, 1]$, we get

\begin{equation}
\int_0^1 \varphi^{\alpha - 1}F(\varphi (w_1 + w_2 - \kappa) + (1 - \varphi)(w_1 + w_2 - \nu)) d\varphi \geq \frac{1}{\alpha}F(w_1 + w_2 - \kappa) + \frac{1}{\alpha}F(w_1 + w_2 - \nu)
\end{equation}

\begin{equation}
\geq \frac{2}{\alpha} [F(w_1) + F(w_2)] \ominus \varphi \frac{1}{\alpha} [F(\kappa) + F(\nu)].
\end{equation}

That is,

\begin{equation}
\frac{\Gamma(\alpha)}{(\nu - \kappa)^{\alpha}} \left[J_{[w_1+w_2-\nu]}^\alpha F(w_1 + w_2 - \kappa) + J_{[w_1+w_2-\kappa]}^\alpha F(w_1 + w_2 - \nu) \right] \geq \frac{1}{\alpha}F(w_1 + w_2 - \kappa) + \frac{1}{\alpha}F(w_1 + w_2 - \nu)
\end{equation}

\begin{equation}
\geq \frac{2}{\alpha} [F(w_1) + F(w_2)] \ominus \varphi \frac{1}{\alpha} [F(\kappa) + F(\nu)].
\end{equation}

We obtain second and third inclusions in (3.1).

\textbf{Remark 3.2} Under the assumption of Theorem 3.1 with $F(\varphi) = F(\varphi)$, we have

\begin{equation}
F\left(\frac{w_1 + w_2 - \kappa + \nu}{2}\right) \leq \frac{\Gamma(\alpha + 1)}{2(\nu - \kappa)^{\alpha}} \left[J_{[w_1+w_2-\nu]}^\alpha F(w_1 + w_2 - \kappa) + J_{[w_1+w_2-\kappa]}^\alpha F(w_1 + w_2 - \nu) \right]
\end{equation}

\begin{equation}
\leq \frac{F(w_1 + w_2 - \kappa) + F(w_1 + w_2 - \nu)}{2} \leq F(w_1) + F(w_2) - \frac{F(\kappa) + F(\nu)}{2},
\end{equation}

which is given by Öğülmüş and Sarıkaya in [28].

2200
Remark 3.3 Under the assumption of Theorem 3.1 with \(\kappa = \varpi_1 \) and \(\upsilon = \varpi_2 \), Theorem 3.1 reduces to [7, Theorem 3.4].

Theorem 3.4 Let \(F : [\varpi_1, \varpi_2] \to I^+_c \) be an interval-valued convex function such that \(F(\vartheta) = [F(\vartheta), F(\vartheta)] \) and \(F(\varpi_2) \geq F(\kappa_0) \) for all \(\kappa_0 \in [\varpi_1, \varpi_2] \). Then, we have the following inclusions for generalized fractional integrals:

\[
F\left(\varpi_1 + \varpi_2 - \frac{\kappa + \upsilon}{2}\right) \geq \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(\upsilon - \kappa)^\alpha} \left[J^{\alpha}_{(\varpi_1+\varpi_2-\frac{\kappa+\upsilon}{2})}F(\varpi_1 + \varpi_2 - \upsilon) + J^{\alpha}_{(\varpi_1+\varpi_2-\frac{\kappa+\upsilon}{2})}F(\varpi_1 + \varpi_2 - \kappa)\right]
\]

\[
\geq F(\varpi_1) + F(\varpi_2) \oplus \varpi \frac{F(\kappa) + F(\upsilon)}{2}.
\]

Proof Since \(F \) is an interval-valued convex function, so we have

\[
F\left(\varpi_1 + \varpi_2 - \frac{u + \upsilon}{2}\right) = F\left(\frac{\varpi_1 + \varpi_2 - u + \varpi_1 + \varpi_2 - \upsilon}{2}\right)
\]

\[
\geq \frac{1}{2}\left[F(\varpi_1 + \varpi_2 - u) + F(\varpi_1 + \varpi_2 - \upsilon)\right].
\]

By setting \(u = \frac{\vartheta}{2}\kappa + \frac{2-\vartheta}{2}\upsilon, \upsilon = \frac{2-\vartheta}{2}\kappa + \frac{\vartheta}{2}\upsilon \) for all \(\kappa, \upsilon \in [\varpi_1, \varpi_2] \) and \(\vartheta \in [0, 1] \), we obtain

\[
F\left(\varpi_1 + \varpi_2 - \frac{\kappa + \upsilon}{2}\right) \geq \frac{1}{2}\left[F\left(\varpi_1 + \varpi_2 - \left(\frac{\vartheta}{2}\kappa + \frac{2-\vartheta}{2}\upsilon\right)\right) + F\left(\varpi_1 + \varpi_2 - \left(\frac{2-\vartheta}{2}\kappa + \frac{\vartheta}{2}\upsilon\right)\right)\right].
\]

