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1. Introduction
Recently, biostimulants based on live microorganisms 
have gained significant attention from industry and 
academia mainly because the growth and development 
of a plant can be enhanced more easily in the field (Yao 
et al., 2023). Biostimulants can reduce the agricultural 
chemical footprint owing to their beneficial multilevel 
properties that help make agriculture more sustainable 
and resilient (Koli et al., 2019). When applied to plants or 
the soil, increased absorption and distribution of nutrients, 
tolerance to environmental stress, and improved quality of 
plant products explain the mechanisms by which these 
probiotics are useful (Mandal et al., 2022). It is also worth 
noting that microbial-based plant biostimulants, such as 

those involving plant growth-promoting rhizobacteria 
(PGPR) from the Bacillus and Pseudomonas genera 
(Hashem et al., 2019), nitrogen-fixing Azotobacter (Gauri 
et al., 2012; Wichard et al., 2009), Azospirillum (Amavizca 
et al., 2017; Marques et al., 2021), and the Rhizobium 
species (Santini et al., 2021), make up less than 25% of the 
commercial biostimulants available on the international 
market. PGPR helps plants tolerate environmental stress 
and influence growth and yield through their metabolic 
activities and the multiple factors generated by this 
interaction with plants. Thus, inoculation with PGPR leads 
to economic and environmental gains, which are important 
for the sustainable intensification of production systems 

(Barbosa et al., 2022) and notable in organic farming 
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systems (Bertrand et al., 2021). In these environmental 
contexts, Crithmum maritimum, also known as sea fennel, 
has received increasing attention in Mediterranean areas 
(Zenobi et al., 2021, 2022). This perennial halophyte 
thrives on sandy beaches, maritime rocks, breakwaters, 
and piers along coastlines worldwide and is particularly 
abundant in Mediterranean countries (Atia et al., 2011). 
Sea fennel is rich in various bioactive compounds that 
have been extensively investigated and found to possess a 
wide range of positive properties. These properties include 
antioxidant (Pereira et al., 2017), antibacterial (Jallali et 
al., 2014), antifungal (Alves-Silva et al., 2020), cytotoxic 

(Alemán et al., 2019), anticancer (Chen et al., 2021), 
antiinflammatory (Alemán et al., 2019; Alves-Silva et al., 
2020), antimutagenic (Souid et al., 2021), cholinesterase 
inhibitory (Generalić Mekinić et al., 2018), vasodilatory 

(Generalić Mekinić et al., 2016), and antiparasitic (Pereira 
et al., 2021) properties. C. maritimum, a halophytic species 
known for its ability to grow and develop even under 
water stress conditions (Azeñas et al., 2019), is a promising 
candidate for the development of extensive green roofs, 
even in situations characterized by shallow substrates and 
limited irrigation (Nektarios et al., 2016). As a member 
of the halophyte group, which includes plants tolerant to 
saline environments, sea fennel has been identified as a 
potential crop for biosaline agriculture (Atia et al., 2011; 
Piatti et al., 2022; Politeo et al., 2023). This suggests its 
use in implementing more sustainable cropping systems 
that require fewer inputs while providing multiple 
services, particularly in addressing climate change issues 
and preserving agrobiodiversity (Renna, 2018). Indeed, 
sea fennel can be used in marginal or degraded areas to 
promote soil desalination, enable agricultural production, 
recycle nutrients from aquaculture effluents (Buhmann 
and Papenbrock, 2013), remediate areas polluted by heavy 
metals, and serve as a source for biorefinery processes 

(Hulkko et al., 2023). The germination of C. maritimum 
seeds was previously studied under salinity and chemical 
factors (Meot-Duros and Magné, 2008), while other 
halophytes were examined for the effects of organic and 
microbial biostimulants (Jha et al., 2012) on root biomass 
during their growing phases. In the scientific literature, 
studies on in vitro seed crops treated with rhizobacterium 
Azospirillum brasilense exist (Méndez-Gómez et al., 2021). 
Additionally, information is available regarding seeds 
placed in pots with substrate, including studies involving 
Bacillus ssp. (Araujo et al., 2021) or a combination of 
microbial strains (Tyagi et al., 2023). 

Several studies have shown the effect of a different 
salinity range on the root (Hamed et al., 2008) and 
epigeal biomass (Castillo et al., 2022) development of 
C. maritimum. Given the lack of information on the 
1Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH. Website https://www.dsmz.de/

response of C. maritimum root system development 
to biostimulants, this study aims to assess their effect 
in a controlled environment as a strategy to improve 
agronomical techniques starting from nursery phases and 
enhance biodiversity in low-level intensification cropping 
systems in the Mediterranean environment.

2. Materials and methods
Two experiments were conducted under controlled 
conditions, one at the incubator level and the other in a 
greenhouse environment.
2.1. Crithmum maritimum seed collection
In the autumn of 2022, seeds from two populations 
(Atlantic (AT) and Mediterranean (ME)) were collected 
at full ripening. The AT population was harvested 
along the shoreline of western Brittany at the Pointe du 
Toulinguet (France), while seeds from the ME population 
were collected along the coastline of the Conero Regional 
Natural Park in the Marche region (central-eastern coast 
of Italy). After removing immature seeds and impurities 
by manual screening, the seeds were stored in a cold room 
at 5 °C until bacterization.
2.2. Bacterization
Two different biostimulants, labeled BS1 and BS2, were 
used for the bacterization of the sea fennel seeds and their 
subsequent biostimulation after sowing. BS1 was composed 
of three different strains purchased from the international 
culture collection of the DSMZ1. These strains included 
Azospirillum brasilense (strain DSMZ 1690), used for 
atmospheric nitrogen fixation, Priestia megaterium (strain 
DSMZ 339) as phosphorus-dissolving bacteria, and Niallia 
circulans (strain DSMZ 30598) as potassium-solubilizing 
bacteria, at a ratio of 2:1:1 (v/v/v). BS2 also consisted of 
these strains but included Azotobacter chroococcum (strain 
DSM 2286) for nitrogen fixation at a strain ratio of 1:1:1:1 
(v/v/v/v) (Abdallah et al., 2021). Both biostimulants were 
applied to the ME and AT C. maritimum populations. 
The bacterial strains were individually grown in nutrient 
broth for 48 h at 30 °C in a rotary shaking incubator 
(SKI 8R, ArgoLab, Carpi, Italy) set at 150 rpm. The 
biomass was then harvested by centrifugation (Rotofix 
32 A, Hettich, Tuttlingen, Germany) at 4000 rpm for 
5 min. Following centrifugation, the supernatant was 
discarded, and the cell pellet was resuspended in 10-mL 
sterile deionized water. The concentration of bacterial 
cells was determined spectrophotometrically at 600 nm, 
using a UV-Vis Shimadzu UV-1800 spectrophotometer 
(Shimadzu Corporation, Kyoto, Japan), and cell viability 
was checked using the spread plate method on nutrient 
agar. Finally, bacterial suspensions of each strain, each 
containing no fewer than 108 cells/mL, were mixed in 
the ratios mentioned previously. The seeds were placed in 
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sterile Petri dishes and pretreated with 10 mL of ethanol 
(96% solution, v/v) at room temperature to improve seed 
germination (Corona et al., 2023). After 24 h, the seeds 
from both populations were rinsed with sterile deionized 
water and divided into three groups. Two of these groups 
were treated with BS1 and BS2, while the control group 
received treatment with sterile deionized water only 

(Abdallah et al., 2021). Specifically, the seeds in the sterile 
Petri dishes were treated with 10 mL of BS1 or BS2 and left 
at room temperature for 3 h under shaking conditions at 
100 rpm. Most of the inoculum was then removed using a 
sterile syringe, and the seeds were left to dry overnight at 
30 °C before being sown in pots. Furthermore, 2 L of BS1 
or BS2, prepared as described above, was applied once a 
week to biostimulate the seeds after sowing. 