Multiplying both sides of (3.9) by \(\vartheta^{\alpha-1} \) and integrating the obtaining inclusion with respect to \(\vartheta \) over \([0, 1]\), we get

\[
\frac{1}{\alpha}F\left(\varpi_1 + \varpi_2 - \frac{\kappa + \upsilon}{2}\right)
\]

\[
\geq \frac{1}{2}\left[\int_{0}^{1} \vartheta^{\alpha-1}F\left(\varpi_1 + \varpi_2 - \left(\frac{\vartheta}{2}\kappa + \frac{2-\vartheta}{2}\upsilon\right)\right) d\vartheta
\]

\[
+ \int_{0}^{1} \vartheta^{\alpha-1}F\left(\varpi_1 + \varpi_2 - \left(\frac{2-\vartheta}{2}\kappa + \frac{\vartheta}{2}\upsilon\right)\right) d\vartheta\right]
\]

\[
= \frac{2^{\alpha-1}\Gamma(\alpha)}{(\upsilon - \kappa)^\alpha} \left[\int_{\varpi_1 + \varpi_2 - u}^{\varpi_1 + \varpi_2 - \kappa} (w - (\varpi_1 + \varpi_2 - \upsilon))^{\alpha-1} F(w) dw
\]

\[
+ \int_{\varpi_1 + \varpi_2 - \kappa}^{\varpi_1 + \varpi_2 - \upsilon} ((\varpi_1 + \varpi_2 - \kappa) - w)^{\alpha-1} F(w) dw\right]
\]

\[
= \frac{2^{\alpha-1}\Gamma(\alpha)}{(\upsilon - \kappa)^\alpha} \left[J^{\alpha}_{(\varpi_1+\varpi_2-\frac{\kappa+\upsilon}{2})}F(\varpi_1 + \varpi_2 - \upsilon) + J^{\alpha}_{(\varpi_1+\varpi_2-\frac{\kappa+\upsilon}{2})}F(\varpi_1 + \varpi_2 - \kappa)\right]
\]

2201
and first inclusion in (3.7) is proved. To prove the second inclusion in (3.7), from Jensen–Mercer inclusion, we have

\[
F\left(\varpi_1 + \varpi_2 - \left(\frac{\vartheta}{2} \kappa + \frac{2 - \vartheta}{2} \upsilon\right)\right) \supseteq F(\varpi_1) + F(\varpi_2) \subseteq g\left[\frac{\vartheta}{2} F(\kappa) + \frac{2 - \vartheta}{2} F(\upsilon)\right]
\]

(3.10)

\[
F\left(\varpi_1 + \varpi_2 - \left(\frac{2 - \vartheta}{2} \kappa + \frac{\vartheta}{2} \upsilon\right)\right) \supseteq F(\varpi_1) + F(\varpi_2) \subseteq g\left[\frac{2 - \vartheta}{2} F(\kappa) + \frac{\vartheta}{2} F(\upsilon)\right].
\]

(3.11)

By adding (3.10) and (3.11), we obtain

\[
F\left(\varpi_1 + \varpi_2 - \left(\frac{\vartheta}{2} \kappa + \frac{2 - \vartheta}{2} \upsilon\right)\right) + F\left(\varpi_1 + \varpi_2 - \left(\frac{2 - \vartheta}{2} \kappa + \frac{\vartheta}{2} \upsilon\right)\right) \supseteq 2 \left[F(\varpi_1) + F(\varpi_2) \right] \subseteq g\left[F(\kappa) + F(\upsilon) \right]
\]

(3.12)

Multiplying both sides of inclusion (3.12) by \(\vartheta^{\alpha - 1}\) and integrating the resulting inclusion with respect to \(\vartheta\) over \([0, 1]\), we get

\[
\int_0^1 \vartheta^{\alpha - 1} F\left(\varpi_1 + \varpi_2 - \left(\frac{\vartheta}{2} \kappa + \frac{2 - \vartheta}{2} \upsilon\right)\right) d\vartheta + \int_0^1 \vartheta^{\alpha - 1} F\left(\varpi_1 + \varpi_2 - \left(\frac{2 - \vartheta}{2} \kappa + \frac{\vartheta}{2} \upsilon\right)\right) d\vartheta \\[2\alpha - 1\] \frac{1}{\alpha} [F(\varpi_1) + F(\varpi_2)] \subseteq g\left[F(\kappa) + F(\upsilon) \right].
\]