Six treatments were investigated, resulting from the 
factorial combination of the three biostimulant treatments 
(control treatment (CT), BS1, and BS2) and the two 
populations, AT and ME, for each experiment (within an 
incubator and under greenhouse conditions).
2.3. Experiment description and root development 
monitoring 
2.3.1. Incubator
For the experiment within incubator conditions, Petri 
dishes containing 20 seeds were prepared, replicated 
three times for each treatment, and placed inside an 
incubator. The Petri dishes were then put in a deionized-
cooled chamber with a controlled photoperiod. According 
to Meot-Duros and Magné (2008), there should be a 
thermoperiod of 20 °C without light. Each set of seeds 
was placed in tightly sealed 15-cm diameter Petri dishes 
(20-cm Ø) containing a 125-mm diameter Whatman 
filter paper (category no. 1441-125) soaked in 1.5 mL of 
deionized water (CT), 1.5 mL deionized water + 1 mL 
biostimulator, effectively covering 50% of the surface of 
the Whatman filter paper. The seeds were inspected daily, 
and germination was based on visible radical emergence. It 
is important to note that both BS1 and BS2 concentrations 
were consistent and administered only when the seeds 
were placed in the Petri dishes. Daily observations were 
conducted on the root growth trend after placing the 
different solutions (CT, BS1, and BS2) on the Whatman 
paper in the Petri dishes. According to Meot-Duros and 
Magné (2008), the germination tests for all treatments last 
50 days until root elongation occurs (BBCH 6).
2.3.2 Greenhouse
Crithmum maritimum seeds were sown in the third 
decade of January 2023 and placed on worktables inside 
a greenhouse; this structure made it possible to maintain 
an average temperature of 20 °C during the entire winter 
season. The C. maritimum seeds were placed in a seedling 
2Russell, L (2020). Emmeans: Estimated Marginal Means, aka Least-Squares Means, CRAN [online]. Website https://cran.r-project.org/web/packages/
emmeans/index.html [accessed 09 December 2023].

nursery tray with 68 round cavities. The hole diameter 
and diameter of extraction holes were 49 mm and 15 mm, 
respectively, while the foot height and thickness were 
55 mm and 65 mm. These cavities contained a substrate 
consisting of a mix of topsoil and peat (50:50 ratio), with 
an electrical conductivity of 0.3 dS m–1, a dry bulk density 
of 500 kg m–3, a pH (in water) of 6.5, and a total porosity 
of 85% V V–1. A biostimulant concentration (BS1 and 
BS2) of 8 × 108 cells mL–1 was administered weekly using a 
manual sprayer. After the third week of March, when the 
plants had differentiated two true leaves (BBCH 12), they 
were transplanted into biodegradable pots with an upper 
diameter and height of 110 mm, resulting in a volume of 
8 × 105 mm3. 
2.4. Root parameters acquisition
After 50 days in the Petri dishes in the incubator and at 
the phenological stages of BBCH scale 13 and 15 (when 
the plants had differentiated three and five true leaves, 
respectively) for the pots in the greenhouse, several 
parameters were measured, including root length, root 
diameter, number of tips, and the dry weight of root 
biomass. To analyze the morphology of the root system 
(root length, diameter, and number of tips), the image 
analysis system WinRhizo Pro 2007 (Regent Instruments, 
Sainte-Foy, Quebec, Canada) was used, coupled with a 
scanner (Epson Expression 10000 XL, Epson America, 
Inc., Los Alamitos, CA, USA) equipped with an additional 
light unit (TPU). The root systems were separated from 
the seeds in the Petri dishes before being analyzed. In 
the pots, the plants were removed from the substrate and 
thoroughly washed in tap water multiple times to eliminate 
all soil residues using a sieve with a 1-mm hole diameter. 
The root biomass was dried in an oven at 90 °C for 24 
h, and its weight was then measured with an analytical 
scale (Ohaus V14130 Voyager Laboratory Model, Ohaus 
Corporation, Parsippany, NJ, USA).
2.5. Statistical analysis
Prior to analysis, tests were performed to ensure 
that normality (Shapiro–Wilk test and QQ-plot) and 
homoscedasticity assumptions (Levene’s test) were 
met. Each experiment’s variables were analyzed using a 
mixed model, treating Population (P) and Biostimulant 
(BS) as fixed factors. Replicates and interaction with 
replicates were considered random factors. In cases of 
significant differences between the factors (p < 0.05), 
we performed an estimated marginal means post-hoc 
analysis. To achieve this, the “emmeans” function, with the 
Bonferroni adjustment from the “emmeans” R package2, 

was employed. Notably, a mixed-model analysis was 
performed separately for the two controlled environments. 
All statistical analyses were performed using R statistical 
software (R Core Team, 2019). 
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3. Results
3.1. Incubator
The results of the mixed model analysis showed significant 
differences associated with P, BS, and their interaction (P 
× BS) for almost all measured variables. Specifically, the 
interaction of the two factors, P × BS, showed differences 
at p < 0.001 for unit dry root biomass, at p < 0.01 for root 
length, and at p < 0.05 for root diameter (Table 1).

The analysis of interactions (Figures 1A–1C) revealed 
that within each biostimulant treatment, statistically 
significant differences between populations emerged for all 
three analyzed parameters. Specifically, the BS2 treatment 
significantly influenced root dry biomass unit weight and 
root length. In the first case, the ME population recorded 
significantly higher values (+20%) than AT (Figure 1A). 

Conversely, in the case of root length, the AT 
population exhibited the highest values (+6.7%) (Figure 
1B). On the other hand, root diameter was significantly 
influenced by the BS1 treatment, with statistically higher 
values observed in the AT population (+3.7%) than in the 
ME (Figure 1C). 

At the population level, a very similar trend was 
observed. Specifically, for all three parameters, the highest 
values were recorded for BS2, followed by BS1 and CT, 
regardless of the population considered (Figures 1A–1C 
and 2A–2C). 
3.2. Greenhouse
Under greenhouse conditions, the results of the mixed 
model analysis indicated that, at the BBCH 13 phenological 
phase, root length was significantly affected by both 
Population and Biostimulant (Table 2). At the Population 
level, AT exhibited higher values than ME. Concerning the 
Biostimulant factor, plants treated with BS2 displayed the 
highest root length. Root dry matter, root diameter, and 
the number of tips were significantly affected by the P X BS 
interaction (p < 0.001) (Table 2, Figures 3A–3C).

At the five true leaves stage, all four analyzed 
parameters were highly significantly affected by the P × BS 
interaction (p < 0.001) (Table 2, Figures 4A–4D). The same 
trend was observed within each population for all analyzed 
parameters (Figures 5A–5C). Specifically, the values 
observed in BS2 were significantly higher than BS1 (on 

Table 1. Mixed-model analysis of variance containing tests of the fixed effects for Population and Biostimulant under incubator 
conditions at root elongation phenological phase (BBCH 6).

Factors Root dry biomass unit
(g)

Root length
(cm)

Root diameter
(mm)

Population (P)

Atlantic 0.0016 (±0.0005) 7.00 (±2.73) 0.54 (±0.08)

Mediterranean 0.0016 (±0.0006) 7.30 (±2.65) 0.54 (±0.09)

Biostimulant (BS)

CT 0.0010 (±0.0001) 3.85 (±0.46) 0.46 (±0.06)

BS1 0.0015 (±0.0001) 7.54 (±0.90) 0.55 (±0.06)

BS2 0.0022 (±0.0003) 10.06 (±1.05) 0.60 (±0.06)

Df MS F p MS F P MS F P

P 1 7.78e-08 9.98 ** 2.639 10.62 ** 0.002 1.04 n.s.

BS 2 5.80e-07 74.35 *** 3.481 14.01 *** 0.001 0.51 n.s.

P × BS 2 8.84e-08 11.33 *** 1.184 4.77 ** 0.006 3.22 *

Residuals 174 7.80e-09 0.248 0.002

*p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant. Means are followed by standard deviation values. 
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Figure 1. Root dry biomass unit (A), root length (B), and root diameter 
(C) affected by a significant interaction of Population ´ Biostimulant at the 
root elongation phenological phase (BBCH 6). Different lowercase letters 
within each biostimulant treatment mean a significant difference between 
populations according to estimated marginal means post-hoc analysis; 
different uppercase letters within each population mean a significant 
difference among biostimulants treatments according to estimated marginal 
means posthoc analysis. Bars represent mean ± standard deviation. 

average: length: +51%, unit dry biomass: +59%, diameter: 
+6%, number of tips: +13%) and CT (on average: length: 
+96%, unit dry biomass: + 128%, diameter: +28%, number 
of tips: +41%) (Figures 4A–4D). 

Within each treatment, differences between 
populations emerged at the BS1 level in the case of root 
length (Figure 4A) and at both the BS2 and BS1 level in 

the case of the number of tips (Figure 4D). Specifically, at 
the BS2 level, ME showed a higher number of tips than 
AT (ME, on average, had 259 ± 12 tips vs. 230 ± 11 tips 
recorded in the AT population). In the case of BS1, the AT 
population exhibited a higher number of tips than ME, 
with a total of 220 ± 24 and 213 ± 9 tips, respectively.
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Table 2. Mixed-model analysis of variance containing tests of the fixed effects for Population and Biostimulant under greenhouse 
conditions during two phenological stages. BBCH 13: phenological phase 3 leaves, and BBCH 15: phenological stage 5 true leaves.