This proof is completed. \(\Box\)

Remark 3.5 Under the assumption of Theorem 3.4 with \(F(\vartheta) = F(\varpi)\), we get

\[
F\left(\varpi_1 + \varpi_2 - \frac{\kappa + \upsilon}{2}\right) \leq \frac{2^{\alpha - 1} \Gamma(\alpha + 1)}{(\upsilon - \kappa)\alpha} \left[J_{(\varpi_1 + \varpi_2 - \kappa + \upsilon)}^\alpha F(\varpi_1 + \varpi_2 - \upsilon) + J_{(\varpi_1 + \varpi_2 - \kappa + \upsilon)}^\alpha F(\varpi_1 + \varpi_2 - \kappa)\right]
\]

\[
\leq F(\varpi_1) + F(\varpi_2) - \frac{F(\kappa) + F(\upsilon)}{2},
\]

which is given by Öğülmüş and Sarıkaya in [28].

Remark 3.6 Under the assumption of Theorem 3.4 with \(\varpi = \varpi_1\) and \(\upsilon = \varpi_2\),

\[
F\left(\frac{\varpi_1 + \varpi_2}{2}\right) \geq \frac{2^{\alpha - 1} \Gamma(\alpha + 1)}{(\varpi_2 - \varpi_1)\alpha} \left[J_{(\varpi_1 + \varpi_2)}^\alpha F(\varpi_1) + J_{(\varpi_1 + \varpi_2)}^\alpha F(\varpi_2)\right]
\]

\[
\geq \frac{F(\varpi_1) + F(\varpi_2)}{2},
\]

which is given by Ali et al. in [3].
Theorem 3.7 Let \(F : [w_1, w_2] \to I^+_c \) be an interval-valued convex function such that \(F(\vartheta) = [F(\vartheta), F(\vartheta)] \) and \(F(w_2) \supseteq F(w_0) \) for all \(w_0 \in [w_1, w_2] \). Then, we have the following inclusions for generalized fractional integrals:

\[
F \left(w_1 + w_2 - \frac{\vartheta + v}{2} \right) \quad \quad (3.13)
\]

\[
\supseteq \frac{2^\alpha - \Gamma(\alpha + 1)}{(v - \vartheta)^\alpha} \left[J_{\vartheta}(w_1 + w_2 - v) + F \left(w_1 + w_2 - \frac{\vartheta + v}{2} \right) \right] + J^\alpha_{(w_1 + w_2 - \vartheta)} F \left(w_1 + w_2 - \frac{\vartheta + v}{2} \right)
\]

\[
\supseteq F(w_1) + F(w_2) \Theta_g \frac{F(\vartheta) + F(v)}{2}.
\]

Proof Since \(F \) is interval-valued convex function, so we have

\[
F \left(w_1 + w_2 - \frac{u + v}{2} \right) = F \left(\frac{w_1 + w_2 - u + w_1 + w_2 - v}{2} \right)
\]

\[
\supseteq \frac{1}{2} \left[F(w_1 + w_2 - u) + F(w_1 + w_2 - v) \right].
\]

By setting \(u = \frac{1 - \vartheta}{2} \vartheta + \frac{1 + \vartheta}{2} v \), \(v = \frac{1 + \vartheta}{2} \vartheta + \frac{1 - \vartheta}{2} v \) for all \(\vartheta, v \in [w_1, w_2] \) and \(\vartheta \in [0, 1] \), we obtain

\[
F \left(w_1 + w_2 - \frac{\vartheta + v}{2} \right)
\]

\[
\supseteq \frac{1}{2} \left[F \left(w_1 + w_2 - \left(\frac{1 - \vartheta}{2} \vartheta + \frac{1 + \vartheta}{2} v \right) \right) + F \left(w_1 + w_2 - \left(\frac{1 + \vartheta}{2} \vartheta + \frac{1 - \vartheta}{2} v \right) \right) \right].
\]