Phenological 
phase Factors Root dry biomass unit

(g)
Root length
(cm)

Root diameter
(mm)

Tips
(no)

BBCH 13

Population (P)

Atlantic 0.0024 (±0.00040) 22.00 (±13.26)a 0.31 (±0.044) 53.07 (±37.09)

Mediterranean 0.0025 (±0.00048) 20.61 (±9.10)b 0.31 (±0.049) 49.13 (±31.68)

Biostimulant (BS)

CT 0.00199 (±0.00002) 10.09 (±2.33)c 0.26 (±0.00007) 17.25 (±3.75)

BS1 0.00256 (±0.00001) 21.40 (±1.71)b 0.32 (±0.005) 50.35 (±7.99)

BS2 0.00288 (±0.00011) 32.42 (±3.55)a 0.35 (±0.009) 85.70 (±4.10)

Df MS F p MS F P MS F p MS F p

P 1 3.72e-07 27.78 *** 226.26 55.84 *** 0.0012 8.44 ** 4.63 1.68 n.s.

BS 2 5.92e-07 44.22 *** 94.60 23.35 *** 0.0065 44.72 *** 58.92 21.43 ***

P × BS 2 2.91e-07 21.77 *** 2.48 0.61 n.s. 0.0057 39.75 *** 28.56 10.38 ***

Residuals 174 1.33e-08 4.051 0.00014 2.74

BBCH 15

Population (P)

Atlantic 0.0050 (±0.002) 84.5 (±29.43) 0.33 (±0.04) 207.43 (±30.33)

Mediterranean 0.0050 (±0.002) 89.00 (±30.01) 0.33 (±0.04) 215.24 (±42.93)

Biostimulant (BS)

CT 0.00320 (±0.00005) 61.70 (±1.17) 0.29 (±0.004) 173.08 (±0.31)

BS1 0.00460 (±0.00006) 79.01 (±5.44) 0.35 (±0.0003) 216.58 (±4.60)

BS2 0.00731 (±0.00408) 119.53 (±2.92) 0.37 (±0.01) 244.34 (±35.92)

Df MS F P MS F P MS F p MS F p

P 1 3.56e-08 0.48 n.s. 173.37 19.81 *** 0.0000012 5.59 n.s. 26.40 0.44 n.s.

BS 2 4.25e-06 57.58 *** 572.71 65.46 *** 0.0022 19.93 *** 333.13 5.61 **

P × BS 2 1.27e-06 17.28 *** 497.56 56.87 *** 0.00057 15.23 *** 1796.00 30.24 ***

Residuals 174 7.40e-08 8.75 0.000037 59.37

*p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant. Different letters within a column mean significant difference at p < 0.05 level. 
Means are followed by standard deviation values. 

Figure 2. Root system in incubator without biostimulant somministration (CT) 
(A), with Biostimulant 1 (BS1) (B), and Biostimulant 2 (BS2) (C) somministration. 
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Figure 3. Root dry biomass unit (A), root diameter (B), and number of tips (C) in the 
compared treatments observed when the plants differentiated three true leaves (BBCH 
13). Different lowercase letters within each biostimulant treatment mean a significant 
difference between populations according to estimated marginal means post-hoc analysis; 
different uppercase letters within each population represent a significant difference among 
biostimulants treatments according to estimated marginal means post-hoc analysis. Bars 
represent mean ± standard deviation. 
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Figure 4. Root length (A), dry biomass unit (B), diameter (C), and number 
of tips (D) in the compared treatments observed when the plants had 
differentiated five true leaves (BBCH 15). Different lowercase letters within 
each biostimulant treatment represent a significant difference between 
populations according to estimated marginal means post-hoc analysis; 
different uppercase letters within each population mean a significant 
difference among biostimulant treatments according to estimated marginal 
means posthoc analysis. Bars represent mean ± standard deviation. 
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4. Discussion
Within the outlined experimental framework, we analyzed 
the potential impact of two biostimulants on four key 
root parameters (root dry biomass, length, diameter, 
and number of tips) in sea fennel from two spontaneous 
populations. Microbial biostimulants have gained 
significant attention in scientific research due to their 
positive effects on various stages of crop development, 
spanning from seed germination (Fleming et al., 2019; 
Yakhin et al., 2017) to plant growth and maturity (Caruso 
et al., 2019; Colla et al., 2017). Numerous studies have 
illustrated the benefits of PGPR inoculation across various 
crops, such as Crocus sativus L. (Chamkhi et al., 2023), Zea 
mays L. (Marques et al., 2023), Foeniculum vulgare Mill. 

(Abdallah et al., 2021), Arabidopsis thaliana L. (Méndez-
Gómez et al., 2021), Solanum lycopersicum, L. (Narendra 
Babu et al., 2015), and Cicer arietinum L. (Khan et al., 
2018). Previous studies have also explored the effect of 
salinity on seed germination in Petri dishes for Crithmum 
maritimum (Meot-Duros and Magné, 2008). Research on 
sea fennel root morphology is limited, primarily due to 
challenges associated with root sampling and evaluation. 
However, recent strides in digital image analysis, notably 
through WinRhizo software, have addressed some of these 
limitations. This software enables researchers to compare 
length, diameter, and the number of root tips between 
untreated and biostimulant-treated seeds, both in Petri 
dishes and pots.

In this study, the benefits resulting from the synergy 
of microbial strains present in the biostimulants used are 
evident and align with findings from previous research 

(Abdallah et al., 2021; Khan et al., 2018; Narendra Babu et 
al., 2015). The observed irregular dynamics in this study 
deserve further investigation, consistent with ongoing 
research on microbial biostimulants across various 

crops. The discrepancies between the populations in 
the Petri dishes might stem from variations in bacterial 
behavior. Notably, Azospirilimum brasilense was found 
to have a positive influence on the roots’ architectural 
traits; however, these effects can vary based on the type 
of interaction established (Méndez-Gómez et al., 2021; 
Spaepen et al., 2014). For instance, the synthesis of indole-
3-acetic acid, a phytohormone Azospirillum synthesizes in 
substantial amounts, can significantly enhance root growth 
when applied exogenously to tomato seeds (Mangmang 
et al., 2015). Thus, careful consideration in utilizing 
biostimulants is crucial, as the concentration of microbial 
strains plays a significant role in their effectiveness (Hwang 
et al., 2022).

In the incubator and pots with a sowing substrate, at 
two distinct phenological phases (13 and 15 on the BBCH 
scale), a greater number of microbial strains resulted 
in increased values for all analyzed root parameters. 
Therefore, the BS2 treatment resulted in statistically higher 
values than BS1, which exhibited statistically higher 
values than untreated plants. The additional presence of 
Azotobacter chroococcum in BS2 differentiates it from 
BS1. A. chroococcum, as highlighted in inoculation studies 
on corn subjected to water stress, is known to induce 
morphological improvements in roots, such as increased 
root length (Tyagi et al., 2023). Furthermore, the presence 
of Priestia megaterium in the Crithmum maritimum root 
system seems to have positive effects, especially when it 
colonizes the soil, benefiting other halophytes (Hwang et 
al., 2022).

5. Conclusion
Changes in root architecture are of great significance 
as they can directly affect the ability of plants to explore 
the soil and influence their capacity to uptake water and 

Figure 5. Root system when the plants differentiated five true leaves (BBCH 15): without biostimulant 
somministration (CT) (A), with Biostimulant 1 (BS1) (B), and Biostimulant 2 (BS2) (C) somministration. 
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nutrients. Biostimulants demonstrate resilience under 
a wide range of stress conditions, making them suitable 
as bacterial inoculants for agriculture, especially at low 
environmental impact or in marginal contexts where sea-
fennel cultivation is viable. Considering the productive 
results observed for Crithmum maritimum in central 
Italy, as highlighted in Zenobi et al. (2022) and given the 
initial effect (BBCH 6 in an incubator and BBCH 13 in 
pots) of the population on the root parameters studied, 
C. maritimum L. is a crop that responds favorably to the 
four microbial inoculants used in this study. Indeed, the 
use of biostimulants demonstrated a stimulating effect on 
the root parameters analyzed in both the incubator and 
the greenhouse, increasing weight (approximately +75% 
on average), diameter (+25% on average), length (about 
+100% on average), and the number of tips (about +51% on 
average) compared to the control. These findings, observed 
in two controlled environments, suggest the potential use 
of biostimulants during nursery phases of production to 
promote the adaptation of alternative crops in cropping 
systems increasingly affected by climate change. The goal 
is to mitigate their adverse effects and foster plant growth.
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