Multiplying both sides of (3.14) by \(\vartheta^{\alpha - 1} \) and integrating the obtaining inclusion with respect to \(\vartheta \) over \([0, 1] \), we get

\[
\frac{1}{\alpha} F \left(w_1 + w_2 - \frac{\vartheta + v}{2} \right)
\]

\[
\supseteq \frac{1}{2} \left[\int_0^1 \vartheta^{\alpha - 1} F \left(\frac{w_1 + w_2 - (1 - \vartheta) \vartheta + (1 + \vartheta) v}{2} \right) d\vartheta
\right.
\]

\[
+ \int_0^1 \vartheta^{\alpha - 1} F \left(\frac{w_1 + w_2 - (1 + \vartheta) \vartheta + (1 - \vartheta) v}{2} \right) d\vartheta
\]

\[
= \frac{2^{\alpha - 1} \Gamma(\alpha)}{(v - \vartheta)^\alpha} \left[\int_{w_1 + w_2 - v}^{w_1 + w_2 - \frac{\vartheta + v}{2}} \left(w - \frac{\vartheta}{2} \vartheta + \frac{1 + \vartheta}{2} v \right) \alpha^{-1} \right] F(w) dw
\]

\[
= \frac{2^{\alpha - 1} \Gamma(\alpha)}{(v - \vartheta)^\alpha} \left[J^\alpha_{(w_1 + w_2 - v) +} F \left(\frac{w_1 + w_2 - \vartheta + v}{2} \right) + J^\alpha_{(w_1 + w_2 - \vartheta)} F \left(\frac{w_1 + w_2 - \vartheta + v}{2} \right) \right]
\]

and first inclusion in (3.13) is proved. To prove the second inclusion in (3.13), from Jensen-Mercer inclusion, we have
By adding (3.15) and (3.16), we obtain
\[F(\varpi_1 + \varpi_2 - \left(\frac{1-\theta}{2} \varpi + \frac{1+\theta}{2} v \right)) \supseteq F(\varpi_1) + F(\varpi_2) \ominus_g \left[\frac{1+\theta}{2} F(\varpi) + \frac{1-\theta}{2} F(v) \right]. \] (3.17)

Multiplying both sides of inclusion (3.17) by \(\vartheta^\alpha - 1 \) and integrating the resulting inclusion with respect to \(\vartheta \) over \([0,1]\), we get
\[
\int_0^1 \vartheta^\alpha \left(\varpi_1 + \varpi_2 - \left(\frac{1-\theta}{2} \varpi + \frac{1+\theta}{2} v \right) \right) d\vartheta \
+ \int_0^1 \vartheta^\alpha \left(\varpi_1 + \varpi_2 - \left(\frac{1-\theta}{2} \varpi + \frac{1+\theta}{2} v \right) \right) d\vartheta \
\supseteq \frac{2}{\varpi} \left[F(\varpi_1) + F(\varpi_2) \right] \ominus \frac{1}{\varpi} \left[F(\varpi) + F(v) \right].
\]

This proof is completed. \(\square\)

Corollary 3.8 Under the assumption of Theorem 3.7 with \(F(\vartheta) = \overline{F}(\vartheta) \),
\[
\overline{F} \left(\frac{\varpi_1 + \varpi_2 - \varpi + v}{2} \right) \leq \frac{2^{\alpha-1} \Gamma(\alpha + 1)}{(v - \varpi)^\alpha} \left[J^\alpha_{(\varpi_1 + \varpi_2 - \varpi + v)} F(\varpi_1 + \varpi_2 - \frac{\varpi + v}{2}) + J^\alpha_{(\varpi_1 + \varpi_2 - \varpi)} F\left(\varpi_1 + \varpi_2 - \frac{\varpi + v}{2} \right) \right] \\
\leq \overline{F}(\varpi_1) + \overline{F}(\varpi_2) - \frac{\overline{F}(\varpi) + \overline{F}(v)}{2}.
\]

Remark 3.9 Under the assumption of Theorem 3.7 with \(\varpi = \varpi_1 \) and \(v = \varpi_2 \),
\[
\overline{F} \left(\frac{\varpi_1 + \varpi_2}{2} \right) \geq \frac{2^{\alpha-1} \Gamma(\alpha + 1)}{(\varpi_2 - \varpi_1)^\alpha} \left[J^\alpha_{(\varpi_1 + \varpi_2)} F\left(\frac{\varpi_1 + \varpi_2}{2} \right) + J^\alpha_{(\varpi_1 + \varpi_2 - \varpi)} \overline{F}\left(\frac{\varpi_1 + \varpi_2}{2} \right) \right] \\
\geq \frac{\overline{F}(\varpi_1) + \overline{F}(\varpi_2)}{2},
\]
which is given by Ali et al. in [3].

2204
4. Conclusion
We used Riemann–Liouville fractional integrals to prove Hermite–Hadamard–Mercer inclusion for convex interval-valued functions. It is an interesting and new problem that the upcoming researchers can obtain similar inequalities for different kinds of convexities and fractional integrals.

Acknowledgement
The researchers of our article would like to thank the editors, anonymous referees, and journal staff for their comments and suggestions.

References
[34] Sadowska E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Results in Mathematics 1997; 32 (3): 332-337.